

Tomáš Masařík
masarik@kam.mff.cuni.cz

Presented paper by Zeev Dvir, Sivakanth Gopi

2–server PIR with sub-polynomial communication

Definitions

Definition PIR A k–server Private Information Retrieval (PIR) is triplet of algorithms: (Q, A, R).

- At the beginning user obtains a random string r, i position of bit and invokes queries q_1, \ldots, q_k using algorithm $(q_1, \ldots, q_k) = Q(i, r)$.
- Then sends q_j to jth server (with database D) which responds with an answer a_j using algorithm $a_j = A(j, D, q_j)$.
- Finally, user computes value of ith bit of the database D using algorithm $D_i = R(a_1, \ldots, a_k, i, r)$.

The important thing is privacy: each server learns no information about i. For any fixed server j the distribution over random strings r of $q_j = (i, r)$ is identical for every i.

The communication cost of that protocol is worst case number of bits exchanged between the user and the servers.

Theorem [Main result] There exists a 2–server PIR with communication cost $n^{o(1)}$.

Definition [Matching vector family] S–Matching vector family is a pair (U, V) of n-tuples, each of them is a k dimensional vector.

Such that $< u_i, u_j > = 0$ iff $i = j$ and $< u_i, u_j > \in S$ iff $i \neq j$.

Theorem [Matching vector family construction (Grolmusz 99)] There is an explicit constructible S–matching vector family in Z_k^n of size $n \geq \exp(\Omega((\log k)^2))$ with $S = \{1, 3, 4\}$