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Lasserre Hierarchy

Notation: Let P¢([n]) := {I C [n] | |I| < t} be the set of all index
sets of cardinality at most ¢ and let y € RP2t+2(["]) be a vector with
entries yy for all I C [n] with |I] < 2t 4 2.

D(Moment matrix): M11(y) € RPt+1("D) 5 Pyt 1 ([n]):

M1 (y))1,g =yros Y|, |J <t +1.

D(Moment matrix of slacks): For the ¢-th (¢ € [m]) constraint of the
LP ATz > b, we create M{(y) € RP:([")xPu([n]),

n
M{(W)1.5 = Auyrosogy) — bvios
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D(t-th level of the Lasserre hierarchy): Let K = {z € R"™ | Az > b}.
Then Las:(K) is the set of vectors y € RP2t+2("]) that satisfy

ME(y) =0 VL€ m; vo = 1.
Yin}) | € Lasi(K)} be the

Mi11(y) = 0;

Furthermore, let LasP™ .= {tygays- -
projection on the original variables.

Intuition: M;11(y) = O ensures consistency (y behaves locally as
a distribution) while M{(y) = 0 guarantees that y satisfies the I-th
linear constraint.

T(Lasserre properties from Martin K’s lecture): Let K = {z € R™ |
Az > b} and y € Las¢(K). Then the following holds:

(a) conv(K N{0,1}") = Lasi™ (K) C ... C Lash™(K) C K.
(b) Wehave 0 <yr <yy<1lforalll2DJwith0<|J|<|I|<¢t
(c) Let I C [n] with |I| <t. Then
Kn{zeR" |z, =1Viel} =0 = y; =0.
Let I C [n] with |I| <t. Then
y € conv({z € Las,_ 1 |(K) | (3 €{0,1} Vi € I}).

(e) Let S C [n] be a subset of variables such that not many can be
equal to 1 at the same time:

max{|I|: ICS;z e K;z; =1Vie I} <k <t

(d)

Then we have
y € conv({z € Las,_(K) | z(;3 € {0,1} Vi € S}).

(f) For any [I| <t we have yr =1 A;c;(yy = 1).
(g) For |I| <t: (Viel:ygy €{0,1}) = yr =Ilcrygo-
(h) Let [I|,|J| <t and yr =1. Then yyus = yJ.
Vector representation: For each event ;o (z; = 1) with |I| <t
there is a vector vy representing it in a consistent way:
L(Vector Representation Lemma):Let y € LAS;(K). Then there
is a family of vectors (vi)|r|<; such that (vi,v;) = yrus for all
|1],]J| < t. In particular ||vr||2 = yr and ||vp]|3 = 1.

From vectors to distributions

Binary setting

Solution in z € conv(K N {0,1}"™) — a probability distribution over
integral solutions in K. For ¢t-round Lasserre we cannot have a glob-
ally feasible probability distribution, but instead one that is locally
consistent.

L:Let y € LAS¢(K). Then for any subset S C [n] of size |S| <t there
is a distribution DS over 0,15 such that

Pr, ps /\(zl =1)| =yVICS.
iel

General 2CSP setting

All 2CSP problems can be restated using SDPs with constraints hid-
den in the maximization clause, so we do not depend on the moment
matrices.

D: Let V = [n] be a set of vertices and [k] the set of possible values.
An m-local distribution is a distribution DT over the set of assign-
ments [k]T of the vertices of some set T C V of size at most m + 2.
The choice +2 is for convenience.
D: A collection {DT|T C V,|T| < m + 2} of m-local distributions is
consistent if all pairs of distributions DT, DT’ are consistent on their
intersection TNT’. By this we mean that any event defined on T'NT"
has the same probability in DT and in DT’
Notation trick: If we have n vertices and |T'| < m, instead of the
entire collection {DT|T C V,|T| < m + 2} we talk instead about
a set of m-local random variables X1, X2,...,X,. We can think of
those random variables as variables X; coming from the distribution
DU}, Note that these variables are not jointly distributed random
variables, but for each subset of at most m + 2 of them, one can find
a sample space DT where the corresponding variables XZ-T are jointly
distributed.
More notation.

e {X;|Xs} = a random variable obtained by conditioning X"

on variables {X;-SU{Z})U € S}

. P[XZ _ X]lXS’] = P[X;S'UZUJ _ XfUZUJ‘X§UZUJ]~
D (Lasserre hierarchy in the prob. setting):
An m-round Lasserre solution of a 2CSP problem consists of m-local
random variables X1, X2,..., X, and vectors vg o for all S C (mv+2)
and all local assignments a € [k]%, if the following holds VS, T C
V,ISUT| <m+2,Va € [K]%,8 € [K]T :

(vs,a>vr,8) = P[Xs = a, X1 = f].

We usually want a solution for MAX 2CSP, so we add a maximization
clause, for instance max P(; ; myez[(zi, z; € II)].

O:A covariance matrix E[(X — E[X])(X — E[X])T] is always positive
semidefinite for a random vector X.

C:For a fixed local assignment x5 € [k]° (where |S| < m) and fixed
a, b, it holds that the matrix (Cov(Xiq, X;p|Xs = mS))i jev is posi-
tive semidefinite for the m-th level of the Lasserre hierarchy.

Main results

D: The T—threshold rank of a regular graph G, denoted ranks,(G),
is the number of eigenvalues of the normalized adjacency matrix of
G that are larger than 7. We can define this for any MAx 2-Csp
problem, by taking the adjacency graph of the predicates.

T: There is a constant ¢ such that for every € > 0, and every MAX
2-Csp instance Z with objective value v and alphabet size k, the fol-
lowing holds:

The objective value sdpopt(Z) of the r-round Lasserre hierarchy for
r > k- ranks>,(Z)/e® is within € of the objective value v of Z, i.e.,
sdpopt(Z) < v +e.

Moreover, there exists a polynomial time rounding scheme that finds
an assignment z satisfying valz (z) > v—e given optimal SDP solution
as input.

T: There is an algorithm, based on rounding r rounds of the Lasserre
hierarchy and a constant ¢, such that for every € > 0 and input in-
stance Z of UNIQUE GAMES with objective value v, alphabet size k,
satisfying rank>,(Z) < e°r/k, where 7 = €€, the algorithm outputs
an assignment z satisfying valz(x) > v — e.

T: There is an algorithm, based on rounding r rounds of the Lasserre
hierarchy and a constant ¢, such that for every € > 0 and input UNIQUE
GAMES instance Z with objective value 1 — e and alphabet size k, sat-
isfying r > ck - min{ncgl/3 ,rank>1_ .. (Z)}, the algorithm outputs an
assignment z satisfying valz(z) > 1/2.

A sample 2CSP: MaxCut

D:SDP relaxation of MAXCUT:

maximize E |lv; —v;]|? subject to |[v]|? =1 Vi€ V.
i,jEE

Step 1. Use an m-round Lasserre to get a collection of m-local vari-
ables X1, X2,...,X,. For an edge ij, its contribution to the SDP
objective is:

P [Xi # X;] = |lvi — v5]%.
Dij

Step 2. Our goal is sampling that is close to sampling D%/. Try first
independent sampling from marginals D*.

O(Local correlation):On an edge (i,7), the local distribution DY is
far from the independent sampling distribution D* x D7 only if the
random variables X;, X; are correlated.

O(Correlation helps): If two variables X;, X; are correlated, then
sampling/fixing the value of X; reduces the uncertainty in the value
of X;. More precisely:



{)Ig,}Var[XﬂXi] = Var[X,] — [Cov(Xs, X;)]? .

1
Var[X;]

The reduction in uncertainty is actually related to the global expected
correlation:

E Var[X;]— E E | E Var[X,|X;]| > E_|Cov(X;,X,)|%
B Vel - B BB Varlix] 2| B Cov(Xi X))

Step 3. Assume that average local correlation is at least ¢, that is
E (v;,v;) >¢.

JE i) >
Use PSD of correlations, apply the following Lemma for vectors
v = u?zz
L(Local Correlation vs. Global Correlation on Low-Rank Graphs):
Let v1,...,vn be vectors in the unit ball. Suppose that the vectors
are correlated across the edges of a regular n-vertex graph G,

E i, Vi) > p.
ij~G<U“U]> Z P

Then, the global correlation of the vectors is lower bounded by

E i, Vi) > Q k G).
LE (03,05)] > () /ranks() ()
where rank> ,(G) is the number of eigenvalues of adjacency matrix of
G that are larger than p.

Step 4. If the independent sampling is at least e—far from correlated
sampling over the edges, we can use the previous Lemma and reduce
the average variance. Therefore, after ranks .2(G)/e? steps, we are
done. B



