On the (Non) NP-Hardness of Computing Circuit Complexity

Cody D. Murray and Ryan Williams

presented by Radek Hušek

Complexity ZOO

Complexity class	Characterization
Р	polytime deterministic algorithms
RP	polytime randomized algorithms with bounded one-size error ¹
BPP	polytime randomized algorithms with bounded two-size error
ZPP	randomized algorithms with average polytime complexity
AC0	polysize circuits with unbounded fan-in and constant $depth^2$
AC0[m]	AC0 + ``mod m'' gates
E	$\mathrm{TIME}(2^{O(n)})$
EXP	$\text{TIME}(2^{n^{O(1)}})$ deterministic algorithms
$P_{/poly}$	polytime with polynomial advise

The "N" prefix denotes non-deterministic variant of given complexity class: Input of nondeterministic algorithm is (except instance of given problem) a "certificate". For every YES-instance there exists certificate which makes algorithm answer yes, and for NOinstance no certificate can convince algorithm to answer yes.

Given complexity class C, language L belongs into class i. o.-C (infinitely often) iff $L \cap \{0,1\}^n = L' \cap \{0,1\}^n$ for some $L' \in C$ and infinitely many n, and $\operatorname{co} C := \{L : \overline{L} \in C\}$.

Minimum Circuit Size Problem Complexity

Definition 1. *The* MINIMUM CIRCUIT SIZE PROBLEM (MCSP):

Input is (T, k) where $T \in \{0, 1\}^n$ is truth-table of boolean function on $\log_2 n$ variables and $k \in \mathbb{N}$ (encoded binary or unary). Output is YES if there is circuit of complexity³ at most k which evaluates function T, and NO otherwise.

We're encoding MCSP as string Tx, where $|T| = \max_{n \in \mathbb{N}} \{2^n < |Tx|\}$ and x is binary encoding of parameter k.⁴

We will use machine model with random access to input such as random-access Turing machine.

¹Only false-negatives.

²We allow only AND, OR and NOT gates.

³Complexity of is circuit is number of its gates and we're allowed to use AND, OR and NOT gates with fan-in at most 2.

⁴This encoding limits possible values of k but it's not a problem because every Boolean function on n variables has circuit complexity at most $(1 + o(1))2^n/n$ (Lupanov 59).

Definition 2. An algorithm $R : \Sigma^* \times \Sigma^* \to \{0, 1, *\}$ is TIME(t(n)) reduction from L to L' if there is constant $c \ge 0$ such that $\forall x \in \Sigma^*$:

- R(x,i) runs in O(t(|x|)) for all $i \in \{0,1\}^{\lceil 2c \log_2 |x| \rceil}$,
- There is an $l_x \leq |x|^c + c$ such that $R(x,i) \in \{0,1\}$ for all $i \leq l_x$ and R(x,i) = * for all $i > l_x$, and
- $x \in L \Leftrightarrow R(x,1)R(x,2) \dots R(x,l_x) \in L'$.

Proposition 3 (Skyum & Valiant 85; Papadimitriou & Yannakakis 86). SAT, Vertex Cover, Independent Set, Hamiltonian Path and 3-Coloring are NP-complete under TIME(poly(log(n))) reductions.

Theorem 4. For every $\delta < \frac{1}{2}$, there is no TIME (n^{δ}) reduction from PARITY to MCSP. Hence MCSP is not AC0[2]-hard under TIME (n^{δ}) reductions.

Theorem 5. If MCSP is NP-hard under polytime reductions, then $\mathsf{EXP} \neq \mathsf{NP} \cap \mathsf{P}_{\mathsf{/poly}}$. Consequently $\mathsf{EXP} \neq \mathsf{ZPP}$.

Theorem 6. If MCSP is NP-hard under logspace reductions, then $PSPACE \neq ZPP$.

Theorem 7. If MCSP is NP-hard under logtime-uniform AC0 reductions, then NP $\not\subset$ P_{/poly} and E $\not\subset$ i. o.-SIZE(2^{δn}) for some $\delta > 0$. As consequence P = BPP.

Proofs

Lemma 8 (Williams 2013). There is a universal $c \ge 1$ such than for any binary string T and any substring S of T, $CC(f_S) \le CC(f_T) + c \log |T|$.

Theorem 9 (Håstad 86). For every $k \ge 2$, PARITY cannot be computed by circuits with AND, OR and NOT gates of depth k and size $2^{o(n^{1/(k-1)})}$.

Definition 10 (Cabanets & Cai 2000). A reduction from language L to MCSP is **natural** if the size of all output instances and the size parameters k depend only on length of the input to the reduction.

Claim 11. Let $\varepsilon > 0$. If there is $\text{TIME}(n^{1-\varepsilon})$ reduction from PARITY to MCSP, then there is $\text{TIME}(n^{1-\varepsilon}\log^2 n)$ natural reduction from PARITY to MCSP. Furthermore, the value of k in this natural reduction is $O(n^{1-\varepsilon}poly(\log(n)))$.

Claim 12. If there is a TIME $(n^{1-\varepsilon})$ reduction from PARITY to MCSP, then there is a $\Sigma_2 \operatorname{TIME}(n^{1-\varepsilon} \operatorname{poly}(\log(n)))$ algorithm for PARITY.

Theorem 13. If every sparse language in NP has polytime reduction to MCSP, then $EXP \subseteq P_{\text{poly}} \Rightarrow EXP = NEXP$.