
On the (Non) NP-Hardness of Computing Circuit
Complexity

Cody D. Murray and Ryan Williams
presented by Radek Hušek

Complexity ZOO

Complexity class Characterization
P polytime deterministic algorithms
RP polytime randomized algorithms with bounded one-size error1

BPP polytime randomized algorithms with bounded two-size error
ZPP randomized algorithms with average polytime complexity
AC0 polysize circuits with unbounded fan-in and constant depth2

AC0[m] AC0 + “mod m” gates
E TIME(2O(n))

EXP TIME(2nO(1)
) deterministic algorithms

P/poly polytime with polynomial advise
The “N” prefix denotes non-deterministic variant of given complexity class: Input of non-
deterministic algorithm is (except instance of given problem) a “certificate”. For every
YES-instance there exists certificate which makes algorithm answer yes, and for NO-
instance no certificate can convince algorithm to answer yes.
Given complexity class C, language L belongs into class i. o.-C (infinitely often) iff L ∩
{0, 1}n = L′ ∩ {0, 1}n for some L′ ∈ C and infinitely many n, and coC :=

{
L : L ∈ C

}
.

Minimum Circuit Size Problem Complexity

Definition 1. The Minimum Circuit Size Problem (MCSP):
Input is (T, k) where T ∈ {0, 1}n is truth-table of boolean function on log2 n variables and
k ∈ N (encoded binary or unary). Output is YES if there is circuit of complexity3 at most
k which evaluates function T , and NO otherwise.

We’re encoding MCSP as string Tx, where |T | = maxn∈N {2n < |Tx|} and x is binary
encoding of parameter k.4

We will use machine model with random access to input such as random-access Turing
machine.

1Only false-negatives.
2We allow only AND, OR and NOT gates.
3Complexity of is circuit is number of its gates and we’re allowed to use AND, OR and NOT gates

with fan-in at most 2.
4This encoding limits possible values of k but it’s not a problem because every Boolean function on

n variables has circuit complexity at most (1 + o(1))2n/n (Lupanov 59).

Definition 2. An algorithm R : Σ∗ × Σ∗ → {0, 1, ∗} is TIME(t(n)) reduction from L
to L′ if there is constant c ≥ 0 such that ∀x ∈ Σ∗:

• R(x, i) runs in O(t(|x|)) for all i ∈ {0, 1}⌈2c log2|x|⌉,

• There is an lx ≤ |x|c + c such that R(x, i) ∈ {0, 1} for all i ≤ lx and R(x, i) = ∗ for
all i > lx, and

• x ∈ L ⇔ R(x, 1)R(x, 2) . . . R(x, lx) ∈ L′.

Proposition 3 (Skyum & Valiant 85; Papadimitriou & Yannakakis 86). SAT, Ver-
tex Cover, Independent Set, Hamiltonian Path and 3-Coloring are NP-complete under
TIME(poly(log(n))) reductions.

Theorem 4. For every δ < 1
2
, there is no TIME(nδ) reduction from Parity to MCSP.

Hence MCSP is not AC0[2]-hard under TIME(nδ) reductions.

Theorem 5. If MCSP is NP-hard under polytime reductions, then EXP ̸= NP ∩ P/poly.
Consequently EXP ̸= ZPP.

Theorem 6. If MCSP is NP-hard under logspace reductions, then PSPACE ̸= ZPP.

Theorem 7. If MCSP is NP-hard under logtime-uniform AC0 reductions, then NP ̸⊂
P/poly and E ̸⊂ i. o.-SIZE(2δn) for some δ > 0. As consequence P = BPP.

Proofs

Lemma 8 (Williams 2013). There is a universal c ≥ 1 such than for any binary string
T and any substring S of T , CC(fS) ≤ CC(fT) + c log |T |.

Theorem 9 (Håstad 86). For every k ≥ 2, Parity cannot be computed by circuits with
AND, OR and NOT gates of depth k and size 2o(n

1/(k−1)).

Definition 10 (Cabanets & Cai 2000). A reduction from language L to MCSP is na-
tural if the size of all output instances and the size parameters k depend only on length
of the input to the reduction.

Claim 11. Let ε > 0. If there is TIME(n1−ε) reduction from Parity to MCSP, then
there is TIME(n1−ε log2 n) natural reduction from Parity to MCSP. Furthermore, the
value of k in this natural reduction is O(n1−εpoly(log(n))).

Claim 12. If there is a TIME(n1−ε) reduction from Parity to MCSP, then there is a
Σ2 TIME(n1−εpoly(log(n))) algorithm for Parity.

Theorem 13. If every sparse language in NP has polytime reduction to MCSP, then
EXP ⊆ P/poly ⇒ EXP = NEXP.

