Tight lower bounds for the size of epsilon-nets

János Pach, Gábor Tardos

Introduction

Couple (X, \mathcal{R}) is called range space in universe \mathcal{U} if $X \subset \mathcal{U}$ is a finite set and $\mathcal{R} \subset 2^{\mathcal{U}}$ is a system of sets. The set $A \subset X$ is called shattered if for every $B \subset A$ there is a set $R_B \in \mathcal{R}$ such that $R_B \cap A = B$. The size of the largest shattered subset of X is called the dimension of the range space (X, \mathcal{R}) .

For every $\varepsilon > 0$, the set $S \subset X$ is called the ε -net for the range space (X, \mathcal{R}) if every range $R \in \mathcal{R}$ with $|R \cap X| \ge \varepsilon |X|$ contains at least one element of S.

Theorem (Matoušek, Seidl, Welzl, 1990-2) All range spaces (X, \mathcal{R}) , where X is a finite set of points in \mathbb{R}^3 and \mathcal{R} consists of half-spaces, admit ε -nets of size $O(\frac{1}{\varepsilon})$.

Theorem (Aronov, Ezra, Sharir, 2010) All range spaces (X, \mathcal{R}) , where X is a finite set of points in \mathbb{R}^2 (or \mathbb{R}^3) and \mathcal{R} consists of axis-parallel rectangles (boxes), admit ε -nets of size $O(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon})$.

Let (X, \mathcal{R}) be a range space with ranges from \mathbb{R}^m . The dual range space $(\mathbb{R}, \bigcup_{x \in \mathbb{R}^m} \mathcal{R}_x)$ is defined as a system on the underlying set \mathcal{R} consisting of the sets $\mathcal{R}_x = \{R \mid x \in R \in \mathcal{R}\}$, for all $x \in \mathbb{R}^m$.

Main results

Theorem 1 For any $\varepsilon > 0$ and for any sufficiently large integer $n \ge n_0(\varepsilon)$, there exists a dual range space \sum^* of VC-dimension 2, induced by n axis-parallel rectangles in \mathbb{R}^2 , in which the minimum size of an ε -net is at least $C^{\frac{1}{\varepsilon}} \log \frac{1}{\varepsilon}$. Here C > 0 is an absolute constant.

Theorem 2 For any $\varepsilon > 0$ and for any sufficiently large integer $n \geq n_0(\varepsilon)$, there exists a (primal) range space $\sum = (X, \mathcal{R})$ of VC-dimension 2, where X is a set of n points of \mathbb{R}^4 , \mathcal{R} consists of axis-parallel boxes with one of their vertices at the origin, and in which the size of the smallest ε -net is at least $C^{\frac{1}{\varepsilon}} \log \frac{1}{\varepsilon}$. Here C > 0 is an absolute constant.

Theorem 3 For any $\varepsilon > 0$ and for any sufficiently large integer $n \geq n_0(\varepsilon)$, there exists a (primal) range space $\sum = (X, \mathcal{R})$ of VC-dimension 2, where X is a set of n points of \mathbb{R}^4 , \mathcal{R} consists of half-spaces, and in which the size of the smallest ε -net is at least $C^{\frac{1}{\varepsilon}} \log \frac{1}{\varepsilon}$. Here C > 0 is an absolute constant.

Theorem 4 For any $\varepsilon > 0$ and for any sufficiently large integer $n \ge n_0(\varepsilon)$, there exists a (primal) range space $\sum = (X, \mathcal{R})$, where X is a set of n points in the plane, \mathcal{R} consists of axis-parallel rectangles, and in which the size of the smallest ε -net is at least $C^{\frac{1}{\varepsilon}} \log \log \frac{1}{\varepsilon}$. Here C > 0 is an absolute constant.

The structure of the proofs in the paper is the following:

$$\begin{array}{c} \text{Lemma 1} \\ \text{Lemma 2} \end{array} \} \Longrightarrow \text{Theorem 1} \Longrightarrow \text{ Theorem 2} \\ \text{Lemma 3} \end{array} \} \Longrightarrow \text{Theorem 3}$$

$$\text{Lemma 4} \Longrightarrow \text{Theorem 4}$$

Useful tools

Let $c \geq 2$ and $d \geq 1$ be integers. Let $x \in [c]^k = \{0, 1, \ldots, c-1\}^k$, that is $x = x_1 x_2 \ldots x_k$, $k \in [d]$. Expanding x as a c-ary fraction we define $\bar{x} = \sum_{j=1}^k x_j/c^k$. For any $0 \leq k \leq d$, $u \in [c]^k$ and $v \in [c]^{d-k}$ we define an open axis-parallel rectangle $R_{u,v}^k$ in the unit square as

$$R_{u,v}^k = (\bar{u}, \bar{u} + c^{-k}) \times (\bar{v}, \bar{v} + c^{k-d})$$

and consider the family

$$\mathcal{R} = \mathcal{R}(c, d) = \{ R_{u,v}^k \mid 0 \le k \le d, u \in [c]^k, v \in [c]^{d-k}, u_k = v_{d-k} \}$$

Clearly $|\mathcal{R}| = (d+1)c^{d-1}$. Finally $\sum = \sum (c,d)$ be the infinite range space $(\mathbb{R}^2, \mathcal{R})$ and let $\sum^* = \sum^* (c,d)$ denote its dual range space.

Lemma 1 Let $d \ge 1$, $r \ge 2$, $c \ge 3$ and let $\sum^* = \sum^* (c, d)$. If a subset $I \subset \mathcal{R}(c, d)$ contains no r-element range of \sum^* then

$$|I| \le (r-1)\frac{c-1}{c-2}c^{d-1}.$$

Lemma 2 Both \sum and \sum^* have VC-dimension 2.

Lemma 3 Let P be a finite set of points in the positive orthant of \mathbb{R}^d . To each $p \in P$ we can assign a point p' in the positive orthant of \mathbb{R}^d so that the set $P' = \{p' \mid p \in P\}$ satisfies the following condition. For any axis-parallel box $B \subset \mathbb{R}^d$ that contains the origin, there is a half-space $H_B \subset \mathbb{R}^d$ which contains the origin and for which $\{p' \mid p \in B \cap P\} = P' \cap H_B$.

Lemma 4 Let $n \geq 2$, $r = \lceil \log \log n/5 \rceil$ be integers and $\varepsilon = r/n$. Let X be a set of n randomly uniformly selected points of unit square, and \mathcal{R} denote the family of all axis-parallel rectngles of the form $[j/2^t, (j+1)/2^t) \times [a,b]$, where $j, t \in \mathbb{N}_0$ and a < b are reals. Then, with probability tending to 1, the range space (X, \mathcal{R}) does not admit an ε -net of size at most n/2.