Polynomiality for Bin Packing with a Constant Number of Item Types

Michel X. Goemans, Thomas Rothvoß

Presented by Martin Böhm

Combinatorics and Graph Theory PhD Seminar, 2014, MFF UK

Bin packing

D(BIN PACKING):

Input: A pair of vectors (s, a), where $s_1, s_2, s_3, \ldots s_d$ are *item types*, i.e. all possible sizes of our input items $(s_i \in [0, 1])$ and a_1, a_2, \ldots, a_d are *item multiplicities*, i.e. how many items of each item type we need to pack $(a_i \in \mathbb{Z}_{>0})$.

Goal: Find a minimum number of bins of capacity 1 such that all items are packed.

We are only considering a constant number of item types d.

We can look at BIN PACKING also in this manner:

Input: A pair of vectors (s,a) as before. From these two vectors, define a *configuration space* $\mathbb{P} \equiv \{x \in \mathbb{Z}_{\geq 0}^d | s^T x \leq 1\}$. An element x in the configuration space represents one valid packing of a bin.

Goal: Select a minimum number of vectors in \mathbb{P} such that we use all items with respect to their multiplicities, i.e. the vectors of configuration space we use sum up to a:

$$\min \left\{ \sum_{i} \lambda_{i} | \sum_{x \in \mathbb{P}} \lambda_{x} \cdot x = a; \lambda \in \mathbb{Z}^{\mathbb{P}}_{\geq 0} \right\}.$$

Note: Even for fixed d, both \mathbb{P} and λ_x will be exponentially large.

T(Main result): For any BIN PACKING instance (s, a), an optimum integral solution can be computed in time $O(\log \Delta)^{2^{O(d)}}$, where Δ is the largest integer appearing in the denominator s_i or in a multiplicity a_i .

The polyhedral cookbook

D: Given a set $X \subseteq \mathbb{R}^d$, we define a *convex cone* as $\operatorname{cone}(X) \equiv \{\sum_{x \in X} \lambda_x x | \lambda_x \geq 0 \forall x \in X\}$ and an *integer cone* as $\operatorname{intcone}(X) = \{\sum_{x \in X} \lambda_x x | \lambda_x \in \mathbb{Z}_{>0} \forall x \in X\}.$

D: For a polytope $P = \{x \in \mathbb{R}^d | Ax \leq b\}$, we define enc(P) as the number of bits that it takes to write down the inequalities defining

D: For a vector λ we define $support \operatorname{supp}(\lambda)$ as the non-zero indices of λ .

D: Define a d-dimensional parallelepiped Π with center v_0 as

$$\Pi = \left\{ v_0 + \sum_{i=1}^k \mu_i v_i : |\mu_i| \le 1 \right\}.$$

Usually we assume that parallelepipeds have linearly independent vectors v_i .

T(Finding conic combinations): Given polytopes $P, Q \subseteq \mathbb{R}^d$, one can find a $y \in \operatorname{intcone}(P \cap \mathbb{Z}^d) \cap Q$ and a vector $\lambda \in \mathbb{Z}_{\geq 0}^{P \cap \mathbb{Z}^d}$ such that $y = \sum_{x \in P \cap \mathbb{Z}_d} \lambda_x x$ in time $\operatorname{enc}(P)^{2^{O(d)}} \cdot \operatorname{enc}(Q)^{O(1)}$, or decide that no such y exists. Moreover, $|\operatorname{supp}(\lambda)|$ is upper bounded by 2^{2d+1} .

The previous theorem can be proven using the Structure Theorem, stated as follows:

T(Structure Theorem): Let $P = \{x \in \mathbb{R}^d | Ax \leq b\}$ be a polytope with $A \in \mathbb{Z}^{m \times d}$, $b \in \mathbb{Z}^m$ such that all coefficients are absolute-bounded by Δ . Then there exists a set $X \subseteq P \cap \mathbb{Z}^d$ of size $|X| \leq N \equiv m^d d^{\mathrm{O}(d)} (\log \Delta)^d$ that can be computed in time $N^{\mathrm{O}(1)}$ with the following property:

For any vector $a \in \operatorname{intcone}(P \cap \mathbb{Z}^d)$ there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{P \cap \mathbb{Z}^d}$ such that $\sum_{x \in P \cap \mathbb{Z}^d} \lambda_x \cdot x = a$ and

- 1. $\lambda_x \in \{0,1\}$ for all x outside X, that is $x \in (P \cap \mathbb{Z}^d) \setminus X$.
- 2. $|supp(\lambda) \cap X| < 2^{2d}$
- 3. $|supp(\lambda) \setminus X| < 2^{2d}$.

The recipe

The key idea behind the Structure Theorem is as follows:

- Split the polytope into polynomially many full-dimensional cells.
 The cells are not equicardinal, their sizes are chosen strategically.
- For each cell, we do the following:
 - We fix an arbitrary integral point of the cell.
 - We envelop all integral points of the cell by a blowup convex hull with few vertices.
 - Using the hull, we cover all integral points with polynomially many parallelepipeds.
 - If too many points are selected into λ_x , we redistribute their weight to the vertices of the parallelepiped.

The pre-baked ingredients

T(Solving integer programs of fixed dimension): Given $A \in \mathbb{Z}^{m \times d}$ and $b \in \mathbb{Z}^m$ with $\Delta \equiv \max(||A||_{\infty}, ||b||_{\infty})$, one can find an $x \in \mathbb{Z}^d$ with Ax < b (or deciding that none exists) in time $d^{O(d)} \cdot m^{O(1)}$.

T(Few vertices in an int. hull): Consider any polytope P with m constraints and $\Delta \equiv \max(||A||_{\infty}, ||b||_{\infty}) \ge 2$. Then $P_I = \operatorname{conv}(P \cap \mathbb{Z}^d)$ has at most $(m \cdot \operatorname{O}(\log \Delta))^d$ extreme points. In fact a list of the extreme points can be computed in time $d^{\operatorname{O}(d)}(m \cdot \operatorname{O}(\log \Delta))^{\operatorname{O}(d)}$.

T(Encapsulate a polytope by a blowup with few vertices): For a centrally symmetric polytope $P \subseteq \mathbb{R}^d$, there are $k \leq \frac{d}{2}(d+3)$ many extreme points $x_1, \ldots, x_k \in \text{vert}(P)$ such that $P \subseteq \text{conv}(\pm \sqrt{d} \cdot x_j | j \in [k])$.

T(Computing a minimum volume ellipsoid): Given a set of points S in \mathbb{R}^d , we can use SDP to compute a minimum volume ellipsoid E containing the given points in time polynomial to their encoding. Moreover, using the dual solution of the SDP, we can determine the contact points of $E \cap \text{conv}(S)$.

Cooking

L(1): Let $P = \{x \in \mathbb{R}^d | Ax \leq b\}$ be a polytope defined by m inequalities with integral coefficients of absolute value at most Δ . Then there exists a set Par of at most $N \equiv m^d d^{O(d)} (\log \Delta)^d$ integral parallelepipeds such that

$$P \cap \mathbb{Z}^d \subseteq \bigcup_{\Pi \in \operatorname{Par}} \Pi \subseteq P.$$

L(2): For any polytope $P \subseteq \mathbb{R}^d$ and any integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{P \cap \mathbb{Z}^d}$ there exists a $\mu \in \mathbb{Z}_{\geq 0}^{P \cap \mathbb{Z}^d}$ such that $|\operatorname{supp}(\mu)| \leq 2^d$ and $\sum_x \mu_x x = \sum_x \lambda_x x$. Furthermore, $\operatorname{supp}(\mu) \subseteq \operatorname{conv}(\operatorname{supp}(\lambda))$.

L(3): Given an integral parallelepiped Π with vertices X. Then for any $x^* \in \Pi \cap \mathbb{Z}^d$ and $\lambda^* \in \mathbb{Z}_{d \geq 0}$ there is an integral vector $\mu \in \mathbb{Z}_{>0}^{\Pi \cap \mathbb{Z}^d}$ such that the following holds:

- 1. $\lambda^* x^* = \sum_x \mu_x x$,
- 2. $|\operatorname{supp}(\mu \setminus X)| \leq 2^d$
- 3. $\mu_x \in \{0, 1\} \forall x \notin X$.

P(Finding conic combinations): Let $P = \{x | Ax \le b\}, Q = \{x | \overline{A}x \le \overline{b}\}.$

Compute the set X of size at most $N=m^dd^{\mathrm{O}(d)}(\log \Delta)^d$ from the Structure Theorem in time $N^{\mathrm{O}(1)}$. Let y^* be the (unknown) target vector. Using the Structure Theorem, we get λ^* .

At the expense of a factor $N^{2^{2d}}$ guess $X' = X \cap \text{supp}(\lambda^*)$. At the expense of factor $2^{2d} + 1$ guess the number $k = \sum_{x \notin X'} \lambda_x^* \in [2^{2d}]$ of extra points.

Create the following ILP:

$$\forall i \in [k] : Ax_i \le b$$

$$\sum_{x \in X'} \lambda_x x + \sum_{i=1}^k x_i = y$$

$$\overline{A}y \le \overline{b}$$

$$\forall x \in X' : \lambda_x \in \mathbb{Z}_{\ge 0}$$

$$\forall i \in [k] : x_i \in \mathbb{Z}^d$$

The number of variables is $X' + (k+1)d \leq 2^{\mathrm{O}(d)}$, the number of constraints is $km + d + \overline{m} + |X'|d = 2^{\mathrm{O}(d)}m + \overline{m}$. Maximal coefficient is $\max(d!\Delta^d, \overline{\Delta})$.

Bon appetit!