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Bin packing
D(Bin Packing):

Input: A pair of vectors (s; a), where s1; s2; s3; : : : sd are item types,
i.e. all possible sizes of our input items (si 2 [0; 1]) and a1; a2; : : : ; ad
are item multiplicities, i.e. how many items of each item type we need
to pack (ai 2 Z≥0).

Goal: Find a minimum number of bins of capacity 1 such that all
items are packed.

We are only considering a constant number of item types d.

We can look at Bin Packing also in this manner:

Input: A pair of vectors (s; a) as before. From these two vectors,
define a configuration space P � fx 2 Zd

≥0jsT x � 1g. An element x

in the configuration space represents one valid packing of a bin.

Goal: Select a minimum number of vectors in P such that we use all
items with respect to their multiplicities, i.e. the vectors of configu-
ration space we use sum up to a:

min

{∑
i

�ij
∑
x∈P

�x � x = a;� 2 ZP≥0

}
:

Note: Even for fixed d, both P and �x will be exponentially large.

T(Main result): For anyBin Packing instance (s; a), an optimum

integral solution can be computed in time O(log ∆)2
O(d)

, where ∆ is
the largest integer appearing in the denominator si or in a multiplicity
ai.

The polyhedral cookbook
D: Given a set X � Rd, we define a convex cone as cone(X) �
f
∑

x∈X �xxj�x � 08x 2 Xg and an integer cone as intcone(X) =

f
∑

x∈X �xxj�x 2 Z≥08x 2 Xg.

D: For a polytope P = fx 2 RdjAx � bg, we define enc(P ) as the
number of bits that it takes to write down the inequalities defining
P .

D: For a vector � we define support supp(�) as the non-zero indices
of �.

D: Define a d-dimensional parallelepiped Π with center v0 as

Π =

{
v0 +

k∑
i=1

�ivi : j�ij � 1

}
:

Usually we assume that parallelepipeds have linearly independent vec-
tors vi.

T(Finding conic combinations): Given polytopes P;Q �Rd, one can

find a y 2 intcone(P \ Zd) \ Q and a vector � 2 ZP∩Zd

≥0 such that

y =
∑

x∈P∩Zd
�xx in time enc(P )2

O(d) � enc(Q)O(1), or decide that

no such y exists. Moreover, jsupp(�)j is upper bounded by 22d+1.

The previous theorem can be proven using the Structure Theorem,
stated as follows:

T(Structure Theorem): Let P = fx 2 RdjAx � bg be a polytope
with A 2 Zm×d, b 2 Zm such that all coefficients are absolute-
bounded by ∆. Then there exists a set X � P \ Zd of size jXj �
N � mddO(d)(log ∆)d that can be computed in time NO(1) with the
following property:

For any vector a 2 intcone(P \ Zd) there exists an integral vector

� 2 ZP∩Zd

≥0 such that
∑

x∈P∩Zd �x � x = a and

1. �x 2 f0; 1g for all x outside X, that is x 2 (P \Zd) nX.

2. jsupp(�) \Xj � 22d

3. jsupp(�) nXj � 22d.

The recipe
The key idea behind the Structure Theorem is as follows:

� Split the polytope into polynomially many full-dimensional cells.
The cells are not equicardinal, their sizes are chosen strategically.

� For each cell, we do the following:

� We fix an arbitrary integral point of the cell.

� We envelop all integral points of the cell by a blowup
convex hull with few vertices.

� Using the hull, we cover all integral points with polyno-
mially many parallelepipeds.

� If too many points are selected into �x, we redistribute
their weight to the vertices of the parallelepiped.

The pre-baked ingredients

T(Solving integer programs of fixed dimension): Given A 2 Zm×d

and b 2 Zm with ∆ � max(jjAjj∞; jjbjj∞), one can find an x 2 Zd

with Ax � b (or deciding that none exists) in time dO(d) �mO(1).

T(Few vertices in an int. hull): Consider any polytope P with m
constraints and ∆ � max(jjAjj∞; jjbjj∞) � 2. Then PI = conv(P \
Zd) has at most (m � O(log ∆))d extreme points. In fact a list of the
extreme points can be computed in time dO(d)(m �O(log ∆))O(d).

T(Encapsulate a polytope by a blowup with few vertices): For a
centrally symmetric polytope P � Rd, there are k � d

2 (d + 3) many

extreme points x1; : : : ; xk 2 vert(P ) such that P � conv(�
p
d �xj jj 2

[k]).

T(Computing a minimum volume ellipsoid): Given a set of points
S in Rd, we can use SDP to compute a minimum volume ellipsoid
E containing the given points in time polynomial to their encoding.
Moreover, using the dual solution of the SDP, we can determine the
contact points of E \ conv(S).

Cooking
L(1): Let P = fx 2RdjAx � bg be a polytope defined by m inequa-
lities with integral coefficients of absolute value at most ∆. Then there
exists a set Par of at most N � mddO(d)(log ∆)d integral parallelepi-
peds such that

P \Zd �
⋃

Π∈Par

Π � P:

L(2): For any polytope P �Rd and any integral vector � 2 ZP∩Zd

≥0

there exists a � 2 ZP∩Zd

≥0 such that jsupp(�)j � 2d and
∑

x
�xx =∑

x
�xx. Furthermore, supp(�) � conv(supp(�)).

L(3): Given an integral parallelepiped Π with vertices X. Then
for any x∗ 2 Π \ Zd and �∗ 2 Zd≥0 there is an integral vector

� 2 ZΠ∩Zd

≥0 such that the following holds:

1. �∗x∗ =
∑

x
�xx,

2. jsupp(� nX)j � 2d,

3. �x 2 f0; 1g8x =2 X.

P(Finding conic combinations): Let P = fxjAx � bg; Q = fxjAx �
bg.

Compute the set X of size at most N = mddO(d)(log ∆)d from the
Structure Theorem in time NO(1). Let y∗ be the (unknown) target
vector. Using the Structure Theorem, we get �∗.

At the expense of a factor N22d guess X′ = X \ supp(�∗). At the
expense of factor 22d + 1 guess the number k =

∑
x/∈X′ �

∗
x 2 [22d] of

extra points.

Create the following ILP:

8i 2 [k] : Axi � b∑
x∈X′

�xx +

k∑
i=1

xi = y

Ay � b

8x 2 X′ : �x 2 Z≥0

8i 2 [k] : xi 2 Zd

The number of variables is X′ + (k + 1)d � 2O(d), the number of
constraints is km+d+m+ jX′jd = 2O(d)m+m. Maximal coefficient
is max(d!∆d;∆).

Bon appetit!


