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Bin packing
D(BIN PACKING):

Input: A pair of vectors (s,a), where s1,5$9,s3,...54 are item types,
i.e. all possible sizes of our input items (s; € [0,1]) and a1, a2,...,aq
are item multiplicities, i.e. how many items of each item type we need
to pack (a; € Zi>q)-

Goal: Find a minimum number of bins of capacity 1 such that all
items are packed.

We are only considering a constant number of item types d.
We can look at BIN PACKING also in this manner:

Input: A pair of vectors (s,a) as before. From these two vectors,
define a configuration space P = {x € ZiO\STx < 1}. An element z
in the configuration space represents one valid packing of a bin.

Goal: Select a minimum number of vectors in IP such that we use all
items with respect to their multiplicities, i.e. the vectors of configu-
ration space we use sum up to a:

min Z)\Z| Z/\a;~a;:a;)\€ ZIZPO
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Note: Even for fixed d, both IP and Az will be exponentially large.
T (Main result): For any BIN PACKING instance (s, a), an optimum

o(d
integral solution can be computed in time O(log A)? ( ), where A is
the largest integer appearing in the denominator s; or in a multiplicity
a;.

The polyhedral cookbook

D: Given a set X C RY, we define a convez cone as cone(X)
{ZzeX Azz|Az > OVz € X} and an integer cone as intcone(X)
{EzeX Azz|Az € LisoVz € X}

D: For a polytope P = {2 € R4 Az < b}, we define enc(P) as the

number of bits that it takes to write down the inequalities defining
P.

D: For a vector A we define support supp(A) as the non-zero indices
of A.

D: Define a d-dimensional parallelepiped II with center vg as

k
= U0+Zuivi lugl <1
i=1

Usually we assume that parallelepipeds have linearly independent vec-
tors v;.

T (Finding conic combinations): Given polytopes P, Q C Rd, one can
d
find a y € intcone(P N Z%) N Q and a vector A € ZI;QZ such that

o(d
y= ZwEPﬂZd Az in time enc(P)?2 @ ~enc(Q)O(1), or decide that
no such y exists. Moreover, |[supp(A)| is upper bounded by 22d+1,
The previous theorem can be proven using the Structure Theorem,
stated as follows:
T(Structure Theorem): Let P = {z € IR? Az < b} be a polytope
with A € Z™*4d b € 7™ such that all coefficients are absolute-
bounded by A. Then there exists a set X C P N Z% of size | X| <
N = mfd9(d) (log A)¥ that can be computed in time NO(1) with the
following property:
For any vector a € intcone(P N Zd) there exists an integral vector

A€ ZI;QZd such that Z -z = a and

€ PNZ4 Az

1. Az € {0,1} for all & outside X, that is z € (P N Z%)\ X.
2. |supp()) N X| < 224
3. [supp(X) \ X| < 224,

The recipe
The key idea behind the Structure Theorem is as follows:

e Split the polytope into polynomially many full-dimensional cells.
The cells are not equicardinal, their sizes are chosen strategically.

e For each cell, we do the following:
¢ We fix an arbitrary integral point of the cell.
® We envelop all integral points of the cell by a blowup
convex hull with few vertices.
e Using the hull, we cover all integral points with polyno-
mially many parallelepipeds.

e If too many points are selected into Az, we redistribute
their weight to the vertices of the parallelepiped.

The pre-baked ingredients

T(Solving integer programs of fixed dimension): Given A € ZM*d
and b € Z™ with A = max(||A|oo,|[bl|cc), one can find an z € Z%
with Az < b (or deciding that none exists) in time dO(d) . n0(1),

T (Few vertices in an int. hull): Consider any polytope P with m
constraints and A = max(||A]|cc, ||b]|cc) > 2. Then Py = conv(P N
7:%) has at most (m - O(log A)) extreme points. In fact a list of the

extreme points can be computed in time dO(4) (m - O(log A))O(d),

T (Encapsulate a polytope by a blowup with few vertices): For a
centrally symmetric polytope P C Rd, there are k < %(d + 3) many
extreme points 21, ...,z € vert(P) such that P C conv(:l:\/a-acj\j €
(kD).

T (Computing a minimum volume ellipsoid):
S in Rd, we can use SDP to compute a minimum volume ellipsoid
E containing the given points in time polynomial to their encoding.
Moreover, using the dual solution of the SDP, we can determine the
contact points of E N conv(S).

Given a set of points

Cooking

L(1l): Let P={z € ]Rd\Aac < b} be a polytope defined by m inequa-
lities with integral coefficients of absolute value at most A. Then there
exists a set Par of at most N = m?@d©O(d) (log A)d integral parallelepi-
peds such that

PnZdcC U nCP.
IIePar

d
L(2): For any polytope P C IR? and any integral vector A € Zggz

. d
there exists a pu € Zggz such that |[supp(u)| < 24 and Zx T =
ZI Azz. Furthermore, supp(p) C conv(supp(}A)).
L(3): Given an integral parallelepiped II with vertices X. Then
for any =* € I N Z% and \* ¢ Zg>q there is an integral vector

ne ZI;QZ”’ such that the following holds:

1. A*z* = Zw L,
2. [supp(p\ X)| < 2¢,
3. pa € {0,1}Va ¢ X.

P (Finding conic combinations): Let P = {z|Az < b},Q = {z|Az <
b}.

Compute the set X of size at most N = m%d©(4) (log A)¢ from the
Structure Theorem in time NO(1). Let y* be the (unknown) target
vector. Using the Structure Theorem, we get A*.

a
At the expense of a factor N2 guess X' = X Nsupp(A*). At the
expense of factor 22¢ + 1 guess the number k = > M € [229) of
extra points.

Create the following ILP:

g X'

Vi€ [k]: Am; < b

k
Z )\mx—i—Zwi:y
1

reX’ i=
Ay < b
VCUEX/Z)\;L-EZZO
Vi€ [k] : @; € Z°
The number of variables is X’ + (k + 1)d < 20(d) | the number of

constraints is km+d+m+|X'|d = 20(d)py, + . Maximal coeficient
is max(d!AY, A).

Bon appetit!



