
Klee’s Measure Problem Made Easy

Timothy M. Chan

presented by Tomáš Gavenčiak

Problem formulations

Given n axis-parallel d-dimensional boxes B (hyperrectangles) in Rd . . .

Klee’s measure problem
. . . determine the measure of their union Hd(

⋃
B).

Maximum depth problem
. . . find a point x ∈ Rd that is contained in the maximum number of boxes.

Weighted maximum depth problem
. . . and weights w : B → R, find a point x ∈ Rd maximising

∑
x∈b∈B w(b).

Coverage problem
. . . and an axis-parallel hyperrectangle Γ (the domain), does

⋃
B cover Γ?

Small k-cluster
Given n points in Rd and a number k, find a subset of k points with minimal L∞ diameter.

Graph k-clique
Given a graph on n nodes and a number k, is there a clique of size k?

Gradual improvements

J. L. Bentley, 1977: O(n log n) algorithm for measure in R2 (sweeping), O(nd−1 log n) for
general d. Similarly for depth.

Overmars and Yap, FOCS 1988: O(nd/2 log n) algorithm for the measure problem. Similarly
for depth.

T. M. Chan, 2010: O(nd/22log
∗ n) algorithm for measure problem. Similarly for depth.

T. M. Chan, 2010: If the static d-dimensional measure (or coverage) problem can be solved
in Td(n) time, then we can decide whether an arbitrary n-vertex graph contains a clique of
size d in O(Td(O(n2))) time.

The best combinatorial algorithms for k-clique currently runs in O∗(nk) (ignoring log-factors).
The best algorithm using matrix multiplication runs roughly in O(nwk/3) for w ∼ 2.376.

Current results

T1: There is a simple O(nd/2) algorithm for the measure problem.

T2: There is O(nd/2/ logd/2 n log logO(1) n) algorithm for the depth and cover problem.

T3: There is O(nd/2/ logd/2−c n log logO(1) n), with constant c < 5, algorithm for the weighted
depth problem.

T4: There is O((nd/2/ logd/2)/ logU log logO(1) U) algorithm for the measure problem on
word-RAM with integer coordinates 0 . . . U .

T5: There is O(nd/3 logO(1) n) algorithm for the measure problem of arbitrary orthants.

T6: There is O(n(d+1)/3 logO(1) n) algorithm for the measure problem of arbitrary hypercubes.

Tools

L3.1: We can preprocess N linear functions f1, . . . , fN : Rb → R in time (bN)O(b) and then
compute f(x) = max{f1(x), . . . , fN (x)} in time O(bc logN) for any x ∈ Rb and c ≤ 5.

L3.2: Given a polynomial f : Rb → R of degree O(1) and O(1) bounded integer coefficients,
we can compute S =

∑m
l=1 f(x(l)) for m b-tuples x(1), . . . x(m) ∈ [U]b with all numbers from a

set X, |X| = n, in time

O((m+ n) logU/ log logU +mb log b+ 2O(b log logU)).

Basic predicate E(x1, . . . xd) is conjunction of O(d2) conditions of the form xj?fi,j(xi), with
fi,j monotone step function and ? either ≤ or ≥.

Basic function is of the form F (x1, . . . xd) = [E(x1, . . . xd)] · h1(x1) · h2(x2) . . . hd(xd) with
hi(xi) piecewise-polynomial functions (density). Complexity of F is number of steps of fi,j
and pieces of hi.

L4.2: If F is basic of complexity n and degree s, then F ′(x1, . . . xd) =
∫ xd

−∞ F (x1, . . . xd−1, ξ)dξ
is a sum of O(1) basic functions of complexity O(n) and degree s + 1, constructible in time
O(n+ s).

