Independent sets in hypergraphs

József Balogh, Robert Morris, Wojciech Samotij

Presented by Martin Böhm

Postorad. Combinatorial Seminar. MFF UK

Definitions and notation

D(Usual notation.): \mathcal{H}, \mathcal{G} hypergraphs. $|\mathcal{H}|$ number of vertices, $||\mathcal{H}||$ edges. $\mathcal{I}(\mathcal{H})$ is the family of all independent sets.

D: We say a uniform \mathcal{H} is $(\mathcal{F}, \varepsilon) - dense$ if $\forall A \in \mathcal{F} : ||\mathcal{H}[A]|| > \varepsilon ||\mathcal{H}||$.

D:We define the max-degree of l-tuples as

$$\Delta_l(\mathcal{H}) = \max\{deg_{\mathcal{H}}(T) : T \subseteq V(\mathcal{H}), |T| = l\}.$$

D:Let H be a t-uniform hypergraph with at least t+1 vertices. We define the t-density of H, denoted by $m_t(H)$, by

$$m_t(H) = max(\frac{||H||-1}{|H|-t}|H' \subseteq H, |H'| \ge t+1).$$

D: We say that H is t-balanced if $m_t(H') \leq m_t(H)$ for all $H' \subseteq H$.

Main theorem

 $\mathbf{T}: \forall k \in N$ and all positive c, c', ε there exists a positive constant C such that the following holds:

Let \mathcal{H} be a k-uniform hypergraph and let $\mathcal{F} \subseteq 2^{V(\mathcal{H})}$ be an increasing family such that $\forall A \in \mathcal{F} : |A| \ge \varepsilon |\mathcal{H}|$. Assume also that \mathcal{H} is $(\mathcal{F}, \varepsilon)$ -dense and $p \in (0, 1)$ is set such that $p^{k-1}||\mathcal{H}|| > c'|\mathcal{H}|$ and $\forall l \in [k-1]$:

$$\Delta_l(\mathcal{H}) \leq c \cdot \min(p^{l-k}, p^{l-1} \frac{||\mathcal{H}||}{|\mathcal{H}|}).$$

Then there exists a family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp|\mathcal{H}|}$ and functions $f: S \to \overline{\mathcal{F}}$ and $g: \mathcal{I}(\mathcal{H}) \to S$ such that for every $I \in \mathcal{I}(\mathcal{H})$:

$$g(I) \subseteq I, I \setminus g(I) \subseteq f(g(I)).$$

"Roughly speaking, if \mathcal{H} satisfies certain technical conditions, then each independent set I in \mathcal{H} can be labeled with a certain small subset g(I) in such a way that all sets labeled with $S \in \mathcal{S}$ are essentially contained in a single set f(S) that contains very few edges of \mathcal{H} ."

Applications

Szemerédi's theorem for sparse sets

L(Robust version of Szemerédi's theorem)

 $\delta>0, k\in[n]\exists \varepsilon>0, \exists n_0\forall n\geq n_0$: Every subset of [n] with at least δn elements contains at least εn^2k -term APs.

 $\mathbf{T}(\text{Szemer\'edi's theorem for sparse sets}):$ For every positive β and k integer, there exist constants C and n_0 such that the following holds:

For all $n \geq n_0$ if $m \geq Cn/n^{-(k-1)}$, then there are at most $\binom{\beta n}{m}$ m-subsets of [n] that contain no k-term AP.

KŁR conjecture

D:Given a $p \in [0,1]$, a bipartite graph between V_1, V_2 is (ε, p) -regular if for every $W_1 \subseteq V_1$, $W_2 \subseteq V_2$, $|W_i| \ge \varepsilon |V_i|$, the density $d(W_1, W_2)$ satisfies

$$|d(W_1, W_2) - d(V_1, V_2)| < \varepsilon p.$$

D:The collection $\mathcal{G}(H,n,m,p,\varepsilon)$ is a collection of all graphs G constructed thus:

 $V(G) \equiv$ partitions of vertices $V_1 \cup V_2 \cup V_{|H|}$ of n vertices. We add an (ε, p) regular pair with m edges for each edge of H.

D:A canonical copy of $H \equiv$ a copy of H in a member of $\mathcal{G}(H, n, m, p, \varepsilon)$ such that for each $i \in V(G)$, $f(i) \in V_i(H)$.

T(The embedding lemma):For every graph H and every positive d, there exists $\varepsilon > 0$ and an integer n_0 such that $\forall n, m, n \geq n_0, m \geq dn^2$, every $G \in \mathcal{G}(H, n, m, 1, \varepsilon)$ contains a canonical copy of H.

The problem with embedding lemma: 1 is not p. Can it be salvaged? Not entirely, but maybe only a franction of regularity-type graphs do not satisfy it:

 $\mathbf{D}:\mathcal{G}^*(H,n,m,p,\varepsilon)\equiv$ a collection of graphs in $\mathcal{G}(H,n,m,p,\varepsilon)$ which do not contain any canonical copy of H.

Q(The KLR Conjecture): Let H be a fixed graph. Then, for any positive $\beta,$ there exist positive C,n_0,ε such that $\forall n,m,n\geq n_0,m\geq \frac{Cn^2}{n^{1/m_2(H)}}$:

$$|\mathcal{G}^*(H, n, m, m/n^2, \varepsilon)| \le \beta^m \binom{n^2}{m}^{||H||}.$$

KLR proven for small complete graphs, cycles. One of the main results is:

 $\mathbf{T}(\text{KLR for 2-balanced graphs})\text{:For }H\text{ being 2-balanced, KLR conjecture holds.}$

Proving KŁR for 2-balanced graphs

 $\mathbf{D}:\mathcal{G}(H,n_1,n_2,\ldots,n_{|H|})\equiv \text{similar to }\mathcal{G}(H,n,m,p,\varepsilon), \text{ only edges are complete bipartite graphs and sizes of partitions are variable.}$

L(Variant of the embedding lemma): Let H be a graph, $\delta:(0,1]\to (0,1)$ function. There exist positive constants α_0,ξ,N such that for every collection of integers $n_1,n_2,\ldots,n_{|H|}$, and every graph $G\in \mathcal{G}(H;n_1,n_2,\ldots,n_{|H|})$, one of the following holds:

- G contains at least $\xi n_1 n_2 \cdots n_{|H|}$ canonical copies of H,
- There exist a positive constant α with $\alpha \geq \alpha_0$, an edge $\{i,j\} \in E(H)$ and sets A_i, A_j which are of size at least $\alpha n_i, \alpha n_j$ but:

$$d_G(A_i, A_i) < \delta(\alpha)$$

L(Counting canonical copies with a non-regular pair): For each $\beta \in (0,1)$,set

$$\delta(x) = \frac{1}{4e} \left(\frac{\beta}{2}\right)^{2/x^2}.$$

Then, for every positive α_0, β , there exists a positive constant ε such that the following holds. Let $G' \subseteq K_{n,n}$ be such that there exist subsets A_1 , A_2 with $min(|A_1|, |A_2|) \ge \alpha n$ and $d_G(A_1, A_2) < \delta(\alpha)$ for some $\alpha \in [\alpha_0, 1]$.

Then for every m with $0 \le m \le n^2$, there are at most $\beta^m \binom{n^2}{m}$ subgraphs of G' that belong to $\mathcal{G}(K_2, n, m, m/n^2, \varepsilon)$.

C(Hypergraph of copies satisfies the Scythe): Let n, t be integers with $t \geq 2$ and H be a t-balanced, t-uniform hypergraph. Set k = ||H|| and let \mathcal{H} be the k-uniform hypergraph of copies of H in K_n^t .

Then there exist positive constants c, c' such that, letting

$$p = \frac{1}{n^{1/m_t(H)}},$$

the following holds:

- $p^{k-1}||H|| > c'|H|$,
- For every $l \in [k-1]$:

$$\Delta_l(\mathcal{H}) \le c \cdot min(p^{l-k}, \frac{p^{l-1}||\mathcal{H}||}{|\mathcal{H}|}).$$

The Scythe

Given a (i+1)-uniform hypergraph \mathcal{H}_{i+1} and an independent set $I \in \mathcal{I}(\mathcal{H}_{i+1})$ set $\mathcal{A}_{i+1}^{(0)} = \mathcal{H}_{i+1}$ and let $\mathcal{H}_{i}^{(0)}$ be the empty hypergraph on the vertex set $V(\mathcal{H})$. For $j = 0 \dots b-1$, do the following:

- If $I \cap V(\mathcal{A}_{i+1}^{(j)}) = \emptyset$, set $\mathcal{H}_i = \mathcal{H}_i^{(0)}$, $\mathcal{A}_i = \emptyset$, $B_i = \{u_0, \dots, u_{j-1}\}$ and stop.
- Let u_j be the first vertex of I in the max-degree order on $V(A_{i+1}^{(j)})$.
- Let \mathcal{H}_i^{j+1} be the hypergraph on the vertex set $V(\mathcal{H})$ defined by:

• Let \mathcal{A}_{i+1}^{j+1} be the hypergraph on the vertex set $V(\mathcal{A}_{i+1}^{(j)})\setminus u_{1...j}$ defined by:

Finally, set $\mathcal{H}_i = \mathcal{H}_i^{(b)}$, $\mathcal{A}_i = V(\mathcal{A}_{i+1}^{(b)})$ and $\mathcal{B}_i = u_{1...b-1}$.