Convex equipartitions: The spicy chicken theorem

Roman Karasev, Alfredo Hubard, Boris Aronov

Presented by Zuzana Safernová

Conjecture 1. (Nandakumar and Ramana Rao) Can a convex body in the plane be partitioned into n convex regions with equal areas and equal perimeters?

Corollary 2. Given a convex body K in \mathbb{R}^d , and a prime power n, it is possible to partition K into n convex bodies with equal d-dim volumes and equal (d-1)-dim surface areas.

- Absolutely continuous (a.c.) measure μ : $\lambda(A) = 0 \Rightarrow \mu(A) = 0$
- \mathcal{K}^d space of convex sets in \mathbb{R}^d with Hausdorff metric

Theorem 3. Given an a.c. finite measure μ on \mathbb{R}^d , a convex body $K \in \mathcal{K}^d$, a family of d-1 continuous functionals $\varphi_1, \varphi_2, \ldots, \varphi_{d-1} \colon \mathcal{K}^d \to \mathbb{R}$, and a prime power n, there is a partition of K into n convex bodies K_1, K_2, \ldots, K_n , such that $\mu(K_i) = \frac{\mu(K)}{n}$ and $\varphi_j(K_1) = \varphi_j(K_2) = \cdots = \varphi_j(K_n)$, for all $1 \le i \le n$ and $1 \le j \le d-1$.

Corollary 4. Given d a.c. probability measures μ_1, \ldots, μ_d on \mathbb{R}^d , and any number n, there is a partition of \mathbb{R}^d into convex regions K_1, \ldots, K_n with $\mu_i(K_j) = \frac{1}{n}$ for all i, j simultaneously.

Theorem 5. Suppose $K \in \mathcal{K}^d$ is a convex body, and, for some $1 \leq m \leq d$, we have m a.c. finite measures μ_1, \ldots, μ_m on K, and d-m a.c. finite measures $\sigma_1, \ldots, \sigma_{d-m}$ on ∂K . Then, for any n, the body K can be partitioned into n convex parts K_1, \ldots, K_n , such that,

- for any i = 1, ..., m we have $\mu_i(K_1) = \cdots = \mu_i(K_n)$, and
- for every i = 1, ..., d m we have $\sigma_i(K_1 \cap \partial K) = \cdots = \sigma_i(K_n \cap \partial K)$.

Theorem 6. Given a convex body $K \in \mathcal{K}^d$, an a.c. finite measure μ on K, a prime power n, a continuous map $g \colon \mathbb{R}^d \to \mathbb{R}^{d-1}$, and a continuous centermap $c \colon \mathcal{K}^d \to \mathbb{R}^d$, then there exists a partition of K into n convex sets K_1, \ldots, K_n , such that $\mu(K_i) = \frac{\mu(K)}{n}$, for all i, and $g(c(K_1)) = \cdots = g(c(K_n))$.

- Configuration space $F_n(\mathbb{R}^d) := \{(x_1, \dots, x_n) \in \mathbb{R}^{nd} : x_i \neq x_j \text{ for all } i \neq j\}$
- Symmetric group Σ_n acts on $F_n(\mathbb{R}^d)$ by permuting the points in a tuple and on \mathbb{R}^n by permuting the coordinate axes.
- Denote by α_n the orthogonal complement of the diagonal. Restrict the action of Σ_n on \mathbb{R}_n to the action on α_n .
- A map $f: \mathbb{R}^n \to \mathbb{R}^m$, $n \geq m$, is Σ_n -equivariant if $f \circ \pi = \pi \circ f$, for $\pi \in \Sigma_n$.

Theorem 7. (Fuchs, Vasiliev, Karasev) Let n be a prime power. For any Σ_n -equivariant continuous map $f: F_n(\mathbb{R}^d) \to \alpha_n^{\oplus (d-1)}$, there exists a configuration $\bar{x} \in F_n(\mathbb{R}^d)$, such that $f(\bar{x}) = 0$.

- X a compact top. space with a Borel probabilistic measure μ $\mathcal{C}(X)$ a set of real-valued continuous functions on X
- A fin. dim. linear subspace $L \subset \mathcal{C}(X)$ is measure separating (m.s.) if, for any $f \neq g \in L$, the measure of the set $e(f,g) = \{x \in X : f(x) = g(x)\}$ is zero.
- Let $F = \{u_1, \ldots, u_n\} \subset \mathcal{C}(X)$ and $\mu(e(u_i, u_j)) = 0$. The sets $V_i = \{x \in X : \forall j \neq i, u_i(x) \leq u_j(x)\}$ define a partition P(F) of X.

Theorem 8. Suppose L is a m.s. subspace of C(X) of dimension $d+1, \mu_1, \ldots, \mu_d$ are a.c. probability measures on X. Then, for any prime power n, there exists a subset $F \subset L$, |F| = n such that, for every $i = 1, \ldots, d$, the family P(F) partitions the measure μ_i into n equal parts.