APPROXIMATE CONSTRAINT SATISFACTION REQUIRES LARGE LP RELAXATIONS

SIU ON CHAN, JAMES R. LEE, PRASAD RAGHAVENDRA, AND DAVID STEURER

Presented by: Marek Eliáš

Definition (basic definitions). $f: \{\pm 1\}^n \to \mathbb{R}$, we write $\mathbb{E}f = 2^{-n} \sum_x \in \{\pm 1\}^n f(x)$. $\langle f, g \rangle = \mathbb{E}[fg]$.

Any such f can be written uniquely in the Fourier basis as $f = \sum_{\alpha \subseteq [n]} \langle f, \chi_{\alpha} \rangle \chi_{\alpha}$, where $\chi_{\alpha} = \prod_{i \in \alpha} x_i$.

Definition (d-junta). $f: \{\pm 1\}^n \to \mathbb{R}$ is called d-junta for $d \in [n]$ if f depends only a subset $S \subseteq [n]$ of coordinates with $|S| \le d$. In other words, f can be written as $f = \sum_{\alpha \subset S} \langle f, \chi_{\alpha} \rangle \chi_{\alpha}$.

Definition (density). We say that f is a density if it is non-negative and satisfies $\mathbb{E}f = 1$. For such an f, we let μ_f denote the corresponding probability measure on $\{\pm 1\}^n$. Observer that for any $g: \{\pm 1\}^n \to \mathbb{R}$, we have $\mathbb{E}_{x \sim \mu_f}[g(x)] = \langle f, g \rangle$.

Definition ((c, s)-approx.). We say that a linear programming relaxation \mathcal{L} for MAX- Π_n achieves a (c, s)-approximation if $\mathcal{L}(\mathcal{I}) \leq c$ for all instances $\mathcal{I} \in \text{MAX-}\Pi_n$ with $\text{opt}(\mathcal{I}) \leq s$.

Theorem (2.2). There exists an LP relaxation of size R that achieves a (c,s)-approximation for MAX- Π_n if and only if there exist non-negative functions $q_1, \ldots, q_R : \{\pm 1\}^n \to \mathbb{R}_{\geq 0}$ such that for every instance $\mathcal{I} \in \text{MAX-}\Pi_n$ with $opt(\mathcal{I}) \leq s$, the function $c - \mathcal{I}$ is a nonnegative combination of q_1, \ldots, q_R , i.e.

$$c - \mathcal{I} \in \{ \sum_{i} \lambda_i q_i \mid \lambda_i \ge 0 \}.$$

Lemma (2.3). In order to show that (c,s) – MAX- Π_n requires LP relaxations of size greater than R, it is sufficient to prove the following: For every collection of densities $q_1, \ldots, q_R : \{\pm 1\}^n \to \mathbb{R}_{\geq 0}$, there is $\epsilon > 0$, a function $H : \{\pm 1\}^n \to \mathbb{R}$ and a MAX- Π_n instance \mathcal{I} such that

1.
$$\langle H, c - \mathcal{I} \rangle < -\epsilon$$

2.
$$\langle H, q_i \rangle \geq -\epsilon$$

Lemma (2.4). Suppose that $f: \{\pm 1\}^n \to \mathbb{R}$ depends only on a subset of at most d coordinates $S \subseteq [n]$, then

$$\langle H, f \rangle = \mathbb{E}_{x \sim \mu_S}[f(x)]$$

for some probability measure μ_S on $\{\pm 1\}^n$.

Theorem (Main, 3.1). Fix a positive number $d \in \mathbb{N}$. Suppose that the d-round Sherali-Adams relaxation cannot achieve a (c,s)-approximation for MAX- Π_n for every n. Then no sequence of LP relaxations of size at most $n^{d/2}$ can achieve a (c,s)-approximation for MAX- Π_n for every n.

Theorem (3.2). Consider a function $f: \mathbb{N} \to \mathbb{N}$. Suppose that the f(n)-round Sherali-Adams relaxation cannot achieve a (c,s)-approximation for MAX- Π_n . Then for all sufficiently large n, no LP relaxation of size at most $n^{f(n^2)}$ can achieve a (c,s)-approximation for MAX- Π_N where $N \leq n^{10f(n)}$.

Lemma (3.3). For all $1 \le d$, $t \le n$ and $\beta > 0$, the following holds. If μ has entropy $\ge n - t$, there exists a set $J \subseteq [n]$ of at most $\frac{td}{\beta}$ coordinates such that for all subsets $A \nsubseteq J$ with $|A| \le d$, we have

$$\max_{v \in A} H(X_v \mid X_{A \setminus v}) \ge 1 - \beta$$

Date: 2014-03-27.

Definition (KL-divergence).

$$D(\mu||\nu) = \mathbb{E}_{\mu}[\log_2 \frac{\mu(x)}{\nu(x)}].$$

Lemma (3.5). Let μ be a distribution as in the statement of Lemma 3.3, and let $J \subseteq [n]$ be the corresponding set of coordinates. If $A \subseteq [n]$ satisfies $|A| \leq d$ and $A \not\subseteq J$, then

$$|\mathbb{E}_{\mu}[\chi_A(x)]| \le \sqrt{(\ln 4)\beta}.$$

Lemma (3.7, random restrictions). For any $d \in \mathbb{N}$, the following holds. Let Q be a collection of densities $q: \{\pm 1\}^n \to \mathbb{R}_{\geq 0}$ such that the corresponding measures μ_q have entropy at least n-t. If $|Q| \leq n^{d/2}$, then for all integers m with $3 \leq m \leq n/4$, there exists a set $S \subseteq [n]$ such that: 1. |S| = m

2. For each $q \in Q$, there is a set of at most d coordinates $J(q) \subseteq S$ such that under the distribution μ_q , all d-wise correlations in S - J(q) are small. Quantitatively, we have

$$|\hat{q}(\alpha)| \leq \left(\frac{32mtd}{\sqrt{n}}\right)^{1/2} \quad \forall \ \alpha \subseteq S, \alpha \not\subseteq J(q), |\alpha| \leq d$$