- weighted let T be a (theorem, definition, ...), T' is weighted T if T' arises from T by replacing $\{0,1\}$ with non-negative reals (possibly ≤ 1).
- measure if μ is called measure, think of it as of weighted characteristic function.
- pseudorandom a set $A \subseteq X$ is f-pseudorandom, if $\mathbf{E}[f(x): x \in A]$ behaves as if A was a random set.
- relative let T be a weighted theorem, T' is relativized T if T' arises from T by replacing $0 \le f(x) \le 1 \forall x$ by $0 \le f(x) \le \mu(x) \forall x$, μ is pseudorandom.
- complexity let G be a bipartite graph, its complexity is the minimum number of complete bipartite graphs such that G is their union.
- removal let O be an object and f a function such that $\mathbf{E}[f:O] < \delta$, then there exists O' such that $\mathbf{E}[f:O'] = 0$, $\mathbf{E}[O \setminus O'] < \varepsilon$ and $O \setminus O'$ has small complexity.

Theorem 1 (Szemerédi). $\forall k \forall \delta > 0 \exists c \exists N_0 \forall N > N_0 \forall A \subseteq Z_N \text{ such that } \mathbf{E}[1_A] \geq \delta \text{ is}$

$$\mathbf{E}[1_A(x) \cdot 1_A(x+d) \cdots 1_A(x+(k-1)d) : x, d \in Z_N] > c.$$

Definition. (Linear form) $\mu: Z_N \to \mathbb{R}_{>0}$ satisfies k-linear forms, if

$$\mathbf{E}\Big[\prod_{j=1}^{k} \prod_{\omega \in \{0,1\}^{[k]\setminus j}} \mu\Big(\sum_{i=1}^{k} (i-j)x_{i,\omega_i}\Big) \colon x_{1...k,\{0,1\}} \in Z_N\Big] = 1 + o(1),$$

and the same holds for all subexpressions (i.e., some $\mu(...)$ omitted).

Theorem 2 (Relative Szemerédi). (as above), $\forall \mu, f \colon Z_N \to \mathbb{R}_{\geq 0}$, $\mathbf{E}[f] \geq \delta$, $f \leq \mu$, μ satisfies k-linear forms, (as above).

Definition. (Hypergraph system) $(J, V_{j \in J}, r, H)$ is a h.s. for J finite set (graph is J-partite), V_j 's are finite vertex sets, and H is an r-uniform hypergraph ("template graph"). For edge e define $V_e = \prod_{j \in e} V_j$, weight function g is a collection of functions $g_e : V_e \to \mathbb{R}_{\geq 0}$.

Linear forms for hypergraphs are as before, but we are counting $\mu_e(x_{e,\omega})$ instead.

Skeleton of an edge e is $\partial e = \{f : f \subseteq e, |f| = |e| - 1\}.$

Theorem 3 (Relative hypergraph removal lemma). Let $(J, V_{j \in J}, r, H)$ be a hypergraph system with weight function g in [0, 1]. If $\mathbf{E}[\prod_{e \in H} g_e(x_e) \colon x \in V_J] < \delta$, then there exists a weight function g' in $\{0, 1\}$, such that $\mathbf{E}[\prod_{e \in H} g'_e(x_e)] = 0$, g'_e has low complexity and $\mathbf{E}[g_e(x_e) \cdot (1 - g'_e(x_e)] \le \varepsilon$.

Definition. (Regular pair) Two functions g_e , \tilde{g}_e : $V_e \to \mathbb{R}_{\geq 0}$ form an ε -regular pair, if

$$\forall B_f \subseteq V_f \quad \left| \mathbf{E} \left[(g_e(x_e) - \tilde{g}_e(x)) \prod_{f \in \partial e} 1_{B_f}(x_f) \colon x_e \in V_e \right] \right| < \varepsilon.$$

Theorem 4 (Sparse hypergraph regularity lemma). For every $\varepsilon > 0$, every $g \colon V_{[r]} \to \mathbb{R}_{\geq 0}$ a function which is $\gamma(\varepsilon)$ -upper regular, there exists a function \tilde{g} with complexity at most $\zeta(r,\varepsilon)$ such that (g,\tilde{g}) is ε -regular.

Theorem 5 (Relative counting regularity lemma). For every $\gamma > 0$, finite J there exists $\varepsilon > 0$, such that the following is true. Let $(J, V_{j \in J}, r, H)$) be a hypergraph system, g, \tilde{g}, μ weight functions such that μ satisfies H-linear forms conditions, $0 \le g \le \mu$, $0 \le \tilde{g} \le 1$, (g, \tilde{g}) is ε -regular pair; then

$$\left| \mathbf{E} \left[\prod_{e \in H} g_e(x_e) \colon x \in V_J \right] - \mathbf{E} \left[\prod_{e \in H} \tilde{g}_e(x_e) \colon x \in V_J \right] \right| < \gamma.$$