Partition Identities I : Sandwich Theorems and Logical 0-1 Laws Jason P. Bell, Stanley N. Burris

Basic definitions

Partition identity is given by formula

$$\mathbb{A}(x) \coloneqq \sum_{n=0}^{\infty} a(n) x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-p(n)}, \tag{1}$$

or, equivalently, by sequences a(n) or p(n), $n \in \mathbb{N}_0$, with setting p(0) = 1. We say that a(n) is partition (counting) function, p(n) is component function and $\mathbb{A}(x) \coloneqq \sum_{n=0}^{\infty} a(n)x^n$ is partition generating function, shortly PGF. Set rank $(p) \coloneqq \sum p(n)$ the rank of PGF.

The property $f(n-1)/f(n) \to 1$ as $n \to \infty$, where f(n) is eventually positive, is called RT₁. Similarly we define property RT_{ρ} for $\rho \in \mathbb{R}$.

A PGF $\mathbb{A}(x)$ is reduced if $gcd\{n: p(n) > 0\} = 1$. If it is not, define $d = gcd\{n: p(n) > 0\} > 1$ and PGF $\mathbb{A}^*(x)$ with component function $p^*(n) \coloneqq p(nd)$ and counting function $a^*(n) \coloneqq a(nd)$. Then $\mathbb{A}^*(x)$ is reduced and called *reduced form* of $\mathbb{A}(x)$.

Results

Theorem 1 (Bell) Let (1) be reduced partition identity. If p(n) is polynomially bounded, that is, $p(n) = O(n^{\gamma})$ for some $\gamma \in \mathbb{R}$, then a(n) satisfies RT_1 .

Theorem 2 (Bell and Burris) Suppose component function p(n) satisfies RT_1 , that is $p(n-1)/p(n) \to 1$ as $n \to \infty$. Then also partition function a(n) satisfies RT_1 .

Theorem 3 (Stewart's Sum Theorem) If for j = 1, 2 we have partition identity

$$\sum_{n=0}^{\infty} a_j(n) x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-p_j(n)}$$

and each $a_i^{\star}(n)$ satisfies RT₁. Then also $a^{\star}(n)$ satisfies RT₁

$$\sum_{n=0}^{\infty} a(n) x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-p(n)}$$

with $p(n) = p_1(n) + p_2(n)$.

Theorem 4 Finite rank implies polynomial growth for a(n). More precisely, if (1) is reduced and $r := \operatorname{rank}(p) < \infty$ then $a(n) \sim C \cdot n^{r-1}$ for some positive constant C.

Theorem 5 Infinite rank implies superpolynomial growth for a(n). That is, if (1) is reduced and $r := \operatorname{rank}(p) = \infty$ then for all k we have $a(n)/n^k \to \infty$ as $n \to \infty$.

Theorem 6 (Schur) With $0 \le \rho < \infty$ suppose that f(n) satisfies RT_{ρ} , $\mathbb{G}(x)$ has radius of convergence grater than ρ , and $\mathbb{G}(\rho) > 0$. Let $\mathbb{H}(x) = \mathbb{F}(x) \cdot \mathbb{G}(x)$. Then $h(n) \sim \mathbb{G}(\rho)f(n)$.

Sandwich theorem

For L nonnegative integer set $a^{L}(n) \coloneqq a(n) + a(n-1) + \dots + a(n-L)$. If PGF A has eventually positive coefficients, denote by $L_{\mathbb{A}}$ the least nonnegative integer L such that a(n) > 0 for all $n \ge L$. **Lemma 7** Let $\mathbb{A}(x)$ be a PGF with a(n) eventually positive. Then for every $L \ge L_{\mathbb{A}}$ we have that $a^{L}(n)$ is nonincreasing for all n and positive for $n \ge L_{\mathbb{A}}$. Moreover $a^{mL}(n) \le ma^{L}(n)$ for m = 1, 2, ... and $n \ge 0$.

Lemma 8 Let $\mathbb{A}(x)$ be a PGF with a(n) eventually positive. Suppose $L \ge L_{\mathbb{A}}$ is an integer such that $|a(n) - a(n-1)| = o(a^{L}(n))$. Then a(n) satisfies RT_{1} .

Lemma 9 Suppose $\mathbb{A}_1(x)$ and $\mathbb{A}_2(x)$ are two PGFs and $L \ge L_{\mathbb{A}}$ a positive integer such that, with $\mathbb{A}(x) = \mathbb{A}_1(x) \cdot \mathbb{A}_2(x)$, $a_1(n)$ satisfies RT_1 , and $a_2^L = o(a^L(n))$. Then a(n) satisfies RT_1 .

Theorem 10 (Sandwich Theorem) Suppose $\mathbb{A}(x)$ is reduced PGF with $\dot{a}(n)$ satisfying RT₁. Then any

$$\mathbb{A}(x) \coloneqq \sum_{n=0}^{\infty} a(n) x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-p(n)}$$

satisfying $\dot{p}(n) \leq p(n) = O(\dot{a}(n))$ will be such that a(n) satisfies RT_1 .

Sandwich theorem can be used to prove Bell's Theorem 1. Following theorem is about necessity of conditions in Theorem 1.

Theorem 11 Let $f(n) \leq 1$ be a positive (nondecreasing) unbounded function. Then there is a PGF $\dot{\mathbb{A}}(x)$ satisfying RT_1 and component function p(n) satisfying $\dot{p}(n) \leq p(n) = O(f(n)a(n))$, such that a(n) fails to satisfy RT_1 .

The notation $f(n) \leq g(n)$ menas that f(n) is eventually less or equal to g(n).

Theorem 12 (The Eventual Sandwich Theorem) Suppose $\dot{p}(n)$ satisfies RT_1 and $\dot{p}(n) \leq p(n) = O(\dot{a}(n))$. If

$$\sum_{n=1}^{\infty} (p(n) - \dot{p}(n)) \ge 0,$$

then a(n) satisfies RT_1 .

Logical 0–1 Laws

Monadic second order (MSO) logic for relational structures is just the usual first order logic augmented with variables and qualifiers for unary predicates.

Let \mathcal{A} be a class of relational structures and \mathcal{P} denote a subclass of connected structures. Class \mathcal{A} is *adequate* if it is closed under disjoint union and extracting components. Therefore, if \mathcal{A} is adequate then generating function $\mathbb{A}(x)$ is PGF (satisfies partition identity).

A class \mathcal{A} of finite relational structures has a MSO~0-1~law if for every monadic second order sentence φ the probability that φ holds in randomly chosen member of \mathcal{A} is either 0 or 1.

Let $a_{\mathcal{A}}(n)$ be the number of elements of \mathcal{A} that have exactly n elements in their universe. Analogically, $p_{\mathcal{A}}(n)$ be the counting function for \mathcal{P} .

Theorem 13 (Compton) If \mathcal{A} in an adequate class and $a_{\mathcal{A}}(n)$ satisfies RT_1 then \mathcal{A} has a monadic second-order 0–1 law.

Theorem 10 gives us vast array of partition identities satisfying RT_1 , and thus one has a correspondingly vast array of classes of relational structures with monadic second-order law.