Holographic algorithms

Leslie Valiant Presented by: Pavel Rytíř

January 21, 2012

1 Definitions

With a graph G we associate the perfect matching polynomial PerfMatch(G) over n(n-1)/2 variables $\{x_{i,j}|1 \leq i < j \leq n\}$ as follows:

$$PerfMatch(G) = \sum_{E'} \prod_{(i,j) \in E'} x_{i,j}$$

where the summation is over all perfect matchings E' of G.

A planar matchgate Γ is a triple (G, X, Y) where G is a planar embedding of a planar graph (V, E, W) where $X \subseteq V$ is a set of input nodes, $Y \subseteq V$ is a set of output nodes, and where X, Y are disjoint.

Further, as one proceeds anticlockwise around the outer face starting from one point one encounters first the input nodes labeled $1, 2, \ldots, |X|$ and then the output nodes $|Y|, \ldots, 2, 1$ in that order. The arity of the matchgate is |X| + |Y|.

For $Z \subseteq X \cup Y$ we define the standard signature of Γ with respect to Z to be PerfMatch(G-Z), where G-Z is the graph obtained by removing from G the node set Z and all edges that are incident to Z.

Further we define the standard signature of Γ to be the $2^{|X|} \times 2^{|Y|}$ matrix $u(\Gamma)$ whose elements are the standard signatures of Γ with respect to Z for the $2^{|X|}2^{|Y|}$ choices of Z. The labeling of the matrix is as follows: Suppose that X and Y have the labeling described, i.e., the nodes are labeled $1,2,\ldots,|X|$ and $|Y|,\ldots,2,1$ in anti-clockwise order. Then each choice of Z corresponds to a subset from each of these labeled sets. If each node present in Z is regarded as a 1, and each node absent as a 0, then we have two binary strings of length |X|,|Y|, respectively, where the nodes labeled 1 correspond to the leftmost binary bit. Suppose that i,j are the numbers represented by these strings in binary. Then the entry corresponding to Z will be the one in row i and column j in the signature matrix $u(\Gamma)$.

A basis of size k is a set of distinct nonzero vectors each of length 2^k with entries from a field F. Often we will have just two basis vectors that represent 0 and 1, respectively, and in that case we shall call them n and p. In this paper all bases will be of size k = 1, so that $n = (n_0, n_1)$ and $p = (p_0, p_1)$. The basis $b_0 = [n, p] = [(1, 0), (0, 1)]$ we call the standard basis. In general, the vectors in a basis do not need to be independent

$$b_1 = [n, p] = [(-1, 1), (1, 0)]$$

If we have two vectors q, r, of length l, m, respectively, then we shall denote the tensor product $s = q \otimes r$ to be the vector s of length lm in which $s_{im+j} = q_i r_j$ for $0 \le i < l$.

We say that a matchgate is a generator if it has zero input nodes and nonzero output nodes, and a recognizer if it has zero output nodes and nonzero input nodes.

Let $b = \{n, p\}$ be a basis and let G be a generator of arity k and let

$$u(G) = \sum_{x = x_1 \otimes \dots \otimes x_k \in \{n, p\}^k} \alpha_x x,$$

then the signature of generator G with respect to basis b is the vector

$$(\alpha_x)_{x=x_1\otimes\cdots\otimes x_k\in\{n,p\}^k}.$$

Let $x \in \{n, p\}^k$ we denote by valG(G, x) the signature element α_x .

Let R be a recognizer and let x be a vector then valR(G, x) := u(g)x (scalar product of standard signature of G and x).

We define a matchgrid Ω over a basis b to be a weighted undirected planar graph G that consists of the disjoint union of a set of g generator matchgates B_1, \ldots, B_g , r recognizer matchgates A_1, \ldots, A_r , and f connecting edges C_1, \ldots, C_f where each C_i edge has weight one and joins an output node in a generator matchgate with an input node of a recognizer matchgate, such that every input and output node in every constituent matchgate has exactly one such incident connecting edge.

$$\operatorname{Holant}(\Omega) = \sum_{x \in b^f} \left[\prod_{1 \le j \le g} \operatorname{valG}(B_j, x_j) \right] \left[\prod_{1 \le i \le g} \operatorname{valR}(A_i, x_i) \right]$$

Theorem 1.1. For any matchgrid Ω over any basis b if Ω has weighted graph G then

$$Holant(\Omega) = PerfMatch(G).$$