Finitely forcible graphons

L.Lovász, B. Szegedy

presented by Tereza Klimošová

Graphons and forcing families

Definition 1. Let W denote the set of bounded symmetric measurable functions of the form $W:[0,1]^2 \to \mathbb{R}$, and let $W_0 \subset W$ consist of those with range in [0,1]. The elements of W are called *graphons*.

Definition 2. The density t(F, G) of a simple graph F in a simple graph G is the probability that a random map $V(F) \to V(G)$ is a graph homomorphism.

The subgraph density of a simple graph F in a graphon W is

$$t(G, W) = \int_{[0,1]^V} \prod_{i j \in E} W(x_i, x_j) \prod_{i \in V} dx_i.$$

Definition 3. Two graphons are *weakly isomorphic* if they have the same simple subgraph densities. We denote by [W] the set of graphons weakly isomorphic to W.

Theorem 1. Two graphons U and W are weakly isomorphic if and only if there are measure preserving maps $\varphi, \psi : [0,1] \to [0,1]$ such that $U^{\varphi} = W^{\psi}$, where $U^{\varphi}(x,y) := U(\varphi(x), \varphi(y))$.

Definition 4. Let F_1, \ldots, F_k be simple graphs and a_1, \ldots, a_k be real numbers in [0, 1]. We say that the set $\{(F_i, a_i) | i = 1, \ldots, k\}$ is a forcing family if there is a sequence of simple graphs $\{G_n\}_{n=1}^{\infty}$ with $\lim_{n\to\infty} t(F_i, G_n) = a_i$ for every $i = 1, \ldots, k$, and for every such graph sequence $\lim_{n\to\infty} t(F, G_n)$ exists for every simple graph F

Let $A \subseteq W$. Let F_1, \ldots, F_k be simple graphs and a_1, \ldots, a_k be real numbers in [0, 1]. We say that the set $\{(F_i, a_i) | i = 1, \ldots, k\}$ is a forcing family in A if there is a unique (up to weak isomorphism) graphon $W \in A$, such that $t(F_i, W) = a_i$ for every $i = 1, \ldots, k$. In this case we say that W is finitely forcible in A and the family $\{F_i | i = 1, \ldots, k\}$ is a forcing family for W in A.

Definition 5. A quantum graph is a formal linear combination with real coefficients of multigraphs. Multigraphs that occur with nonzero coefficients are called its *constituents*. A quantum graph is simple if every its constituent is simple. We denote a linear space of simple quantum graphs by Q.

The adjoint of an operator

Definition 6. Let $\mathbf{F}: \mathcal{W} \to \mathcal{W}$ be an operator preserving weak isomorphism and let $\mathbf{F}^*: \mathcal{Q} \to \mathcal{Q}$ be a linear map. We say that the map \mathbf{F}^* is an *adjoint of* \mathbf{F} if

$$t(g, \mathbf{F}(W)) = t(\mathbf{F}^*(g), W)$$

for every $q \in \mathcal{Q}$ and $W \in \mathcal{W}$. We denote the set of functionals which have an adjoint by \mathcal{D} .

Lemma 2. Let $W \in \mathcal{W}$ be finitely forcible in \mathcal{W} , let $\mathbf{F} \in \mathcal{D}$ and assume that $\mathbf{F}^{-1}([W])$ is finite (up to weak isomorphism). Then every element in $\mathbf{F}^{-1}([W])$ is finitely forcible in \mathcal{W} .

Example 1. Let $\mathbf{F}(W) = \alpha W$ for some fixed $\alpha \in \mathbb{R}$. Then \mathbf{F}^* for simple graphs is

$$\mathbf{F}^*(G) = \alpha^{|E(G)|}G.$$

Example 2. Let $\mathbf{F}(W) = W + \beta$ for some fixed $\beta \in \mathbb{R}$. Then \mathbf{F}^* for simple graphs is

$$\mathbf{F}^*(G) = \sum_{Z \subseteq E(G)} \beta^{|E(G)\backslash Z|}(V(G), Z).$$

Corollary 3. If $W \in \mathcal{W}$ is finitely forcible (in \mathcal{W}), then $\alpha W + \beta$ for $\alpha, \beta \in \mathbb{R}$ is finitely forcible.

Necessary condition for finite forcing

Definition 7. A graphon W is a *stepfunction* if there is a partition $\{S_1, \ldots, S_n\}$ of [0,1] into measurable sets such that W is constant on each product set $S_i \times S_i$.

Definition 8. We say that the rank of a graphon W is r, if r is the least nonnegative integer such that there are measurable functions $w_i : [0,1] \to \mathbb{R}$ and reals λ_i , $i = 1, \ldots, r$, such that

$$W(x,y) = \sum_{k=1}^{r} \lambda_k w_k(x) w_k(y)$$

almost everywhere. If no such integer exists, then we say that W has infinite rank.

Theorem 4. If W has finite rank, then for every finite list $F_1, \ldots F_m$ of simple graphs there is a stepfunction U such that $t(F_i, U) = t(F_i, W)$ for every $i = 1, \ldots, m$.

Corollary 5. Every finitely forcible graphon is either a stepfunction or it has infinite rank.

Corollary 6. Assume that $W \in \mathcal{W}$ can be expressed as a non-constant polynomial in x and y. Then W is not finitely forcible.

Finitely forcible graphons

Definition 9. Suppose that edges of a graph F are partitioned into two sets E_+ and E_- . We call the triple $\widehat{F} = (V, E_+, E_-)$ a signed graph and we define

$$t(\widehat{F}, W) = \int_{[0,1]^V} \prod_{ij \in E_+} W(x_i, x_j) \prod_{ij \in E_-} (1 - W(x_i, x_j)) \prod_{i \in V} dx_i.$$

Definition 10. A graph F with k specified vertices labeled $1, \ldots, k$ and any number of unlabeled vertices is called a k-labeled graph. Let V_0 be a set of unlabeled vertices of F. For $W \in \mathcal{W}$ we define a function $t_k(F, W) : [0, 1]^k \to \mathbb{R}$ by

$$t_k(F, W)(x_1, \dots, x_k) = \int_{[0,1]^{V_0}} \prod_{ij \in E} W(x_i, x_j) \prod_{i \in V_0} dx_i.$$

Let \mathcal{M}_0 denote the set of functions $[0,1]^2 \to [0,1]$ that are monotone decreasing in both variables, and let \mathcal{M} be the set of graphons which are weakly isomorphic to some function of \mathcal{M}_0 . Let \widehat{C}_4 denote a signed 4-labeled 4-cycle, with two opposite edges signed "+" and the other two "-".

Lemma 7. Let $W \in \mathcal{W}$, then $W \in \mathcal{M}$ if and only if $t_4(\widehat{C}_4, W) = 0$ almost everywhere.

Theorem 8. Let p be a real symmetric polynomial in two variables, which is monotone decreasing on [0,1]. Then the function $W(x,y) = \mathbf{1}_{p(x,y)\geq 0}$ is finitely forcible in W.