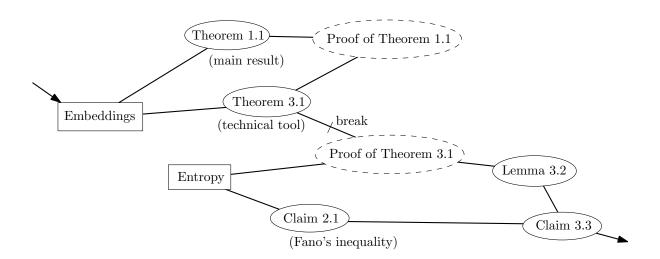
Entropy-based Bound on Dimension Reduction in L_1

Oded Regev

presented by Tomáš Gavenčiak



1 Embeddings

For convenience, let [k] denote $\{1,\ldots,k\}$ and U(S) an uniform distribution over S. All log's are base 2.

Let (X, d_X) and (Y, d_Y) be (possibly finite) metric spaces. We consider metrics of shortest distances in an (undirected) graph and L_1 metric in \mathbb{R}^d (denoted l_1^d).

A mapping $f:X\to Y$ of metric spaces is called an *embedding* with distortion C>0) if

$$Sd_X(x,y) \le d_Y(f(x),f(y)) \le CSd_X(x,y)$$

for some constant S > 0 (scaling factor).

2 Main result

Theorem 1.1 (Main result)

- 1. (large distortion) For every N, there is an N-point subset of L_1 such that for every D > 1, embedding it into l_1^d with distortion D requires $d \ge N^{\Omega(1/D^2)}$.
- **2.** (small distortion) For every N, and every $\epsilon > 0$, there is an N-point subset of L_1 such that embedding it into l_1^d with distortion $1 + \epsilon$ requires $d \ge N^{1-O(1/\log(1/\epsilon))}$.

The main technical tool used in the proof is the following theorem:

Theorem 3.1. For any $k \geq 2$, $n \geq 1$ the following holds. Assume $f: [2k]^n \to \mathbb{R}^d$ and $\epsilon < 1/(k-1)$ satisfy:

- **1.** For all $x_1, \ldots, x_n \in [2k], ||f(x_1, \ldots, x_n)||_1 \le 1$
- **2.** For all $l \in [n], x_1, \ldots, x_{l-1} \in [2k], \text{ and } r \in [k-1],$

$$\frac{1}{2k} \left\| \sum_{b=1}^{r} (f(x_1, \dots, x_{l-1}, b) + f(x_1, \dots, x_{l-1}, b+k)) - \sum_{b=r+1}^{k} (f(x_1, \dots, x_{l-1}, b) + f(x_1, \dots, x_{l-1}, b+k)) \right\|_{1} \ge 1 - \epsilon$$

where $f(x_1, \ldots, x_l)$ denotes the average of $f(x_1, \ldots, x_n)$ over $x_{l+1}, \ldots, x_n \in [2k]$. Then $d \geq 2^{(\log k - \delta \log(k-1) - H(\delta))n-1} - 1/2$, where $\delta = (k-1)\epsilon/2 < 1/2$.

3 Embedded space

The theorem is applied on an L_1 metric space which is an ambedding of $G_{k,n}$, which can be L_1 -embedded thanks to the following:

Theorem 4.1 [GNRS04]. Any (weighted) series-parallel graph can be embedded into L_1 with distortion at most 14. Moreover, the lengths of the edges can be preserved.

 $G_{k,n}$ is defined as follows:

Let $G_{k,1}$ be a C_{2k} with edges labeled $1 \dots 2k$, distinguished vertices *left* (between edges 1 and 2k) and *right* (between edges k and k+1) and all edges oriented left-to-right.

Let $G_{k,n+1}$ be a $G_{k,n}$ with each edge with label l replaced with a copy of $G_{k,1}$ with the edge labels prefixed by l.

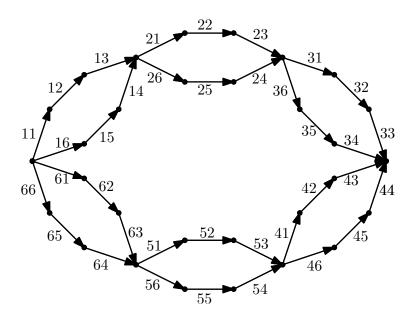


Figure 1: Graph $G_{3,2}$ (from the paper)

Let $F: G_{k,n} \to l_1^d$ be a non-expanding embedding. For $xy \in E(G_{k,n})$, define f(xy) = F(x) - F(y).

Theorem 1.1 is proven by showing that f satisfies Theorem 3.1 and choosing appropriate k, n, ϵ .

4 Entropy

Entropy of a discrete random variable X is $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$. For convenience, let $H(p) = -p \log p - (1-p) \log(1-p)$ denote the entropy of a coin flip with probabilities p and 1-p.

Conditional entropy H(X|Y) is $\mathbb{E}H(X|Y=y)$ over y chosen according to Y. H(X|Y)=H(XY)-H(Y).

Mutual information is defined as I(X : Y) = H(X) + H(Y) - H(XY) = H(X) - H(X|Y), conditional mutual information I(X : Y|Z) as $\mathbb{E}I(X : Y|Z = z)$ with z distributed as Z.

Data processing inequality: $I(f(X):Y) \leq I(X:Y)$.

Chain rule for entropy: H(XY) = H(X) + H(Y|X).

Chain rule for mutual information: I(XY : Z) = I(X : Z) + I(Y : Z|X).

Claim 2.1. (Fano's Inequality) Assume $X \sim U([k])$, Y arbitrary and that there is $f: Y \to X$ such that $P[f(Y) = X] = p \ge 1/2$. Then $I(X: Y) \ge \log k - (1-p)\log(k-1) - H(p)$.

5 Proof of main technical tool

The proof uses the following lemma and the lemma uses the claim below.

The lemma applies to any situation i T3.1 with fixed $X_1, \ldots, X_{l-1}, A = X_l$ and $B = \mathbb{E}_{X_{l+1}, \ldots, X_n} M$

Lemma 3.2. Let A and B be two random variables such that A is uniformly distributed over [2k] and for any $a \in [2k]$. Conditioned on A = a, B is distributed according to some probability distribution P_a on [d].

Assume that for all $r \in [k-1]$,

$$\frac{1}{2k} \left\| \sum_{a=1}^{r} (P_a + P_{a+k}) - \sum_{a=r+1}^{k} (P_a + P_{a+k}) \right\|_1 \ge 1 - \epsilon$$

Then $I(A:B) \ge \log k - \delta \log(k-1) - H(\delta)$.

Claim 3.3. For any $p_1, \ldots, p_k \geq 0$,

$$\left(\sum_{i=1}^{k} p_i\right) - \max\{p_1, \dots p_k\} \le \frac{1}{2} \sum_{r=1}^{k-1} \left(\left(\sum_{i=1}^{k} p_i\right) - \left|\sum_{i=1}^{r} p_i - \sum_{i=r+1}^{k} p_i\right| \right).$$