ON THE CHROMATIC NUMBERS OF SPHERES IN \mathbb{R}^n

A. M. Raigorodskii

Definitions. the *chromatic number* of a set $X \subseteq \mathbb{R}^n$:

$$\chi(X) = \min\{c; X = X_1 \cup X_2 \cup \dots X_c, \forall i \ \forall x, y \in X_i \ |x - y| \neq 1\}$$
$$S_r^{n-1} = \{x \in \mathbb{R}^n; |x| = r\}$$

Known results:

- $4 \le \chi(\mathbb{R}^2) \le 7$
- $\chi(\mathbb{R}^n) \leq (3 + o(1))^n$ [Larman and Rogers, 1972]
- $\chi(\mathbb{R}^n) \geq (1.207...+o(1))^n$ [Frankl and Wilson, 1981]
- $\chi(\mathbb{R}^n) \ge (1.239... + o(1))^n$ [Raigorodskii, 2000]
- $\chi(S_r^{n-1}) \le cn^{5/2}(2r)^n$, if r > 1/2 [Rogers, 1963]

Conjecture. [Erdős, 1981] $\chi(S_r^{n-1}) \to \infty$ for any fixed r > 1/2.

Claim. [Lovász, 1983] $\chi(S_r^{n-1}) \ge n \text{ for } r > 1/2 \text{ and } \chi(S_r^{n-1}) \le n+1 \text{ for } r < \sqrt{\frac{n}{2n+2}}$.

Conjecture. [Lovász, 1983] $\chi(S_r^{n-1})$ grows exponentially for $r > \sqrt{\frac{n}{2n+2}}$.

Theorem 1. For any $r \in \left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$, there exists a function $\delta(n) = \delta(n, r) = o(1)$, $n \to \infty$, such that for every $n \in \mathbb{N}$, we have

$$\chi(S_r^{n-1}) \ge (2q^q(1-q)^{1-q} + \delta(n))^n$$

where $q = \frac{1}{8r^2}$.

Proof. (sketch) Consider the following graph G(W, F):

$$W = \{x = (x_1, \dots, x_m); x_i \in \{-1, 1\}, x_1 + \dots + x_m = 0\},\$$

$$F = \{ \{x, y\}; x, y \in V, |x - y| = \sqrt{2m - 2a} \},\$$

where $m = 4\lfloor \frac{n-1}{4} \rfloor$, $r = \frac{\sqrt{m}}{\sqrt{2m-2a'}}$,

p is the smallest prime number satisfying $p > \frac{m-a'}{4}$ and a = m - 4p < a'. Estimate $\alpha(G)$ by investigating the set of polynomials

$$P'_x(y) = \prod_{i \in \{0,1,\dots,p-1\} \setminus \{m \mod p\}} (i - (x,y)), \quad x \in W.$$

Theorem 2. Let \mathbb{P} be the set of prime numbers. Let f(x) be such a function that for any $x \in \mathbb{R}$, $x \geq 0$,

$$f(x) = \min\{p \in \mathbb{P} : p > x\} - x.$$

Let

$$m(x) = \max\{m < x; m \equiv 0 \pmod{4}\}.$$

Consider a sequence $\{r_n\}_{n=1}^{\infty}$, where $r_n > \frac{1}{2}$ for each $n \in \mathbb{N}$. Set

$$p(n) = \frac{m(n)}{8r_n^2} + f\left(\frac{m(n)}{8r_n^2}\right).$$

If

$$\frac{m(n)}{4} \le p(n) \le \frac{m(n)}{2}, \quad n \in \mathbb{N},$$

then

$$\chi(S_r^{n-1}) \ge \frac{\binom{m(n)}{m(n)/2}}{\binom{m(n)}{p(n)}}.$$

Theorem 3. Consider a sequence $\{r_n\}_{n=1}^{\infty}$, where $r_n > \frac{1}{2}$ for each $n \in \mathbb{N}$. Let $\kappa < 2$, and let p(n) be the same as in Theorem 2. If

$$\frac{m(n)}{4} \le p(n) \le \frac{m(n)}{2} - \sqrt{\frac{m(n)\ln m(n)}{\kappa}}, \quad n \in \mathbb{N},$$

then

$$\chi(S_r^{n-1}) > n+1, \quad \forall n \ge n_0.$$

Theorem. [Baker, Harman and Pintz, 2001] The "prime gap" function satisfies

$$f(x) = O(x^{0.525}).$$

Theorem 4. Assume that $c_0 > 0$ is such that $f(x) \le c_0 x^{0.525}$ for every x. Then, there exists a constant $c'_0 > 0$ such that for any sequence of radii r_n satisfying the inequality

$$r_n \ge \frac{1}{2} + \frac{c_0'}{n^{0.475}},$$

we have the bound

$$\chi(S_r^{n-1}) > n+1, \quad \forall n \ge n_0.$$

Theorem 5. Assume that $c_1 > 0$ is such that $f(x) \le c_1 \ln^2 x$ for every x. Then, there exists a constant $c'_1 > 0$ such that for any sequence of radii r_n satisfying the inequality

$$r_n \ge \frac{1}{2} + c_1' \sqrt{\frac{\ln n}{n}},$$

we have the bound

$$\chi(S_r^{n-1}) > n+1, \quad \forall n \ge n_0.$$

Theorem 6. There exists a constant $c_2 > 0$ such that for any sequence of radii r_n satisfying the inequality

$$r_n \le \frac{1}{2} + \frac{c_2}{n}$$

we have the bound

$$\chi(S_r^{n-1}) \le n+1, \quad \forall n \ge n_0.$$