Polylogarithmic Approximation for Edit Distance and the Asymmetric Query Complexity

Alexandr Andoni, Robert Krauthgamer, Krysztof Onak

Theorem 1.1 (Main): For every fixed $\varepsilon > 0$, there is an algorithm that approximates the edit distance between two input strings $x, y \in \Sigma^n$ within a factor of $(\log n)^{\mathcal{O}(1/\varepsilon)}$, and runs in $n^{1+\varepsilon}$ time.

Definition: Consider two strings $x,y \in \Sigma^n$ for some alphabet Σ , and let $\operatorname{ed}(x,y)$ denote the edit distance between these two strings. The computational problem is the promise problem known as the *Distance Threshold Estimation Problem (DTEP)*: distinguish whether $\operatorname{ed}(x,y) > R$ or $\operatorname{ed}(x,y) \le R/\alpha$, where R > 0 is a parameter (known to the algorithm) and $\alpha \ge 1$ is the approximation factor. We use $\operatorname{DTEP}_{\beta}$ to denote the case of $R = n/\beta$, where $\beta \ge 1$ may be a function of n.

Definition: In the asymmetric query model, the algorithm knows in advance (has unrestricted access to) one of the strings, say y, and has only query access to the other string, x. The asymmetric query complexity of an algorithm is the number of coordinates in x that the algorithm has to probe in order to solve DTEP with success probability at least 2/3.

Theorem 1.2 (Query complexity upper bound): For every $\beta = \beta(n) \geq 2$ and fixed $0 < \varepsilon < 1$ there is an algorithm that solves DTEP_{β} with approximation $\alpha = (\log n)^{\mathcal{O}(1/\varepsilon)}$, and makes βn^{ε} asymmetric queries. This algorithm runs in time $\mathcal{O}(n^{1+\varepsilon})$.

For every $\beta = \mathcal{O}(1)$ and fixed integer $t \geq 2$ there is an algorithm for DTEP_{β} achieving approximation $\alpha = \mathcal{O}(n^{1/t})$, with $\mathcal{O}(\log^{t-1} n)$ queries into x.

Theorem 3.1: Let $n \geq 2$, $\beta = \beta(n) \geq 2$, and integer $b = b(n) \geq 2$ be such that $(\log_b n) \in \mathbb{N}$. There is an algorithm solving DTEP $_{\beta}$ with approximation $\alpha = \mathcal{O}(b \log_b n)$ and $\beta \cdot (\log n)^{\mathcal{O}(\log_b n)}$ queries into x. The algorithm runs in $n \cdot (\log n)^{\mathcal{O}(\log_b n)}$ time.

For every constant $\beta = \mathcal{O}(1)$ and integer $t \geq 2$, there is an algorithm for solving DTEP_{β} with $\mathcal{O}(n^{1/t})$ approximation and $\mathcal{O}(\log^{t-1} n)$ queries. The algorithm runs in $\tilde{\mathcal{O}}(n)$ time.

Characterization of edit distance using \mathcal{E} -distance

For a string x, x[s:t] denotes the substring of x comprising of $x[s], \ldots, x[t-1]$. The characterization may be viewed as a tree of arity b, where nodes correspond to substring x[s:s+l]. The root is the entire string x[1:n+1]. Let $h \stackrel{\text{def}}{=} \log_b n \in \mathbb{N}$. Then nodes on level i for $0 \le i \le h$ correspond to substrings $x[s:s+l_i]$ of length $l_i \stackrel{\text{def}}{=} n/b^i$.

Definition 3.2 (\mathcal{E} -distance): Consider two strings x, y of length $n \geq 2$. Fix $i \in \{0, 1, \dots, h\}$, $s \in B_i = \{1, 1 + l_i, \dots\}$, and a position $u \in \mathbb{Z}$.

If i = h, the \mathcal{E} -distance of x[s:s+1] to the position u is 1 if $u \notin [n]$ or $x[s] \neq y[u]$, and 0 otherwise. For $i \in \{0,1,\ldots,h-1\}$, we recursively define the \mathcal{E} -distance $\mathcal{E}_{x,y}(i,s,u)$ of $x[s:s+l_i]$ to the position u as follows. Partition $x[s:s+l_i]$ into b blocks of length $l_{i+1} = l_i/b$, starting at positions $s+jl_{i+j}$, where $j \in \{0,1,\ldots,b-1\}$. Then

$$\mathcal{E}_{x,y}(i,s,u) \stackrel{\text{def}}{=} \sum_{j=0}^{b-1} \min_{r_j \in \mathbb{Z}} \mathcal{E}_{x,y}(i+1,s+jl_{i+1},u+jl_{i+1}+r_j) + |r_j|.$$

The \mathcal{E} -distance from x to y is $\mathcal{E}_{x,y}(0,1,1)$.

Theorem 3.3 (Characterization): For every $b \ge 2$ and two strings $x, y \in \Sigma^n$, the \mathcal{E} -distance between x and y is a $6 \cdot \frac{b}{\log b} \cdot \log n$ approximation to the edit distance between x and y.

Sampling Algorithm

Chernoff bound: Let $Z_i \in [0,1]$ be n independent random variables from possibly different distributions. Let $Z = \sum_i Z_i$ and $\mu = \mathbb{E}[Z]$. Then for any $\varepsilon > 0$:

$$\mathbb{P}[Z \ge (1+\varepsilon)\mu] \le e^{-\frac{\varepsilon^2 \mu}{2+\varepsilon}} \quad \text{and} \quad \mathbb{P}[Z \le (1-\varepsilon)\mu] \le e^{-\frac{\varepsilon^2 \mu}{2}}.$$

Hoeffding bound: Let $Z_i \in [0,1]$ be n independent random variables from possibly different distributions. Let $Z = \sum_i Z_i$ and $\mu = \mathbb{E}[Z]$. Then for any t > 0, we have that

$$\mathbb{P}[Z \ge t] \le e^{-(t-2\mu)}.$$

Definition 3.8: Fix $\rho > 0$ and some $f \in [1,2]$. For a quantity $\tau \geq 0$, we call its (ρ, f) -approximator any quantity $\hat{\tau}$ such that $\tau/f - \rho \leq \hat{\tau} \leq f\tau + \rho$.

If $\hat{\tau}_1, \hat{\tau}_2$ are (ρ, f) -approximators to τ_1, τ_2 respectively, $\hat{\tau}_1 + \hat{\tau}_2$ is a $(2\rho, f)$ -approximator to $\tau_1 + \tau_2$.

If $\hat{\tau}'$ is a (ρ', f') -approximator to $\hat{\tau}$, which itself is a (ρ, f) -approximator to τ , then $\hat{\tau}'$ is a $(\rho' + f'\rho, ff')$ -approximator to τ .

Lemma 3.9 (Sum of random variables): Fix $n \in \mathbb{N}$, $\rho > 0$ and error probability δ . Let $Z_i \in [0, \rho]$ be independent random variables, and let $\zeta > 0$ be a sufficiently large absolute constant. Then for every $\varepsilon \in [0, 1]$, the summation $\sum_i Z_i$ is a $(\zeta \rho \frac{\log 1/\delta}{\varepsilon^2}, e^{\varepsilon})$ -approximator to $\mathbb{E}[\sum_i Z_i]$, with probability $\geq 1 - \delta$.

Lemma 3.11 (Uniform Sampling): Fix $b \in \mathbb{N}$, $\varepsilon > 0$, and error probability $\delta > 0$. Consider some $a_j, j \in [b]$, such that $a_j \in [0, 1/b]$. For arbitrary $w \in [1, \infty)$, construct the set $J \subseteq [b]$ by subsampling each $j \in [b]$ with probability $p_w = \min(1, \frac{w}{b} \cdot \zeta \frac{\log 1/\delta}{\varepsilon^2})$. Then, with probability at least $1 - \delta$, the value $\frac{1}{p_w} \sum_{j \in J} a_j$ is a $(1/w, e^{\varepsilon})$ -approximator to $\sum_{j \in [b]} a_j$, and $|J| \leq \mathcal{O}(w \cdot \frac{\log 1/\delta}{\varepsilon^2})$.

Lemma 3.12 (Non-uniform Sampling): Fix integers $n \leq N$, approximation $\varepsilon > 0$, factor 1 < f < 1.1, error probability $\delta > 0$, and an "additive error bound" $\rho > 6n/\varepsilon/N^3$. There exists a distribution \mathcal{W} on the real interval $[1, N^3]$ with $\mathbb{E}_{w \in \mathcal{W}}[w] \leq \mathcal{O}(\frac{1}{\rho} \cdot \frac{\log 1/\delta}{\varepsilon^3} \cdot \log N)$, as well as a "reconstruction algorithm" R, with the following property.

Take arbitrary $a_i \in [0, 1]$, for $i \in [n]$, and let $\sigma = \sum_i a_i$. Suppose one draws w_i i.i.d. from \mathcal{W} and let \hat{a}_i be an $(1/w_i, f)$ -approximator of a_i . Then, given \hat{a}_i and w_i for all $i \in [n]$, the algorithm R generates a $(\rho, f \cdot e^{\varepsilon})$ -approximator to σ , with probability at least $1 - \delta$.

Algorithm 1 (Sampling Algorithm):

- 1 Take C_0 to be the root vertex (indexed (i,s)=(0,1)), with precision $w_{(0,1)}=\beta$.
- **2** for each level $i=1,\ldots,h$ we construct C_i as follows do
- **3 for** each node $v = (i 1, s) \in C_{i-1}$ **do**
- Let w_v be its precision, and set $p_v = \frac{w_v}{h} \cdot \mathcal{O}(\log^3 n)$.
- If $p_v \ge 1$ set $J_v = \{(i, s+jl_i) \mid 0 \le j < b\}$ and add them to C_i each with precision p_v .
- If $p_v < 1$, sample each of the *b* children of *v* with probability p_v into $J_v \subseteq \{i\} \times \{s, s + l_i, \ldots\}$. For each $v' \in J_v$, draw $w_{v'}$ i.i.d. from \mathcal{W} , and add node v' to C_i with precision $w_{v'}$.
- 7 Query the characters x[s] for all $(h,s) \in C_h$ this is the output of the algorithm.

Algorithm 2 (Estimation Algorithm):

- 1 For each sampled leaf $v = (h, s) \in C_h$ and $z \in [n]$, we set $\tau(v, z) = H(x[s], y[z])$.
- **2** for each level $i = h 1, \ldots, 0$ and position $z \in [n]$ and node $v \in C_i$ with precision w_v do
- 3 For each $v' = (i+1, s+jl_{i-1}) \in J_v$ for some $0 \le j < b$, let $\delta_{v'} \stackrel{\text{def}}{=} \min_{k:|k| \le n} \tau(v', z+jl_{i+1}+k) + |k|$.
- 4 If $p_v \ge 1$, then let $\tau(v,z) = \sum_{v' \in J_v} \delta_{v'}$.
- If $p_v < 1$, set $\tau(v, z)$ to be the output of the algorithm R on the vector $(\frac{\delta_{v'}}{l_{i+1}})_{v' \in J_v}$, with precisions $(w_{v'})_{v' \in J_v}$, multiplied by l_{i+1}/p_v .
- 6 Output of the algorithm is $\tau(r,1)$, where r=(0,1) is the root of the tree.

Lemma 3.13 (Correctness): For $b = \omega(1)$, the output of Algorithm 2 is a $(n/\beta, 1 + o(1))$ -approximator to the \mathcal{E} -distance from x to y, w.h.p.

Lemma 3.15 (Sample size): The Algorithm 1 queries $Q_b = \beta(\log n)^{\mathcal{O}(\log_b n)}$ positions of x, with probability at least 1 - o(1). When $b = n^{1/t}$ for fixed $t \in \mathbb{N}$ and $\beta = \mathcal{O}(1)$, we have $Q_b = (\log n)^{t-1}$ with probability at least 2/3.

Lemma 3.16 (Near-linear time): If we use

$$\delta'_{v'} = \min_{k = e^{i/\log n}: i \in [\log n \cdot \ln(3n/\beta)]} (|k| + \min_{k': |k'| \le k} \tau(v', z + jl_{i+1} + k'))$$

instead of $\delta_{v'}$ in Algorithm 2, the new algorithm outputs at most a 1 + o(1) factor higher value.