Polylogarithmic Approximation for Edit Distance

and the Asymmetric Query Complexity
Alexandr Andoni, Robert Krauthgamer, Krysztof Onak

Theorem 1.1 (Main): For every fized ¢ > 0, there is an algorithm that approzimates the edit distance
between two input strings x,y € X" within a factor of (log n)o(l/e), and runs in n*T time.

Definition: Consider two strings x,y € X" for some alphabet ¥, and let ed(z,y) denote the edit
distance between these two strings. The computational problem is the promise problem known as
the Distance Threshold Estimation Problem (DTEP): distinguish whether ed(z,y) > R or ed(z,y) <
R/a, where R > 0 is a parameter (known to the algorithm) and « > 1 is the approximation factor.
We use DTEP; to denote the case of R = n/3, where 5 > 1 may be a function of n.

Definition: In the asymmetric query model, the algorithm knows in advance (has unrestricted access
to) one of the strings, say y, and has only query access to the other string, x. The asymmetric query
complexity of an algorithm is the number of coordinates in = that the algorithm has to probe in
order to solve DTEP with success probability at least 2/3.

Theorem 1.2 (Query complexity upper bound): For every f = 3(n) > 2 and fivred 0 < & < 1 there
is an algorithm that solves DTEP 5 with approzimation o = (log n)0(1/5)7 and makes pn° asymmetric
queries. This algorithm runs in time O(n'*®).

For every = O(1) and fized integer t > 2 there is an algorithm for DTEP s achieving approwi-
mation a = O(n*'t), with O(log"™* n) queries into .

Theorem 3.1: Let n > 2, = [5(n) > 2, and integer b = b(n) > 2 be such that (logyn) € N.

There is an algorithm solving DTEP 5 with approzimation o = O(b log,n) and j - (log n)OUogy)

queries into x. The algorithm runs in n - (logn)218™) time.

For every constant f = O(1) and integer t > 2, there is an algorithm for solving DTEP 5 with
O(n'*) approzimation and O(log"" n) queries. The algorithm runs in O(n) time.

CHARACTERIZATION OF EDIT DISTANCE USING &£-DISTANCE

For a string z, x[s : t] denotes the substring of x comprising of x[s], ..., z[t — 1]. The characterization
may be viewed as a tree of arity b, where nodes correspond to substring x[s : s + []. The root is the
entire string z[1 : n + 1]. Let h=log,n € N. Then nodes on level i for 0 < i < h correspond to
substrings z[s : s + I;] of length I, = n/b.
Definition 3.2 (£-distance): Consider two strings z,y of length n > 2. Fixi € {0,1,...,h}, s € B; =
{1,1+41,,...}, and a position u € Z.
If i = h, the £-distance of z[s : s+1] to the position w is 1 if u ¢ [n] or x[s] # y[u], and 0 otherwise.
For i € {0,1,...,h — 1}, we recursively define the £-distance &, ,(i,s,u) of z[s : s +1;] to the
position u as follows. Partition z[s : s + [;] into b blocks of length I;,; = [;/b, starting at positions
s + jliy;, where j € {0,1,...,b—1}. Then
b—1
Ery(i, s,u) E Zmélzlgx7y(i + 1,5+ jlir, w4+ jlipy +15) + |15l
j=0"

The £-distance from x to y is £, ,(0,1,1).

Theorem 3.3 (Characterization): For every b > 2 and two strings x,y € X", the E-distance between
x andy s ab- @ -logn approrimation to the edit distance between x and y.

SAMPLING ALGORITHM

Chernoff bound: Let Z; € [0,1] be n independent random variables from possibly different distributions. Let
Z =Y, Z; and p=E[Z]. Then for any ¢ > 0:
2 2
P[Z > (1+e)u] < e e and PZ<(l—e)u<e T
Hoeffding bound: Let Z; € [0, 1] be n independent random variables from possibly different distributions. Let
Z =73, Z; and p=E[Z]. Then for any ¢t > 0, we have that

P[Z >t] < e (720,

Definition 3.8: Fix p > 0 and some f € [1,2]. For a quantity 7 > 0, we call its (p, f)-approzimator any quantity
7 such that 7/f —p <7 < fr+p.

If 71,75 are (p, f)-approximators to 71, 7o respectively, 71 + 73 is a (2p, f)-approximator to 7, + To.

If 7/ is a (p/, f')-approximator to 7, which itself is a (p, f)-approximator to 7, then 7 is a (o' + f'p, ff')-
approximator to 7.

Lemma 3.9 (Sum of random variables): Fix n € N, p > 0 and error probability d. Let Z; € [0, p] be independent
random variables, and let (> 0 be a sufficiently large absolute constant. Then for every £ € [0, 1], the summation
Y. Ziisa (QpM, ef)-approximator to K[}, Z;], with probability > 1 — 4.

£2
Lemma 3.11 (Uniform Sampling): Fix b € N, € > 0, and error probability ¢ > 0. Consider some a;, j € [b], such
that a; € [0,1/b]. For arbitrary w € [1,00), construct the set .J C [b] by subsampling each j € [b] with probability
loge 1 %). Then, with probability at least 1 — §, the value z% 3

to Z]E[b] Qyj, and |J| < O(w . IOge—%/é)

Py = min(1, 3 - jesajisa (1/w, e®)-approximator

Lemma 3.12 (Non-uniform Sampling): Fix integers n < N, approximation ¢ > 0, factor 1 < f < 1.1, error
probability § > 0, and an “additive error bound” p > 6n/c/N3. There exists a distribution ¥V on the real interval
[1, N3] with E,epy[w] < (’)(% : bgg—é/é log N), as well as a “reconstruction algorithm” R, with the following property.

Take arbitrary a; € [0,1], for ¢ € [n], and let 0 =), a;. Suppose one draws w; i.i.d. from W and let a; be
an (1/w;, f)-approximator of a;. Then, given a; and w; for all i € [n], the algorithm R generates a (p, f - €°)-
approximator to o, with probability at least 1 — §.

Algorithm 1 (Sampling Algorithm):
1 Take Cp to be the root vertex (indexed (i,s) = (0, 1)), with precision w1y = 3.
2 for each level 1 = 1,..., h we construct C; as follows do
3 for each node v = (i — 1,5) € C;_1 do
Let w, be its precision, and set p, = %> - O(log®n).
If p, > 1set J, ={(i,s +jl;)| 0 < j < b} and add them to C; each with precision p,.
If p, < 1, sample each of the b children of v with probability p, into J, C {i} x {s,s +1;,...}.
For each v’ € .J,,, draw w,, i.i.d. from W, and add node v’ to C; with precision w,,.
7 Query the characters z[s] for all (h, s) € C}, — this is the output of the algorithm.

> oUW

Algorithm 2 (Estimation Algorithm):
1 For each sampled leaf v = (h,s) € C} and z € [n], we set 7(v, z) = H(z[s], y[z]).
2 for each level i = h —1,...,0 and position z € [n] and node v € C; with precision w, do
3 For each v/ = (i 4+ 1,5 + jl;_1) € J, for some 0 < j < b, let 6,y = Ming. g<n 7(v', 2 + jlig1 + k) + [E].
4 If p, > 1, then let 7(v,2) = > /c; v -
5 If p, < 1, set 7(v, 2) to be the output of the algorithm R on the vector (Ous Jveg,, with

lit1

precisions (w,)y e, , multiplied by l;11/py.
6 Output of the algorithm is 7(r, 1), where r = (0, 1) is the root of the tree.

Lemma 3.13 (Correctness): For b = w(1), the output of Algorithm 2 is a (n/3,1 + o(1))-approximator to the
&-distance from x to y, w.h.p.

Lemma 3.15 (Sample size): The Algorithm 1 queries Q;, = 3(logn)®U°8 ™) positions of , with probability at least
1 —o(1). When b = n!'/* for fixed t € N and 8 = O(1), we have Q, = (logn)!~! with probability at least 2/3.

Lemma 3.16 (Near-linear time): If we use

8, = min E|+ min 7V, 2+ jli1 + K
v k:ei/l‘)g”:ie[logn-ln(f%n/ﬁ)}(| | k|| <k (it)

instead of d,/ in Algorithm 2, the new algorithm outputs at most a 1 + o(1) factor higher value.

