
Polylogarithmi
 Approximation for Edit Distan
eand the Asymmetri
 Query Complexity
Alexandr Andoni, Robert Krauthgamer, Krysztof OnakTheorem 1.1 (Main): For every fixed ε > 0, there is an algorithm that approximates the edit distance

between two input strings x, y 2 Σn within a factor of (logn)O(1/ε), and runs in n1+ε time.De�nition: Consider two strings x, y 2 Σn for some alphabet Σ, and let ed(x, y) denote the edit
distance between these two strings. The computational problem is the promise problem known as
the Distance Threshold Estimation Problem (DTEP): distinguish whether ed(x, y) > R or ed(x, y) �
R/α, where R > 0 is a parameter (known to the algorithm) and α � 1 is the approximation factor.
We use DTEPβ to denote the case of R = n/β, where β � 1 may be a function of n.De�nition: In the asymmetric query model , the algorithm knows in advance (has unrestricted access
to) one of the strings, say y, and has only query access to the other string, x. The asymmetric query
complexity of an algorithm is the number of coordinates in x that the algorithm has to probe in
order to solve DTEP with success probability at least 2/3.Theorem 1.2 (Query
omplexity upper bound): For every β = β(n) � 2 and fixed 0 < ε < 1 there
is an algorithm that solves DTEPβ with approximation α = (logn)

O(1/ε), and makes βnε asymmetric
queries. This algorithm runs in time O(n1+ε).
For every β = O(1) and fixed integer t � 2 there is an algorithm for DTEPβ achieving approxi-

mation α = O(n1/t), with O(logt−1 n) queries into x.Theorem 3.1: Let n � 2, β = β(n) � 2, and integer b = b(n) � 2 be such that (logb n) 2 N .
There is an algorithm solving DTEPβ with approximation α = O(b logb n) and β � (log n)O(logb n)

queries into x. The algorithm runs in n � (logn)O(logb n) time.
For every constant β = O(1) and integer t � 2, there is an algorithm for solving DTEPβ withO(n1/t) approximation and O(logt−1 n) queries. The algorithm runs in Õ(n) time.Chara
terization of edit distan
e using E-distan
e

For a string x, x[s : t] denotes the substring of x comprising of x[s], . . . , x[t�1]. The characterization
may be viewed as a tree of arity b, where nodes correspond to substring x[s : s+ l]. The root is the

entire string x[1 : n + 1]. Let h
def
= logb n 2 N . Then nodes on level i for 0 � i � h correspond to

substrings x[s : s+ li] of length li
def
= n/bi.De�nition 3.2 (E-distan
e): Consider two strings x, y of length n � 2. Fix i 2 f0, 1, . . . , hg, s 2 Bi =f1, 1 + li, . . .g, and a position u 2 Z.

If i = h, the E-distance of x[s : s+1] to the position u is 1 if u /2 [n] or x[s] 6= y[u], and 0 otherwise.
For i 2 f0, 1, . . . , h � 1g, we recursively define the E-distance Ex,y(i, s, u) of x[s : s + li] to the

position u as follows. Partition x[s : s + li] into b blocks of length li+1 = li/b, starting at positions
s+ jli+j, where j 2 f0, 1, . . . , b� 1g. ThenEx,y(i, s, u) def= b−1X

j=0

min
rj∈Z

Ex,y(i+ 1, s+ jli+1, u+ jli+1 + rj) + jrjj.
The E-distance from x to y is Ex,y(0, 1, 1).Theorem 3.3 (Chara
terization): For every b � 2 and two strings x, y 2 Σn, the E-distance between
x and y is a 6 � b

log b � log n approximation to the edit distance between x and y.

Sampling AlgorithmCherno� bound: Let Zi 2 [0; 1℄ be n independent random variables from possibly di�erent distributions. LetZ =Pi Zi and � = E [Z℄. Then for any " > 0:P[Z � (1 + ")�℄ � e− ε2µ
2+ε and P[Z � (1� ")�℄ � e− ε2µ

2 :Hoe�ding bound: Let Zi 2 [0; 1℄ be n independent random variables from possibly di�erent distributions. LetZ =Pi Zi and � = E [Z℄. Then for any t > 0, we have thatP[Z � t℄ � e−(t−2µ):De�nition 3.8: Fix � > 0 and some f 2 [1; 2℄. For a quantity � � 0, we
all its (�; f)-approximator any quantity�̂ su
h that �=f � � � �̂ � f� + �.If �̂1; �̂2 are (�; f)-approximators to �1; �2 respe
tively, �̂1 + �̂2 is a (2�; f)-approximator to �1 + �2.If �̂ ′ is a (�′; f ′)-approximator to �̂ , whi
h itself is a (�; f)-approximator to � , then �̂ ′ is a (�′ + f ′�; ff ′)-approximator to � .Lemma 3.9 (Sum of random variables): Fix n 2 N, � > 0 and error probability Æ. Let Zi 2 [0; �℄ be independentrandom variables, and let � > 0 be a suÆ
iently large absolute
onstant. Then for every " 2 [0; 1℄, the summationP
i Zi is a (�� log 1/δ

ε2 ; eε)-approximator to E [Pi Zi℄, with probability � 1� Æ.Lemma 3.11 (Uniform Sampling): Fix b 2 N , " > 0, and error probability Æ > 0. Consider some aj , j 2 [b℄, su
hthat aj 2 [0; 1=b℄. For arbitrary w 2 [1;1),
onstru
t the set J � [b℄ by subsampling ea
h j 2 [b℄ with probabilitypw = min(1; wb � � log 1/δ
ε2

). Then, with probability at least 1� Æ, the value 1
pw

P
j∈J aj is a (1=w; eε)-approximatorto Pj∈[b] aj , and jJ j � O(w � log 1/δε2).Lemma 3.12 (Non-uniform Sampling): Fix integers n � N , approximation " > 0, fa
tor 1 < f < 1:1, errorprobability Æ > 0, and an \additive error bound" � > 6n="=N3. There exists a distribution W on the real interval[1; N3℄ with Ew∈W [w℄ � O(1ρ � log 1/δε3

�logN), as well as a \re
onstru
tion algorithm" R, with the following property.Take arbitrary ai 2 [0; 1℄, for i 2 [n℄, and let � = Pi ai. Suppose one draws wi i.i.d. from W and let âi bean (1=wi; f)-approximator of ai. Then, given âi and wi for all i 2 [n℄, the algorithm R generates a (�; f � eε)-approximator to �, with probability at least 1� Æ.Algorithm 1 (Sampling Algorithm):1 Take C0 to be the root vertex (indexed (i; s) = (0; 1)), with pre
ision w(0,1) = �.2 for ea
h level i = 1; : : : ; h we
onstru
t Ci as follows do3 for ea
h node v = (i� 1; s) 2 Ci−1 do4 Let wv be its pre
ision, and set pv = wv
b � O(log3 n).5 If pv � 1 set Jv = f(i; s+ jli) j 0 � j < bg and add them to Ci ea
h with pre
ision pv.6 If pv < 1, sample ea
h of the b
hildren of v with probability pv into Jv � fig � fs; s + li; : : :g.For ea
h v′ 2 Jv, draw wv′ i.i.d. from W, and add node v′ to Ci with pre
ision wv′ .7 Query the
hara
ters x[s℄ for all (h; s) 2 Ch | this is the output of the algorithm.Algorithm 2 (Estimation Algorithm):1 For ea
h sampled leaf v = (h; s) 2 Ch and z 2 [n℄, we set �(v; z) = H(x[s℄; y[z℄).2 for ea
h level i = h� 1; : : : ; 0 and position z 2 [n℄ and node v 2 Ci with pre
ision wv do3 For ea
h v′ = (i+ 1; s+ jli−1) 2 Jv for some 0 � j < b, let Æv′ def= mink:|k|≤n �(v′; z + jli+1 + k) + jkj.4 If pv � 1, then let �(v; z) =Pv′∈Jv

Æv′ .5 If pv < 1, set �(v; z) to be the output of the algorithm R on the ve
tor (δv′
li+1

)v′∈Jv , withpre
isions (wv′)v′∈Jv , multiplied by li+1=pv.6 Output of the algorithm is �(r; 1), where r = (0; 1) is the root of the tree.Lemma 3.13 (Corre
tness): For b = !(1), the output of Algorithm 2 is a (n=�; 1 + o(1))-approximator to theE-distan
e from x to y, w.h.p.Lemma 3.15 (Sample size): The Algorithm 1 queries Qb = �(logn)O(logb n) positions of x, with probability at least1� o(1). When b = n1/t for �xed t 2 N and � = O(1), we have Qb = (logn)t−1 with probability at least 2/3.Lemma 3.16 (Near-linear time): If we useÆ′v′ = min
k=ei/logn:i∈[logn·ln(3n/β)]

(jkj+ min
k′:|k′|≤k

�(v′; z + jli+1 + k′))instead of Æv′ in Algorithm 2, the new algorithm outputs at most a 1 + o(1) fa
tor higher value.

