On computing an optimal semi-matching

FrantiSek Galcik

joint work with

Jan Katreni¢ and Gabriel Semanisin
P.J. Safarik University in Kosice, Slovakia

WG2011: June 23, 2011

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Set of machines

differ in computational
resources, data
resources, ...

Set of tasks
to be processed by
machines

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Tasks with
unit processing time.

Each task can be processed by any
machine from a given subset of
machines suitable for this task.

& & & &

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Motivation

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Input: a unweighted
bipartite graph
Goal: assign each
task to a suitable
machine

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Semi-matchings

Semi-matching in a bipartite graph G = (U, V, E):
@ any subset M C E such that degy(u) < 1forallue U
@ each task is assigned to at most one machine

‘o

Maximum semi-matching - maximizes the number of
assigned tasks; if there is no other restriction then

@ any subset M C E such that degy,(u) =1 forallu e U
@ always exists, many maximum semi-matchings

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Which semi-matching is better?

Workload distribution (sorted loads): 4, 2,0, 0,0

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Which semi-matching is better?

Workload distribution (sorted loads): 2,2,1,1,0

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Optimal semi-matchings

Cost of a semi-matching M (the total completition time):

cost(M) =" degm(v).(degu(v) + 1)

2
veV

Optimal semi-matching

@ a maximum semi-matching M such that cost(M) is minimal
@ a maximum semi-matching M such that its degree
(workload) distribution is lexicographically minimal

e shown by Bokal et al. to be equivalent with cost-minimal
semi-matching (and also other cost measures)
e in the previous example: (4,2,0,0,0) vs. (2,2,1,1,0)

Our optimality criterion: lexicographical minimality

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Previous work

Algorithms for computing an optimal semi-matchings:
O(n®) by Horn (1973) and Bruno et al. (1974)

O(n- m) by Lovész et al. (2006, JAlgor)

O(min{n%?,m - n} - m) by Lovéasz et al. (2006, JAlgor)
O(n- m) by Bokal et al. (2009) for generalized setting
O(v/n-m-log n) by Fakcharoenphol et al. (2010, ICALP)

Algorithms are based on finding (cost-reducing) alternating
paths with some properties.

Maximum matchings in bipartite graphs:
@ O(\/n-m) by Micali and Vazirani (1980)
@ O(n*) by Mucha and Sankowski (2004)

e w is the exponent of the best known matrix multiplication
algorithm
e randomized algorithm, better for dense graphs

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Can we construct an algorithm for computing an optimal
semi-matching that breaks through O(n?%) barrier for dense
graphs?

Answer: YES, we can

And moreover (side results):

@ new approach for computing an optimal semi-matching:
divide and conquer strategy instead of cost-reducing
alternating paths

e divide and conquer = more suitable for parallel computation

@ reduction to a variant of maximum bounded-degree

semi-matching
e can be solved by different algorithms and approaches (e.qg.
maximum matchings, reduction to matrix multiplication)

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Limited workload for V-vertices

Restriction: a machine can process only limited number of
tasks, e.g. 1 task:

Intuition:
@ there can be unassigned tasks
e U-vertices not incident to a matching edge

@ larger workload limit for machines = more assigned tasks

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Limited workload for V-vertices

Maximum semi-matching with workload limit 6
(max. 6 tasks per machine):

(,4 U - vertices ﬁ

Is it necessary to increase workload limit for all V-vertices
(machines) in order to match all U-vertices?

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Intuition related to limited workload

@ no sense to increase the workload limit for vertices
(machines) that are not fully loaded in a given maximum
semi-matching

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Are all fully-loaded vertices good candidates?

= g

@ no sense to increase the workload limit for fully loaded
vertices (machines) that are endpoints of an alternating
path starting in a non-fully loaded vertex

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Intuition: How to divide the problem

Maximum semi-matching M respecting a workload limit cut:

deg,, <cut or an alternating path
from a not-fully-loaded vertex

v gL v]

AAAA AAAA JAAA LM AL AMAA

all other V-vertices

all neighbors of V- all other U-vertices

Find an optimal semi-matching
@ inG = (U",V~,E") by "decreasing" workload limits
@ in Gt = (U*, V*, E™) by "increasing" workload limits

F. Galcik, J. Katreni¢, G. Semal On computing an optimal semi-matching

(Sub)problem instances

LSM(G) - a set of all optimal semi-matchings for G

Input/problem instances: (G, down, up, My)
@ an input bipartite graph G = (U, V, E) such that
e VM e LSM(G),Vv € V : down < degm(v) < up
@ a semi-matching My in G such that
e Vv e V:degu(v) > down

Goal: if (G, down, up, M) is an input, compute an optimal
semi-matching for G

Starting point: (G, 0, oo, 0))
@ Gis a graph, in which we want to find an optimal
semi-matching

@ all preconditions are satisfied

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

(Sub)problem instances

LSM(G) - a set of all optimal semi-matchings for G

Input/problem instances: (G, down, up, My)
@ an input bipartite graph G = (U, V, E) such that
e VM e LSM(G),Vv € V : down < degm(v) < up
@ a semi-matching My in G such that
e Vv e V:degu(v) > down

Divide phase for cut (down < cut < up):

(G, down, up, My)

VAR
(G, down,cut,M;) (G",cut,up, M)

Key property:
@ VM~ € LSM(G™),VM* € LSM(G'): M~ UM™ € LSM(G)

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Trivial case (or why is M; required)

Input: (G, down, up, M), where up — down < 1
Problem: How to compute M € LSM(G)?
First idea:

@ compute a maximum semi-matching M for load limit up
@ it can happen that M ¢ LSM(G):

Solution:

@ utilizing M; with degy,(v) > down for all v € V, transform
semi-matching M to a semi-matching Mg such that

o |M[= [Mg|
e down < degy,(v) < upforallveV
@ it can be shown that Mg € LSM(G)

@ transformation can be realized in the linear time

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Dividing subroutine - idea

Input instance: (G, down, up, My)

Computation:

@ compute a maximum semi-matching M for workload limit
cut

© compute Mg by rebalancing M with respect to M

© compute V-, VT, U~, and U™ considering workload of
V-vertices

© compute induced subgraphs G~ = (U~, V—,E~) and
Gt = (U-, V+ ET)

@ compute M, = Mgn E~and M = Mg E*

@ return (G, down, cut, M;") and (G", cut, up, M;")

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Main algorithm - Divide and conquer

Computational tree starting with (G, 0, oo, 0):

@ Divide and conquer: (down, up) is always divided into 2
subintervals (of almost equal size)

@ Doubling: (down, c0) is divided to (down, 2 - down) and
(2 - down, o)

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Main algorithm - Computation

Computational tree starting with (G, 0, oo, 0):

@ after O(log n) levels, graphs of subproblems are empty

e there is no subgraph of G for which a semi-matching with
load of a V-vertex at least n+ 1 exists

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Maximum semi-matching with workload limits?

@ in each step of the algorithm, we need a maximum
semi-matching that respects the workload limits

Problem (Bounded-degree semi-matching)

Instance: A bipartite graph G = (U, V, E) withn = |U| + | V|
vertices and m = |E| edges; a capacity mapping c: V — N
satisfying > .\, c(v) <2-n.

Question: Find a semi-matching M in G with maximum number
of edges such that degy(v) < c(v) forallv € V.

Time complexity notation: Tzpsy(n, m) for a graph n vertices
and m edges.

Total time for computing an optimal semi-matching:

O((n+ m + Tgpsu(n, m)) - log n)

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Bounded-degree semi-matching

Reduction to maximum matching:
@ make c(v) copies of each V-vertex v
@ new graph has at most 3 - n vertices

@ apply algorithm for maximum matching in O(n*) by Mucha
and Sankowski

O(n* -log n)

Reduction to (1, c)-semi-matchings:

@ (1, c)-semi-matching is bounded-degree semi-matching
without condition > ., ¢c(v) <2-n

@ due to algorithm by Katreni¢ and Seminisin,
(1, ¢)-semi-matching can be computed in time O(v/n - m)

O(v/n-m-logn)

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Conclusion

@ algorithm for computing an optimal semi-matching in time
O(n*) with high probability
e since w < 2.38, this algorithms breaks through O(n?°)
barrier for dense graphs
@ new algorithm for computing an optimal semi-matching
based on divide and conquer strategy and working in
time O(v/n- m-log n)
e divide and conquer strategy promises efficient
parallelization

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

Thank you for your attention

F. Galcik, J. Katreni¢, G. Semanisin On computing an optimal semi-matching

