## Interval Methods for Mobile Robot Mapping

M. Mustafa<sup>1</sup> A. Stancu<sup>1</sup>

<sup>1</sup>School of Electrical and Electronic Engineering The University of Manchester

8th Small Workshop on Interval Methods (SWIM 2015)



### **Outline**

- Motivation
  - SLAM Problem
  - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
  - Problem Statement
  - Parameters Estimation
- Applications
  - Robot moving in 1-D Environment
  - Robot moving in 2-D Environment without Rotation
  - Robot moving in 2-D Environment with Rotation
- 4 Discussion



### Outline

- Motivation
  - SLAM Problem
  - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
  - Problem Statement
  - Parameters Estimation
- 3 Applications
  - Robot moving in 1-D Environment
  - Robot moving in 2-D Environment without Rotation
  - Robot moving in 2-D Environment with Rotation
- Discussion



- SLAM stands for Simultaneous Localization And Mapping.
   It means that a mobile robot needs to explore unknonwn environment while building a map and localizing itself within such map.
- If the robot knows the map of the environment and it detects familiar landmarks, localization is easy (Localization problem).
- If the robot knows it pose exactly, the mapping is easy (Mapping problem).



- SLAM stands for Simultaneous Localization And Mapping.
   It means that a mobile robot needs to explore unknonwn environment while building a map and localizing itself within such map.
- If the robot knows the map of the environment and it detects familiar landmarks, localization is easy (Localization problem).
- If the robot knows it pose exactly, the mapping is easy (Mapping problem).



- SLAM stands for Simultaneous Localization And Mapping.
   It means that a mobile robot needs to explore unknown environment while building a map and localizing itself within such map.
- If the robot knows the map of the environment and it detects familiar landmarks, localization is easy (Localization problem).
- If the robot knows it pose exactly, the mapping is easy (Mapping problem).

- SLAM parameters (robot pose and landmarks locations in the map) can be estimated using two models:
  - Motion model that estimates the robot pose using proprioceptive sensor,e.g., encoder or IMU.
  - Observation model that estimates the landmark loaction using the exteroceptive sensor, e.g., LIDAR or Camera.
- Generally, mobile robots are equipped with noisy proprioceptive and exteroceptive sensors. Such noises develop uncertainty in the estimated parameters, which makes the SLAM a difficult problem.

- SLAM parameters (robot pose and landmarks locations in the map) can be estimated using two models:
  - Motion model that estimates the robot pose using proprioceptive sensor,e.g., encoder or IMU.
  - Observation model that estimates the landmark loaction using the exteroceptive sensor, e.g., LIDAR or Camera.
- Generally, mobile robots are equipped with noisy proprioceptive and exteroceptive sensors. Such noises develop uncertainty in the estimated parameters, which makes the SLAM a difficult problem.

#### Outline

- Motivation
  - SLAM Problem
  - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
  - Problem Statement
  - Parameters Estimation
- 3 Applications
  - Robot moving in 1-D Environment
  - Robot moving in 2-D Environment without Rotation
  - Robot moving in 2-D Environment with Rotation
- 4 Discussion



## Convergence of Different SLAM Approaches

- For SLAM, Building an accurate map leads to an accurate localization.
- Extended Kalman Filter (EKF) SLAM and FastSLAM (Particle Filter) approachs converge to the real map if:
  - Motion model and Observation model are linear.
  - Uncertainty in the motion model and the observation model are Gaussians.
  - The location of one landmark is known in advance.
- The proposed approach for mapping using Interval Methods attempts to proof that the map converges given the following:
  - Motion model and observation model are not necessary linear.
  - Uncertainty in the observation model is bounded by intervals.



# Convergence of Different SLAM Approaches

- For SLAM, Building an accurate map leads to an accurate localization.
- Extended Kalman Filter (EKF) SLAM and FastSLAM (Particle Filter) approachs converge to the real map if:
  - Motion model and Observation model are linear.
  - Uncertainty in the motion model and the observation model are Gaussians.
  - The location of one landmark is known in advance.
- The proposed approach for mapping using Interval Methods attempts to proof that the map converges given the following:
  - Motion model and observation model are not necessary linear.
  - Uncertainty in the observation model is bounded by intervals.



## Convergence of Different SLAM Approaches

- For SLAM, Building an accurate map leads to an accurate localization.
- Extended Kalman Filter (EKF) SLAM and FastSLAM (Particle Filter) approachs converge to the real map if:
  - Motion model and Observation model are linear.
  - Uncertainty in the motion model and the observation model are Gaussians.
  - The location of one landmark is known in advance.
- The proposed approach for mapping using Interval Methods attempts to proof that the map converges given the following:
  - Motion model and observation model are not necessary linear.
  - Uncertainty in the observation model is bounded by intervals.

# Constraint Satisfaction Problem (CSP).

- Consider the system of m equations with n variables, such that:  $f_j(x_1, x_2, ..., x_n) = 0$ , j = 1 : m, where  $x_i \in [x_i]$ ,  $[\mathbf{x}] = [x_1] \times [x_2] \times ... \times [x_n]$ , and  $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ .
- A constraint satisfaction problem (CSP)  $\mathcal{H}$ , is defined as:

$$\mathcal{H}: (\mathbf{f}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in [\mathbf{x}])$$

• The *solution set* of  $\mathcal{H}$  is defined as:

$$\mathbb{S} = \{ \mathbf{x} \in [\mathbf{x}] \mid \mathbf{f}(\mathbf{x}) = \mathbf{0} \}$$



# Constraint Satisfaction Problem (CSP).

- Consider the system of m equations with n variables, such that:  $f_j(x_1, x_2, ..., x_n) = 0$ , j = 1 : m, where  $x_i \in [x_i]$ ,  $[\mathbf{x}] = [x_1] \times [x_2] \times ... \times [x_n]$ , and  $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ .
- A constraint satisfaction problem (CSP)  $\mathcal{H}$ , is defined as:

$$\mathcal{H}: (f(x)=0,\; x\in [x])$$

• The *solution set* of  $\mathcal{H}$  is defined as:

$$\mathbb{S} = \{ \mathbf{x} \in [\mathbf{x}] \mid \mathbf{f}(\mathbf{x}) = \mathbf{0} \}$$



# Constraint Satisfaction Problem (CSP).

- Consider the system of m equations with n variables, such that:  $f_j(x_1, x_2, ..., x_n) = 0$ , j = 1 : m, where  $x_i \in [x_i]$ ,  $[\mathbf{x}] = [x_1] \times [x_2] \times ... \times [x_n]$ , and  $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ .
- A constraint satisfaction problem (CSP)  $\mathcal{H}$ , is defined as:

$$\mathcal{H}: (\mathbf{f}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in [\mathbf{x}])$$

• The *solution set* of  $\mathcal{H}$  is defined as:

$$\mathbb{S} = \{ \mathbf{x} \in [\mathbf{x}] \mid \mathbf{f}(\mathbf{x}) = \mathbf{0} \}$$

## Definition of Contractors.

- Contracting  $\mathcal{H}$  means replacing [x] by a smaller domain [x'] such that the solution set remains unchanged, i.e.,  $\mathbb{S} \subset [x'] \subset [x]$ .
- A contractor C for H is an operator that compute the subset [x'], and it is defined formally as follows:
   Definition: A contractor C is a mapping from IR<sup>n</sup> to IR<sup>n</sup> such that:

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \ \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}] \qquad (contractance)$$

$$\mathcal{C}([\mathbf{x}]) \cap \mathbb{S} = [\mathbf{x}] \cap \mathbb{S} \qquad (correctness)$$



## Definition of Contractors.

- Contracting  $\mathcal{H}$  means replacing [x] by a smaller domain [x'] such that the solution set remains unchanged, i.e.,  $\mathbb{S} \subset [x'] \subset [x]$ .
- A contractor  $\mathcal C$  for  $\mathcal H$  is an operator that compute the subset  $[\mathbf x']$ , and it is defined formally as follows: **Definition:** A contractor  $\mathcal C$  is a mapping from  $\mathbb R^n$  to  $\mathbb R^n$  such that:

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \ \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}]$$
 (contractance)  
 $\mathcal{C}([\mathbf{x}]) \cap \mathbb{S} = [\mathbf{x}] \cap \mathbb{S}$  (correctness)



## Forward-Backward Propagation Contractor.



• Contractor C applied to  $[\mathbf{x}] = [-1, 2] \times [-1, 2]$  and results in  $[\mathbf{x}'] = [0.3679, 2] \times [-1, 0.6931]$ .

## **Outline**

- Motivation
  - SLAM Problem
  - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
  - Problem Statement
  - Parameters Estimation
- 3 Applications
  - Robot moving in 1-D Environment
  - Robot moving in 2-D Environment without Rotation
  - Robot moving in 2-D Environment with Rotation
- 4 Discussion



• Consider a robot moving in an unknown environment with motion model defined by equation (1), where  $\mathbf{s}_k$  and  $\mathbf{u}_k$  are the robot pose and the control inputs at time k, respectively.

$$\mathbf{s}_{k+1} = \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \tag{1}$$

• The robot can detect static landmarks (assuming data association is solved) in the environment using the observation model defined by equation (2), where,  $\mathbf{m}_i$  is the location of the  $i^{th}$  landmark in the environment.

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \tag{2}$$



• Consider a robot moving in an unknown environment with motion model defined by equation (1), where  $\mathbf{s}_k$  and  $\mathbf{u}_k$  are the robot pose and the control inputs at time k, respectively.

$$\mathbf{s}_{k+1} = \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \tag{1}$$

• The robot can detect static landmarks (assuming data association is solved) in the environment using the observation model defined by equation (2), where,  $\mathbf{m}_i$  is the location of the  $i^{th}$  landmark in the environment.

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \tag{2}$$



 Since the robot sensors are noisy, their uncertainties are assumed to be bounded such that:

$$\mathbf{s}_{k+1} - \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \in [\omega_k] \tag{3}$$

$$\mathbf{z}_{k,i} - \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \in [\nu_{k,i}] \tag{4}$$

- The goal is to estimate all robot poses for all time instances  $k \in \{0, ..., k_{max}\}$ , and all locations of landmarks that are consistent with all control inputs and all observations.
- All the parameters to be estimated are represented by the vector x in equation (5):

$$\mathbf{x} = [\mathbf{s}_0, ..., \mathbf{s}_{k_{max}}, \mathbf{m}_1, ..., \mathbf{m}_M]^T$$
 (5)

 Since the robot sensors are noisy, their uncertainties are assumed to be bounded such that:

$$\mathbf{s}_{k+1} - \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \in [\omega_k] \tag{3}$$

$$\mathbf{z}_{k,i} - \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \in [\nu_{k,i}] \tag{4}$$

- The goal is to estimate all robot poses for all time instances  $k \in \{0, ..., k_{max}\}$ , and all locations of landmarks that are consistent with all control inputs and all observations.
- All the parameters to be estimated are represented by the vector x in equation (5):

$$\mathbf{x} = [\mathbf{s}_0, ..., \mathbf{s}_{k_{max}}, \mathbf{m}_1, ..., \mathbf{m}_M]^T$$
 (5)

 Since the robot sensors are noisy, their uncertainties are assumed to be bounded such that:

$$\mathbf{s}_{k+1} - \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \in [\omega_k] \tag{3}$$

$$\mathbf{z}_{k,i} - \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \in [\nu_{k,i}] \tag{4}$$

- The goal is to estimate all robot poses for all time instances  $k \in \{0, ..., k_{max}\}$ , and all locations of landmarks that are consistent with all control inputs and all observations.
- All the parameters to be estimated are represented by the vector x in equation (5):

$$\mathbf{x} = [\mathbf{s}_0, ..., \mathbf{s}_{k_{max}}, \mathbf{m}_1, ..., \mathbf{m}_M]^T$$
 (5)



### Outline

- Motivation
  - SLAM Problem
  - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
  - Problem Statement
  - Parameters Estimation
- 3 Applications
  - Robot moving in 1-D Environment
  - Robot moving in 2-D Environment without Rotation
  - Robot moving in 2-D Environment with Rotation
- Discussion



## Parameters Estimation

- Equations (3-5) represent a constrait satisfaction problem (CSP).
- Contractors  $C_k^{\mathbf{s}}$  and  $C_{k,i}^{\mathbf{s},\mathbf{m}}$  are used for CSP such that:

$$\mathbf{s}_{k+1} - \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \in [\omega_k] \to C_k^{\mathbf{s}}$$
 (6)

$$\mathbf{z}_{k,i} - \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \in [\nu_{k,i}] \to C_{k,i}^{\mathbf{s},\mathbf{m}} \tag{7}$$

 From an initial box [x], the following contractor is defined to compute the enclosure of the SLAM solution:

$$C^{\mathbf{x}} = \left(\bigcap_{k \in \{0, \dots, k_{max}\}} \left(C_k^{\mathbf{s}} \circ \bigcap_i C_{k,i}^{\mathbf{s}, \mathbf{m}}\right)\right)^{\infty} \tag{8}$$

#### Outline

- Motivation
  - SLAM Problem
  - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
  - Problem Statement
  - Parameters Estimation
- 3 Applications
  - Robot moving in 1-D Environment
  - Robot moving in 2-D Environment without Rotation
  - Robot moving in 2-D Environment with Rotation
- Discussion



Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow z_{k,i} = g(m_i - s_k) \tag{9}$$

where, g is any one-to-one nonlinear function.

$$z_{k,i} - g(m_i - s_k) \in [\nu_{k,i}]$$
 (10)

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.



Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow z_{k,i} = g(m_i - s_k)$$
 (9)

where, g is any one-to-one nonlinear function.

$$z_{k,i} - g(m_i - s_k) \in [\nu_{k,i}] \tag{10}$$

- Only one landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.



Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow z_{k,i} = g(m_i - s_k)$$
 (9)

where, g is any one-to-one nonlinear function.

$$z_{k,i} - g(m_i - s_k) \in [\nu_{k,i}] \tag{10}$$

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.



Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow z_{k,i} = g(m_i - s_k)$$
 (9)

where, g is any one-to-one nonlinear function.

$$z_{k,i} - g(m_i - s_k) \in [\nu_{k,i}] \tag{10}$$

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.



### 1-D: Results





#### 1-D: Results





### Outline

- Motivation
  - SI AM Problem
  - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
  - Problem Statement
  - Parameters Estimation
- 3 Applications
  - Robot moving in 1-D Environment
  - Robot moving in 2-D Environment without Rotation
  - Robot moving in 2-D Environment with Rotation
- 4 Discussion



# 2-D without Rotation: Assumptions

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \end{cases}$$
(11)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \in [\nu_{k,i,\alpha}]$$
(12)

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

# 2-D without Rotation: Assumptions

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \end{cases}$$
(11)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \in [\nu_{k,i,\alpha}]$$
(12)

- Only one landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \end{cases}$$
(11)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \in [\nu_{k,i,\alpha}]$$
(12)

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \end{cases}$$
(11)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \in [\nu_{k,i,\alpha}]$$
(12)

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.



k = 1





k = 100



#### **Outline**

- Motivation
  - SLAM Problem
  - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
  - Problem Statement
  - Parameters Estimation
- Applications
  - Robot moving in 1-D Environment
  - Robot moving in 2-D Environment without Rotation
  - Robot moving in 2-D Environment with Rotation
- Discussion



Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \end{cases}$$
(13)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \in [\nu_{k,i,\alpha}]$$
(14)

- Only two landmark locations are known exactly.
- At each time step k, the robot observes, at least, two old landmarks.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \end{cases}$$
(13)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \in [\nu_{k,i,\alpha}]$$
(14)

- Only two landmark locations are known exactly.
- At each time step k, the robot observes, at least, two old landmarks.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \end{cases}$$
(13)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \in [\nu_{k,i,\alpha}]$$
(14)

- Only two landmark locations are known exactly.
- At each time step k, the robot observes, at least, two old landmarks.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \end{cases}$$
(13)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \in [\nu_{k,i,\alpha}]$$
(14)

- Only two landmark locations are known exactly.
- At each time step k, the robot observes, at least, two old landmarks.



k = 1







- In the 1-D case, it is possible to proof that mapping using interval methods approach converges to the true map given the following conditions:
  - At least one landmark location is known in advance.
  - At any time instance k, at least one old landmark is observed.
  - The observation model is in the form of  $z_{i,k} g(m_i s_k) \in [\nu_{i,k}]$ , where g is a one-to-one nonlinear function, and the sensor noise is bounded in the form of interval, i.e.  $[\nu_{i,k}]$ .

- In the 1-D case, it is possible to proof that mapping using interval methods approach converges to the true map given the following conditions:
  - At least one landmark location is known in advance.
  - At any time instance k, at least one old landmark is observed.
  - The observation model is in the form of  $z_{i,k} g(m_i s_k) \in [\nu_{i,k}]$ , where g is a one-to-one nonlinear function, and the sensor noise is bounded in the form of interval, i.e.  $[\nu_{i,k}]$ .

- In the 1-D case, it is possible to proof that mapping using interval methods approach converges to the true map given the following conditions:
  - At least one landmark location is known in advance.
  - At any time instance k, at least one old landmark is observed.
  - The observation model is in the form of  $z_{i,k} g(m_i s_k) \in [\nu_{i,k}]$ , where g is a one-to-one nonlinear function, and the sensor noise is bounded in the form of interval, i.e.  $[\nu_{i,k}]$ .

- In the 1-D case, it is possible to proof that mapping using interval methods approach converges to the true map given the following conditions:
  - At least one landmark location is known in advance.
  - At any time instance k, at least one old landmark is observed.
  - The observation model is in the form of  $z_{i,k} g(m_i s_k) \in [\nu_{i,k}]$ , where g is a one-to-one nonlinear function, and the sensor noise is bounded in the form of interval, i.e.  $[\nu_{i,k}]$ .

- **Proposition 1**: Let  $[x] \in \mathbb{IR}$  and  $[y] \in \mathbb{IR}$ , if  $0 \in [x]$ , then,  $[y] \subseteq [y] + [x]$ .
- Proposition 2: Let  $[x] \in \mathbb{IR}$ , if  $x^* \in [x]$ , then,  $0 \in [x] x^*$ .
- **Theorem 1**: Let  $0 \in [\nu_{i,k}]$ , if g is one-to-one function, then:

$$\bigcap_{k=0}^{\infty}\left([g^{-1}]\left(z_{i,k}-[\nu_{i,k}]\right)-[g^{-1}]\left(z_{j,k}-[\nu_{j,k}]\right)\right)=\{d_{i,j}\text{ where, }d_{i,j}=m_i-m_j.$$

- **Proposition 1**: Let  $[x] \in \mathbb{IR}$  and  $[y] \in \mathbb{IR}$ , if  $0 \in [x]$ , then,  $[y] \subseteq [y] + [x]$ .
- Proposition 2: Let  $[x] \in \mathbb{IR}$ , if  $x^* \in [x]$ , then,  $0 \in [x] x^*$ .
- **Theorem 1**: Let  $0 \in [\nu_{i,k}]$ , if g is one-to-one function, then:

$$\bigcap_{k=0}^{\infty} \left( [g^{-1}] \left( z_{i,k} - [\nu_{i,k}] \right) - [g^{-1}] \left( z_{j,k} - [\nu_{j,k}] \right) \right) = \{ d_{i,j} \}$$
 where,  $d_{i,j} = m_i - m_j$ .

- **Proposition 1**: Let  $[x] \in \mathbb{IR}$  and  $[y] \in \mathbb{IR}$ , if  $0 \in [x]$ , then,  $[y] \subseteq [y] + [x]$ .
- **Proposition 2**: Let  $[x] \in \mathbb{IR}$ , if  $x^* \in [x]$ , then,  $0 \in [x] x^*$ .
- **Theorem 1**: Let  $0 \in [\nu_{i,k}]$ , if g is one-to-one function, then:

$$\bigcap_{k=0}^{\infty} \left( [g^{-1}] \left( z_{i,k} - [\nu_{i,k}] \right) - [g^{-1}] \left( z_{j,k} - [\nu_{j,k}] \right) \right) = \{d_{i,j}\}$$
 where,  $d_{i,j} = m_i - m_i$ .

- **Proposition 1**: Let  $[x] \in \mathbb{IR}$  and  $[y] \in \mathbb{IR}$ , if  $0 \in [x]$ , then,  $[y] \subseteq [y] + [x]$ .
- Proposition 2: Let  $[x] \in \mathbb{IR}$ , if  $x^* \in [x]$ , then,  $0 \in [x] x^*$ .
- **Theorem 1**: Let  $0 \in [\nu_{i,k}]$ , if g is one-to-one function, then:

$$\bigcap_{k=0}^{\infty} \left( [g^{-1}] \left( z_{i,k} - [\nu_{i,k}] \right) - [g^{-1}] \left( z_{j,k} - [\nu_{j,k}] \right) \right) = \{ d_{i,j} \}$$
 where,  $d_{i,j} = m_i - m_j$ .

- In the 2-D case with rotation, experiments show that mapping using interval methods approach converges to the true map given the following conditions:
  - At least two landmark locations are known in advance.
  - At any time instance k, at least two old landmark are observed.
  - The sensor noise is bounded in the form of intervals, i.e.  $[\nu_{i,k_l}]$ .

- In the 2-D case with rotation, experiments show that mapping using interval methods approach converges to the true map given the following conditions:
  - At least two landmark locations are known in advance.
  - At any time instance k, at least two old landmark are observed.
  - The sensor noise is bounded in the form of intervals, i.e.  $[\nu_{i,k_l}]$ .

- In the 2-D case with rotation, experiments show that mapping using interval methods approach converges to the true map given the following conditions:
  - At least two landmark locations are known in advance.
  - At any time instance k, at least two old landmark are observed.
  - The sensor noise is bounded in the form of intervals, i.e.  $[\nu_{i,k_l}]$ .

- In the 2-D case with rotation, experiments show that mapping using interval methods approach converges to the true map given the following conditions:
  - At least two landmark locations are known in advance.
  - At any time instance k, at least two old landmark are observed.
  - The sensor noise is bounded in the form of intervals, i.e.  $[\nu_{i,k_i}]$ .

### Summary

- Robot mapping using Interval Methods solves some shortcomings of statistical methods.
- The use of contractors can prove the enclosure of the mapping solution.
- Conditions for convergence of the approach to the true map in higher dimensions is still work in progress.

### Summary

- Robot mapping using Interval Methods solves some shortcomings of statistical methods.
- The use of contractors can prove the enclosure of the mapping solution.
- Conditions for convergence of the approach to the true map in higher dimensions is still work in progress.

### Summary

- Robot mapping using Interval Methods solves some shortcomings of statistical methods.
- The use of contractors can prove the enclosure of the mapping solution.
- Conditions for convergence of the approach to the true map in higher dimensions is still work in progress.

Motivation

Mobile Robot Mapping using Interval Methods
Applications
Discussion
Summary

Questions...