Interval Methods for Mobile Robot Mapping

M. Mustafa¹ A. Stancu¹

¹School of Electrical and Electronic Engineering The University of Manchester

8th Small Workshop on Interval Methods (SWIM 2015)

Outline

- Motivation
 - SLAM Problem
 - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
 - Problem Statement
 - Parameters Estimation
- Applications
 - Robot moving in 1-D Environment
 - Robot moving in 2-D Environment without Rotation
 - Robot moving in 2-D Environment with Rotation
- 4 Discussion

Outline

- Motivation
 - SLAM Problem
 - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
 - Problem Statement
 - Parameters Estimation
- 3 Applications
 - Robot moving in 1-D Environment
 - Robot moving in 2-D Environment without Rotation
 - Robot moving in 2-D Environment with Rotation
- Discussion

- SLAM stands for Simultaneous Localization And Mapping.
 It means that a mobile robot needs to explore unknonwn environment while building a map and localizing itself within such map.
- If the robot knows the map of the environment and it detects familiar landmarks, localization is easy (Localization problem).
- If the robot knows it pose exactly, the mapping is easy (Mapping problem).

- SLAM stands for Simultaneous Localization And Mapping.
 It means that a mobile robot needs to explore unknonwn environment while building a map and localizing itself within such map.
- If the robot knows the map of the environment and it detects familiar landmarks, localization is easy (Localization problem).
- If the robot knows it pose exactly, the mapping is easy (Mapping problem).

- SLAM stands for Simultaneous Localization And Mapping.
 It means that a mobile robot needs to explore unknown environment while building a map and localizing itself within such map.
- If the robot knows the map of the environment and it detects familiar landmarks, localization is easy (Localization problem).
- If the robot knows it pose exactly, the mapping is easy (Mapping problem).

- SLAM parameters (robot pose and landmarks locations in the map) can be estimated using two models:
 - Motion model that estimates the robot pose using proprioceptive sensor,e.g., encoder or IMU.
 - Observation model that estimates the landmark loaction using the exteroceptive sensor, e.g., LIDAR or Camera.
- Generally, mobile robots are equipped with noisy proprioceptive and exteroceptive sensors. Such noises develop uncertainty in the estimated parameters, which makes the SLAM a difficult problem.

- SLAM parameters (robot pose and landmarks locations in the map) can be estimated using two models:
 - Motion model that estimates the robot pose using proprioceptive sensor,e.g., encoder or IMU.
 - Observation model that estimates the landmark loaction using the exteroceptive sensor, e.g., LIDAR or Camera.
- Generally, mobile robots are equipped with noisy proprioceptive and exteroceptive sensors. Such noises develop uncertainty in the estimated parameters, which makes the SLAM a difficult problem.

Outline

- Motivation
 - SLAM Problem
 - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
 - Problem Statement
 - Parameters Estimation
- 3 Applications
 - Robot moving in 1-D Environment
 - Robot moving in 2-D Environment without Rotation
 - Robot moving in 2-D Environment with Rotation
- 4 Discussion

Convergence of Different SLAM Approaches

- For SLAM, Building an accurate map leads to an accurate localization.
- Extended Kalman Filter (EKF) SLAM and FastSLAM (Particle Filter) approachs converge to the real map if:
 - Motion model and Observation model are linear.
 - Uncertainty in the motion model and the observation model are Gaussians.
 - The location of one landmark is known in advance.
- The proposed approach for mapping using Interval Methods attempts to proof that the map converges given the following:
 - Motion model and observation model are not necessary linear.
 - Uncertainty in the observation model is bounded by intervals.

Convergence of Different SLAM Approaches

- For SLAM, Building an accurate map leads to an accurate localization.
- Extended Kalman Filter (EKF) SLAM and FastSLAM (Particle Filter) approachs converge to the real map if:
 - Motion model and Observation model are linear.
 - Uncertainty in the motion model and the observation model are Gaussians.
 - The location of one landmark is known in advance.
- The proposed approach for mapping using Interval Methods attempts to proof that the map converges given the following:
 - Motion model and observation model are not necessary linear.
 - Uncertainty in the observation model is bounded by intervals.

Convergence of Different SLAM Approaches

- For SLAM, Building an accurate map leads to an accurate localization.
- Extended Kalman Filter (EKF) SLAM and FastSLAM (Particle Filter) approachs converge to the real map if:
 - Motion model and Observation model are linear.
 - Uncertainty in the motion model and the observation model are Gaussians.
 - The location of one landmark is known in advance.
- The proposed approach for mapping using Interval Methods attempts to proof that the map converges given the following:
 - Motion model and observation model are not necessary linear.
 - Uncertainty in the observation model is bounded by intervals.

Constraint Satisfaction Problem (CSP).

- Consider the system of m equations with n variables, such that: $f_j(x_1, x_2, ..., x_n) = 0$, j = 1 : m, where $x_i \in [x_i]$, $[\mathbf{x}] = [x_1] \times [x_2] \times ... \times [x_n]$, and $\mathbf{f}(\mathbf{x}) = \mathbf{0}$.
- A constraint satisfaction problem (CSP) \mathcal{H} , is defined as:

$$\mathcal{H}: (\mathbf{f}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in [\mathbf{x}])$$

• The *solution set* of \mathcal{H} is defined as:

$$\mathbb{S} = \{ \mathbf{x} \in [\mathbf{x}] \mid \mathbf{f}(\mathbf{x}) = \mathbf{0} \}$$

Constraint Satisfaction Problem (CSP).

- Consider the system of m equations with n variables, such that: $f_j(x_1, x_2, ..., x_n) = 0$, j = 1 : m, where $x_i \in [x_i]$, $[\mathbf{x}] = [x_1] \times [x_2] \times ... \times [x_n]$, and $\mathbf{f}(\mathbf{x}) = \mathbf{0}$.
- A constraint satisfaction problem (CSP) \mathcal{H} , is defined as:

$$\mathcal{H}: (f(x)=0,\; x\in [x])$$

• The *solution set* of \mathcal{H} is defined as:

$$\mathbb{S} = \{ \mathbf{x} \in [\mathbf{x}] \mid \mathbf{f}(\mathbf{x}) = \mathbf{0} \}$$

Constraint Satisfaction Problem (CSP).

- Consider the system of m equations with n variables, such that: $f_j(x_1, x_2, ..., x_n) = 0$, j = 1 : m, where $x_i \in [x_i]$, $[\mathbf{x}] = [x_1] \times [x_2] \times ... \times [x_n]$, and $\mathbf{f}(\mathbf{x}) = \mathbf{0}$.
- A constraint satisfaction problem (CSP) \mathcal{H} , is defined as:

$$\mathcal{H}: (\mathbf{f}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in [\mathbf{x}])$$

• The *solution set* of \mathcal{H} is defined as:

$$\mathbb{S} = \{ \mathbf{x} \in [\mathbf{x}] \mid \mathbf{f}(\mathbf{x}) = \mathbf{0} \}$$

Definition of Contractors.

- Contracting \mathcal{H} means replacing [x] by a smaller domain [x'] such that the solution set remains unchanged, i.e., $\mathbb{S} \subset [x'] \subset [x]$.
- A contractor C for H is an operator that compute the subset [x'], and it is defined formally as follows:
 Definition: A contractor C is a mapping from IRⁿ to IRⁿ such that:

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \ \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}] \qquad (contractance)$$

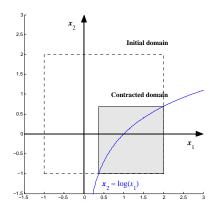
$$\mathcal{C}([\mathbf{x}]) \cap \mathbb{S} = [\mathbf{x}] \cap \mathbb{S} \qquad (correctness)$$

Definition of Contractors.

- Contracting \mathcal{H} means replacing [x] by a smaller domain [x'] such that the solution set remains unchanged, i.e., $\mathbb{S} \subset [x'] \subset [x]$.
- A contractor $\mathcal C$ for $\mathcal H$ is an operator that compute the subset $[\mathbf x']$, and it is defined formally as follows: **Definition:** A contractor $\mathcal C$ is a mapping from $\mathbb R^n$ to $\mathbb R^n$ such that:

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \ \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}]$$
 (contractance)
 $\mathcal{C}([\mathbf{x}]) \cap \mathbb{S} = [\mathbf{x}] \cap \mathbb{S}$ (correctness)

Forward-Backward Propagation Contractor.



• Contractor C applied to $[\mathbf{x}] = [-1, 2] \times [-1, 2]$ and results in $[\mathbf{x}'] = [0.3679, 2] \times [-1, 0.6931]$.

Outline

- Motivation
 - SLAM Problem
 - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
 - Problem Statement
 - Parameters Estimation
- 3 Applications
 - Robot moving in 1-D Environment
 - Robot moving in 2-D Environment without Rotation
 - Robot moving in 2-D Environment with Rotation
- 4 Discussion

• Consider a robot moving in an unknown environment with motion model defined by equation (1), where \mathbf{s}_k and \mathbf{u}_k are the robot pose and the control inputs at time k, respectively.

$$\mathbf{s}_{k+1} = \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \tag{1}$$

• The robot can detect static landmarks (assuming data association is solved) in the environment using the observation model defined by equation (2), where, \mathbf{m}_i is the location of the i^{th} landmark in the environment.

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \tag{2}$$

• Consider a robot moving in an unknown environment with motion model defined by equation (1), where \mathbf{s}_k and \mathbf{u}_k are the robot pose and the control inputs at time k, respectively.

$$\mathbf{s}_{k+1} = \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \tag{1}$$

• The robot can detect static landmarks (assuming data association is solved) in the environment using the observation model defined by equation (2), where, \mathbf{m}_i is the location of the i^{th} landmark in the environment.

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \tag{2}$$

 Since the robot sensors are noisy, their uncertainties are assumed to be bounded such that:

$$\mathbf{s}_{k+1} - \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \in [\omega_k] \tag{3}$$

$$\mathbf{z}_{k,i} - \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \in [\nu_{k,i}] \tag{4}$$

- The goal is to estimate all robot poses for all time instances $k \in \{0, ..., k_{max}\}$, and all locations of landmarks that are consistent with all control inputs and all observations.
- All the parameters to be estimated are represented by the vector x in equation (5):

$$\mathbf{x} = [\mathbf{s}_0, ..., \mathbf{s}_{k_{max}}, \mathbf{m}_1, ..., \mathbf{m}_M]^T$$
 (5)

 Since the robot sensors are noisy, their uncertainties are assumed to be bounded such that:

$$\mathbf{s}_{k+1} - \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \in [\omega_k] \tag{3}$$

$$\mathbf{z}_{k,i} - \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \in [\nu_{k,i}] \tag{4}$$

- The goal is to estimate all robot poses for all time instances $k \in \{0, ..., k_{max}\}$, and all locations of landmarks that are consistent with all control inputs and all observations.
- All the parameters to be estimated are represented by the vector x in equation (5):

$$\mathbf{x} = [\mathbf{s}_0, ..., \mathbf{s}_{k_{max}}, \mathbf{m}_1, ..., \mathbf{m}_M]^T$$
 (5)

 Since the robot sensors are noisy, their uncertainties are assumed to be bounded such that:

$$\mathbf{s}_{k+1} - \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \in [\omega_k] \tag{3}$$

$$\mathbf{z}_{k,i} - \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \in [\nu_{k,i}] \tag{4}$$

- The goal is to estimate all robot poses for all time instances $k \in \{0, ..., k_{max}\}$, and all locations of landmarks that are consistent with all control inputs and all observations.
- All the parameters to be estimated are represented by the vector x in equation (5):

$$\mathbf{x} = [\mathbf{s}_0, ..., \mathbf{s}_{k_{max}}, \mathbf{m}_1, ..., \mathbf{m}_M]^T$$
 (5)

Outline

- Motivation
 - SLAM Problem
 - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
 - Problem Statement
 - Parameters Estimation
- 3 Applications
 - Robot moving in 1-D Environment
 - Robot moving in 2-D Environment without Rotation
 - Robot moving in 2-D Environment with Rotation
- Discussion

Parameters Estimation

- Equations (3-5) represent a constrait satisfaction problem (CSP).
- Contractors $C_k^{\mathbf{s}}$ and $C_{k,i}^{\mathbf{s},\mathbf{m}}$ are used for CSP such that:

$$\mathbf{s}_{k+1} - \mathbf{f}(\mathbf{s}_k, \mathbf{u}_k) \in [\omega_k] \to C_k^{\mathbf{s}}$$
 (6)

$$\mathbf{z}_{k,i} - \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \in [\nu_{k,i}] \to C_{k,i}^{\mathbf{s},\mathbf{m}} \tag{7}$$

 From an initial box [x], the following contractor is defined to compute the enclosure of the SLAM solution:

$$C^{\mathbf{x}} = \left(\bigcap_{k \in \{0, \dots, k_{max}\}} \left(C_k^{\mathbf{s}} \circ \bigcap_i C_{k,i}^{\mathbf{s}, \mathbf{m}}\right)\right)^{\infty} \tag{8}$$

Outline

- Motivation
 - SLAM Problem
 - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
 - Problem Statement
 - Parameters Estimation
- 3 Applications
 - Robot moving in 1-D Environment
 - Robot moving in 2-D Environment without Rotation
 - Robot moving in 2-D Environment with Rotation
- Discussion

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow z_{k,i} = g(m_i - s_k) \tag{9}$$

where, g is any one-to-one nonlinear function.

$$z_{k,i} - g(m_i - s_k) \in [\nu_{k,i}]$$
 (10)

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow z_{k,i} = g(m_i - s_k)$$
 (9)

where, g is any one-to-one nonlinear function.

$$z_{k,i} - g(m_i - s_k) \in [\nu_{k,i}] \tag{10}$$

- Only one landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow z_{k,i} = g(m_i - s_k)$$
 (9)

where, g is any one-to-one nonlinear function.

$$z_{k,i} - g(m_i - s_k) \in [\nu_{k,i}] \tag{10}$$

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

Observation model is in the form of:

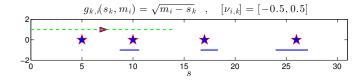
$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow z_{k,i} = g(m_i - s_k)$$
 (9)

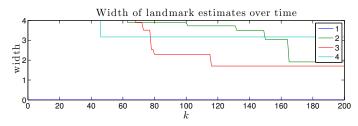
where, g is any one-to-one nonlinear function.

$$z_{k,i} - g(m_i - s_k) \in [\nu_{k,i}] \tag{10}$$

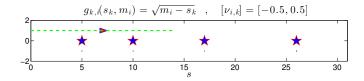
- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

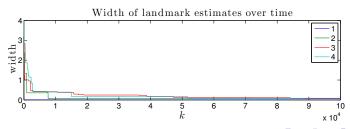
1-D: Results





1-D: Results





Outline

- Motivation
 - SI AM Problem
 - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
 - Problem Statement
 - Parameters Estimation
- 3 Applications
 - Robot moving in 1-D Environment
 - Robot moving in 2-D Environment without Rotation
 - Robot moving in 2-D Environment with Rotation
- 4 Discussion

2-D without Rotation: Assumptions

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \end{cases}$$
(11)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \in [\nu_{k,i,\alpha}]$$
(12)

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

2-D without Rotation: Assumptions

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \end{cases}$$
(11)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \in [\nu_{k,i,\alpha}]$$
(12)

- Only one landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \end{cases}$$
(11)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \in [\nu_{k,i,\alpha}]$$
(12)

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

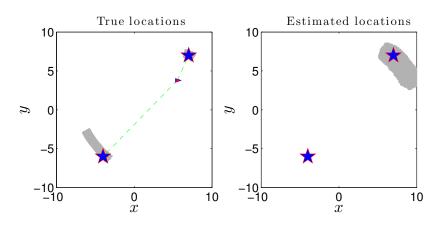
Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \end{cases}$$
(11)

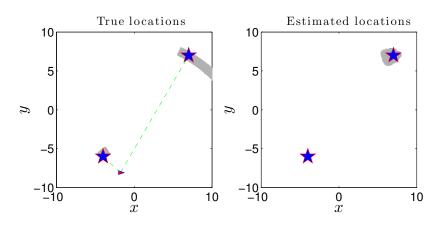
$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

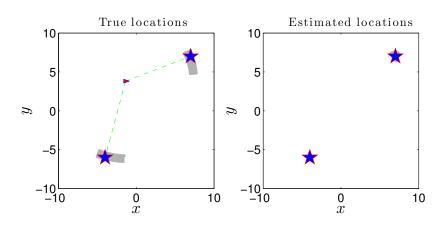
$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) \in [\nu_{k,i,\alpha}]$$
(12)

- Only <u>one</u> landmark location is known exactly.
- At each time step k, the robot observes, at least, one old landmark.

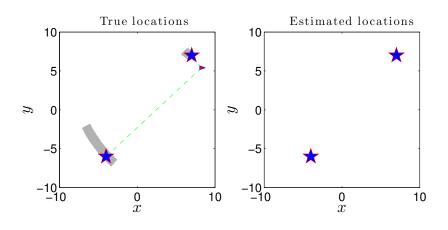


k = 1





k = 100



Outline

- Motivation
 - SLAM Problem
 - Why Mapping using Interval Methods
- Mobile Robot Mapping using Interval Methods
 - Problem Statement
 - Parameters Estimation
- Applications
 - Robot moving in 1-D Environment
 - Robot moving in 2-D Environment without Rotation
 - Robot moving in 2-D Environment with Rotation
- Discussion

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \end{cases}$$
(13)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \in [\nu_{k,i,\alpha}]$$
(14)

- Only two landmark locations are known exactly.
- At each time step k, the robot observes, at least, two old landmarks.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \end{cases}$$
(13)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \in [\nu_{k,i,\alpha}]$$
(14)

- Only two landmark locations are known exactly.
- At each time step k, the robot observes, at least, two old landmarks.

Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \end{cases}$$
(13)

$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \in [\nu_{k,i,\alpha}]$$
(14)

- Only two landmark locations are known exactly.
- At each time step k, the robot observes, at least, two old landmarks.

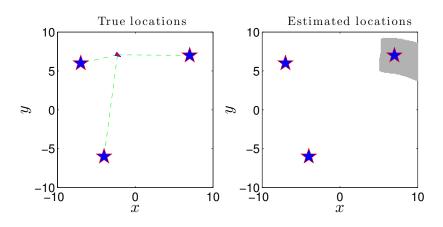
Observation model is in the form of:

$$\mathbf{z}_{k,i} = \mathbf{g}(\mathbf{s}_k, \mathbf{m}_i) \Rightarrow \begin{cases} z_{k,i,\rho} = \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \\ z_{k,i,\alpha} = \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \end{cases}$$
(13)

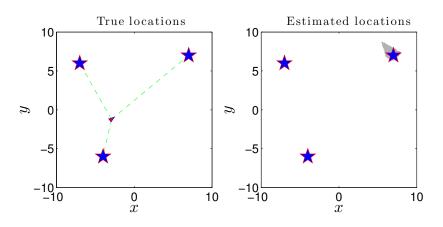
$$z_{k,i,\rho} - \sqrt{(m_{i,x} - s_{k,x})^2 + (m_{i,y} - s_{k,y})^2} \in [\nu_{k,i,\rho}]$$

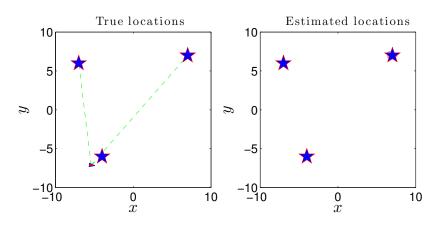
$$z_{k,i,\alpha} - \arctan 2(m_{i,y} - s_{k,y}, m_{i,x} - s_{k,x}) - s_{k,\theta} \in [\nu_{k,i,\alpha}]$$
(14)

- Only two landmark locations are known exactly.
- At each time step k, the robot observes, at least, two old landmarks.



k = 1





- In the 1-D case, it is possible to proof that mapping using interval methods approach converges to the true map given the following conditions:
 - At least one landmark location is known in advance.
 - At any time instance k, at least one old landmark is observed.
 - The observation model is in the form of $z_{i,k} g(m_i s_k) \in [\nu_{i,k}]$, where g is a one-to-one nonlinear function, and the sensor noise is bounded in the form of interval, i.e. $[\nu_{i,k}]$.

- In the 1-D case, it is possible to proof that mapping using interval methods approach converges to the true map given the following conditions:
 - At least one landmark location is known in advance.
 - At any time instance k, at least one old landmark is observed.
 - The observation model is in the form of $z_{i,k} g(m_i s_k) \in [\nu_{i,k}]$, where g is a one-to-one nonlinear function, and the sensor noise is bounded in the form of interval, i.e. $[\nu_{i,k}]$.

- In the 1-D case, it is possible to proof that mapping using interval methods approach converges to the true map given the following conditions:
 - At least one landmark location is known in advance.
 - At any time instance k, at least one old landmark is observed.
 - The observation model is in the form of $z_{i,k} g(m_i s_k) \in [\nu_{i,k}]$, where g is a one-to-one nonlinear function, and the sensor noise is bounded in the form of interval, i.e. $[\nu_{i,k}]$.

- In the 1-D case, it is possible to proof that mapping using interval methods approach converges to the true map given the following conditions:
 - At least one landmark location is known in advance.
 - At any time instance k, at least one old landmark is observed.
 - The observation model is in the form of $z_{i,k} g(m_i s_k) \in [\nu_{i,k}]$, where g is a one-to-one nonlinear function, and the sensor noise is bounded in the form of interval, i.e. $[\nu_{i,k}]$.

- **Proposition 1**: Let $[x] \in \mathbb{IR}$ and $[y] \in \mathbb{IR}$, if $0 \in [x]$, then, $[y] \subseteq [y] + [x]$.
- Proposition 2: Let $[x] \in \mathbb{IR}$, if $x^* \in [x]$, then, $0 \in [x] x^*$.
- **Theorem 1**: Let $0 \in [\nu_{i,k}]$, if g is one-to-one function, then:

$$\bigcap_{k=0}^{\infty}\left([g^{-1}]\left(z_{i,k}-[\nu_{i,k}]\right)-[g^{-1}]\left(z_{j,k}-[\nu_{j,k}]\right)\right)=\{d_{i,j}\text{ where, }d_{i,j}=m_i-m_j.$$

- **Proposition 1**: Let $[x] \in \mathbb{IR}$ and $[y] \in \mathbb{IR}$, if $0 \in [x]$, then, $[y] \subseteq [y] + [x]$.
- Proposition 2: Let $[x] \in \mathbb{IR}$, if $x^* \in [x]$, then, $0 \in [x] x^*$.
- **Theorem 1**: Let $0 \in [\nu_{i,k}]$, if g is one-to-one function, then:

$$\bigcap_{k=0}^{\infty} \left([g^{-1}] \left(z_{i,k} - [\nu_{i,k}] \right) - [g^{-1}] \left(z_{j,k} - [\nu_{j,k}] \right) \right) = \{ d_{i,j} \}$$
 where, $d_{i,j} = m_i - m_j$.

- **Proposition 1**: Let $[x] \in \mathbb{IR}$ and $[y] \in \mathbb{IR}$, if $0 \in [x]$, then, $[y] \subseteq [y] + [x]$.
- **Proposition 2**: Let $[x] \in \mathbb{IR}$, if $x^* \in [x]$, then, $0 \in [x] x^*$.
- **Theorem 1**: Let $0 \in [\nu_{i,k}]$, if g is one-to-one function, then:

$$\bigcap_{k=0}^{\infty} \left([g^{-1}] \left(z_{i,k} - [\nu_{i,k}] \right) - [g^{-1}] \left(z_{j,k} - [\nu_{j,k}] \right) \right) = \{d_{i,j}\}$$
 where, $d_{i,j} = m_i - m_i$.

- **Proposition 1**: Let $[x] \in \mathbb{IR}$ and $[y] \in \mathbb{IR}$, if $0 \in [x]$, then, $[y] \subseteq [y] + [x]$.
- Proposition 2: Let $[x] \in \mathbb{IR}$, if $x^* \in [x]$, then, $0 \in [x] x^*$.
- **Theorem 1**: Let $0 \in [\nu_{i,k}]$, if g is one-to-one function, then:

$$\bigcap_{k=0}^{\infty} \left([g^{-1}] \left(z_{i,k} - [\nu_{i,k}] \right) - [g^{-1}] \left(z_{j,k} - [\nu_{j,k}] \right) \right) = \{ d_{i,j} \}$$
 where, $d_{i,j} = m_i - m_j$.

- In the 2-D case with rotation, experiments show that mapping using interval methods approach converges to the true map given the following conditions:
 - At least two landmark locations are known in advance.
 - At any time instance k, at least two old landmark are observed.
 - The sensor noise is bounded in the form of intervals, i.e. $[\nu_{i,k_l}]$.

- In the 2-D case with rotation, experiments show that mapping using interval methods approach converges to the true map given the following conditions:
 - At least two landmark locations are known in advance.
 - At any time instance k, at least two old landmark are observed.
 - The sensor noise is bounded in the form of intervals, i.e. $[\nu_{i,k_l}]$.

- In the 2-D case with rotation, experiments show that mapping using interval methods approach converges to the true map given the following conditions:
 - At least two landmark locations are known in advance.
 - At any time instance k, at least two old landmark are observed.
 - The sensor noise is bounded in the form of intervals, i.e. $[\nu_{i,k_l}]$.

- In the 2-D case with rotation, experiments show that mapping using interval methods approach converges to the true map given the following conditions:
 - At least two landmark locations are known in advance.
 - At any time instance k, at least two old landmark are observed.
 - The sensor noise is bounded in the form of intervals, i.e. $[\nu_{i,k_i}]$.

Summary

- Robot mapping using Interval Methods solves some shortcomings of statistical methods.
- The use of contractors can prove the enclosure of the mapping solution.
- Conditions for convergence of the approach to the true map in higher dimensions is still work in progress.

Summary

- Robot mapping using Interval Methods solves some shortcomings of statistical methods.
- The use of contractors can prove the enclosure of the mapping solution.
- Conditions for convergence of the approach to the true map in higher dimensions is still work in progress.

Summary

- Robot mapping using Interval Methods solves some shortcomings of statistical methods.
- The use of contractors can prove the enclosure of the mapping solution.
- Conditions for convergence of the approach to the true map in higher dimensions is still work in progress.

Motivation

Mobile Robot Mapping using Interval Methods
Applications
Discussion
Summary

Questions...