Guaranteed viability kernel enclosure SWIM 2015

<u>Dominique Monnet</u>, Luc Jaulin, Jordan Ninin <u>LAB-STICC</u> / <u>ENSTA-Bretagne</u>

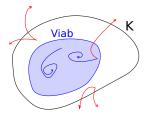
What is viability?

System \mathcal{S} defined by:

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}),$$
 $f: \mathbb{R}^n \times \mathbb{U} \to \mathbb{R}^n$

A state ${\bf x}$ is viable if at least one evolution of ${\cal S}$ from ${\bf x}$ can stay indefinitely in a set of constraint ${\mathbb K}$.

The viability kernel of \mathbb{K} under S noted $Viab_{S}(\mathbb{K})$ is the set that contains every viable state.



Why viability?

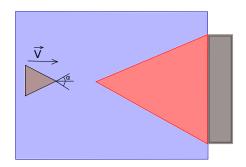
Example: management of renewable resources, economics, robotics,...

Is it possible to avoid the wall?

Why viability?

Example: management of renewable resources, economics, robotics,...

Is it possible to avoid the wall?



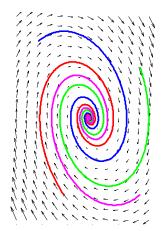
- Attraction domains
- 2 Capture basin
- 3 Example
- 4 Conclusion

Plan

- Attraction domains
- 2 Capture basin
- 3 Example
- 4 Conclusion

Attraction domain of a system

Attraction domains of $\mathcal S$ are interesting for viability, if they are located in $\mathbb K$.



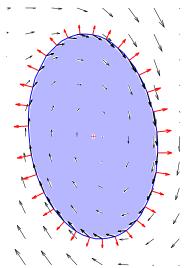
Theorem on viability

Theorem

Let a dynamical system $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$, \mathbb{U} the set of possible control and \mathbb{K} a closed subset of \mathbb{R}^n .

Let $L \in C^1(\mathbb{K}, \mathbb{R})$, and $\mathbb{B}_L(r) = \{ \mathbf{x} \in \mathbb{R}^n | L(\mathbf{x}) \leq r \}$, with $r \in \mathbb{R}^+$. If $\mathbb{B}_L(r) \subseteq \mathbb{K}$ and $\forall \mathbf{x} \in \mathbb{B}_L(r), \exists \mathbf{u} \in \mathbb{U}$ such as $\langle f(\mathbf{x}, \mathbf{u}), \nabla L(\mathbf{x}) \rangle \leq 0$, then $\mathbb{B}_L(r)$ is viable in \mathbb{K} .

Illustration of the theorem



Lyapunov function

Definition

A function $L: \mathbb{R}^n \to \mathbb{R}$ is said to be of Lyapunov for the dynamical system $\dot{\mathbf{x}} = f(\mathbf{x})$ if:

- **1** $L(\mathbf{0}) = 0.$
- $2 \forall \mathbf{x} \in \mathbb{N}, L(\mathbf{x}) \geq 0.$

Where \mathbb{N} is a subset of \mathbb{R}^n and $\mathbf{0} \in \mathbb{N}$.

How to find a lyapunov function

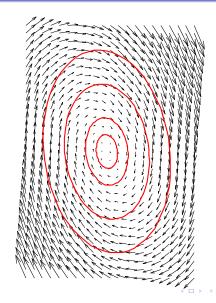
We choose a particular control $\mathbf{u} \in \mathbb{U}$. $\mathcal{S}_{\mathbf{u}}$: $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$ is an autonomous system.

 \mathbf{x}^* an equilibrium point of $\mathcal{S}_{\mathbf{u}} \iff f(\mathbf{x}^*, \mathbf{u}) = \mathbf{0}$.

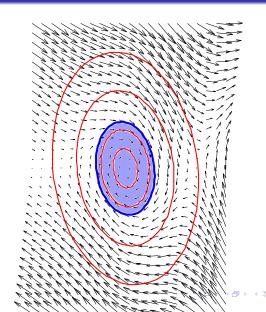
- Linearize $S_{\mathbf{u}}$ around \mathbf{x}^* , we get $S_{\mathbf{u}}^{\mathbf{x}^*}$ defined by $\dot{\tilde{\mathbf{x}}} = A\tilde{\mathbf{x}}, \tilde{\mathbf{x}} = \mathbf{x} \mathbf{x}^*$
- solve $A^TP + PA = -I$, where P is the unknown amount
- check whether P is positive definite
- If P is positive definite, then $\frac{1}{2}\tilde{\mathbf{x}}^T P \tilde{\mathbf{x}}$ is a Lyapunov function for the linear system, and \mathbf{x}^* is stable.

If we do not find a Lyapunov function for $\mathcal{S}_{\mathbf{u}}^{\mathbf{x}^*}$, we compute the linear system \mathcal{S}_{ctrl} for which \mathbf{x}^* is a stable equilibrium point.

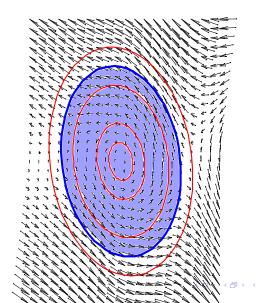
Lyapunov function and linearized system $\mathcal{S}_{\mathbf{u}}^{\mathbf{x}^*}$



Lyapunov function and autonomous system $\mathcal{S}_{\boldsymbol{u}}$



Lyapunov function and system ${\mathcal S}$



Viable set characterization algorithm

- ullet Choose a control $oldsymbol{u} \in \mathbb{U}$
- Find $\mathbf{x}^* \in \mathbb{K}$
- Linearize $S_{\mathbf{u}}$ around \mathbf{x}^* .
- ullet Try fo find a Lyapunov function of $\mathcal{S}_{\mathbf{u}}^{\mathbf{x}^*}$
- ullet If no function found, compute \mathcal{S}_{ctrl}
- ullet Try to find a Lyapunov function for \mathcal{S}_{ctrl}
- Find $r \in \mathbb{R}^+$ such as conditions of the theorem are met

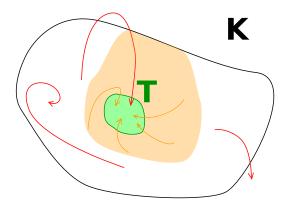
 $\mathbb E$ is the union of viable sets found around equilibrium points of $\mathcal S$ in $\mathbb K.$

Plan

- Attraction domains
- 2 Capture basin
- 3 Example
- 4 Conclusion

Capture basin problem

The capture basin of a set $\mathbb{T} \subset \mathbb{K}$ viable in \mathbb{K} noted $Capt_S(\mathbb{K}, \mathbb{T})$ is composed of every states \mathbf{x} such as \mathcal{S} can reach \mathbb{T} from \mathbf{x} in a finite time without leaving \mathbb{K} .



Theorem on the viability of a capture basin

Theorem

Let S a dynamical system, \mathbb{K} a closed subset of the state space of S and $\mathbb{T} \subset \mathbb{K}$.

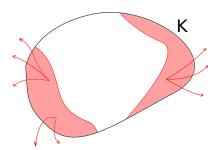
If \mathbb{T} is viable in \mathbb{K} ,

then $Capt_{\mathcal{S}}(\mathbb{K}, \mathbb{T})$ is viable in \mathbb{K} .

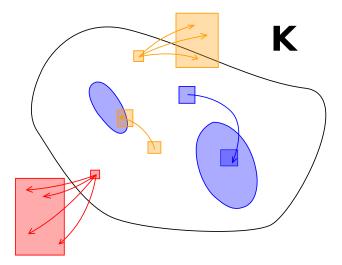
The set $\mathbb{V}_{in} = \mathbb{T} \cup Capt_{\mathcal{S}}(\mathbb{K}, \mathbb{T})$ is an under approximation of $Viab_{\mathcal{S}}(\mathbb{K})$.

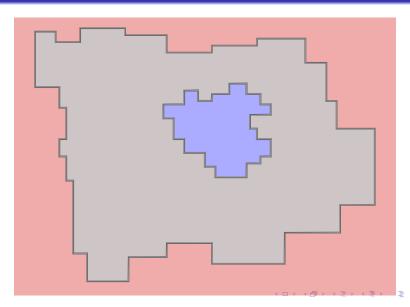
Over approximation of the viability kernel

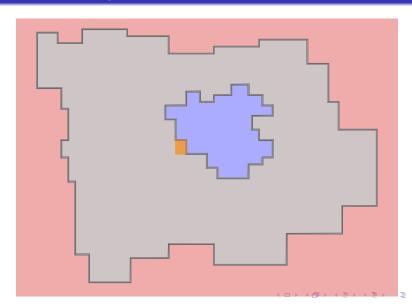
- We try to find an over approximation of $Viab_{\mathcal{S}}(\mathbb{K})$ to get an enclosure of $Viab_{\mathcal{S}}(\mathbb{K})$.
- If $\forall \mathbf{u} \in \mathbb{U}$, \mathcal{S} cannot stay in \mathbb{K} from a state $\mathbf{x} \in \mathbb{K}$, then $\mathbf{x} \notin Viab_{\mathcal{S}}(\mathbb{K})$.

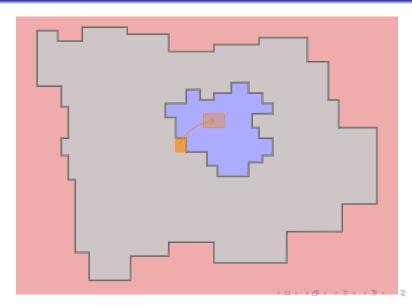


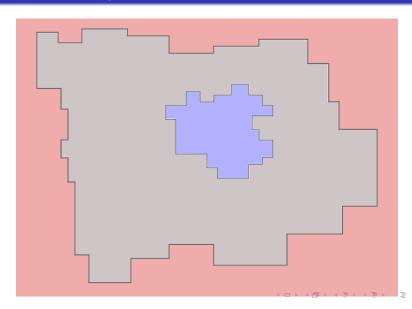
Guaranteed integration of a box [Chaputot, 2015]

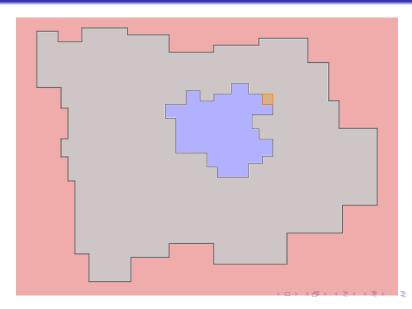


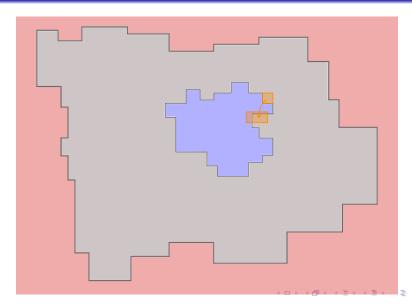


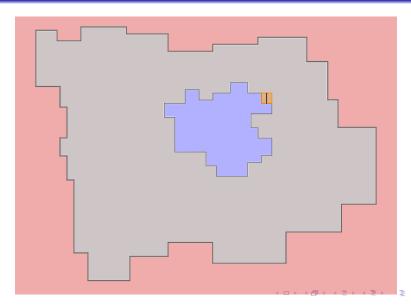


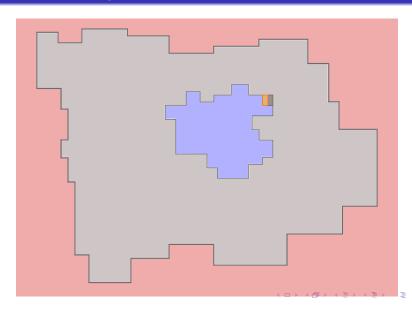


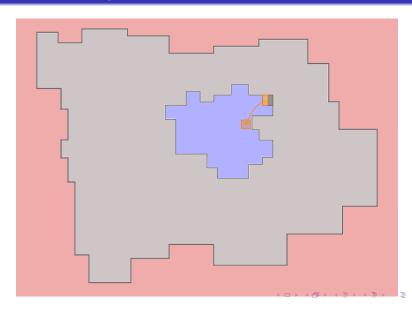


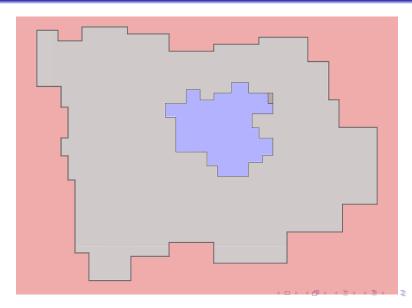


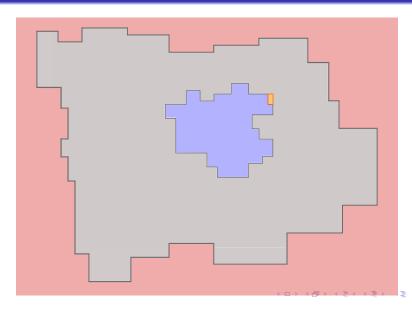


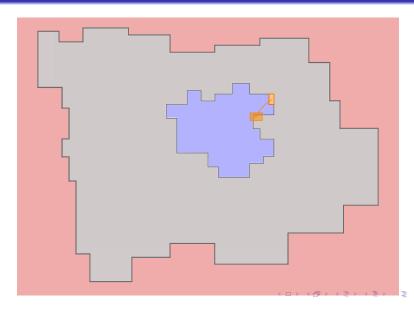


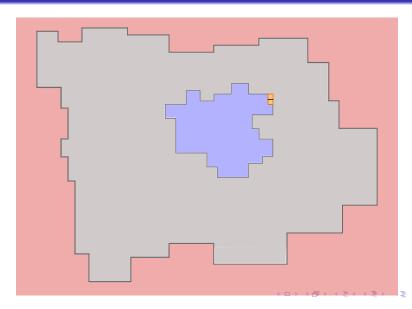


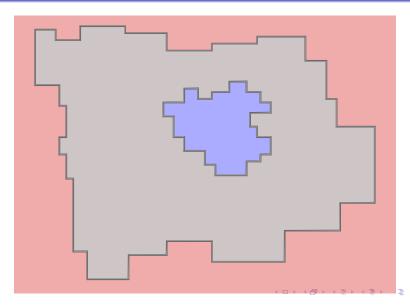


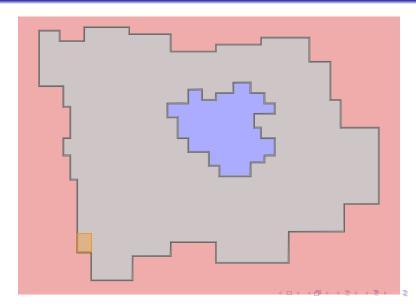


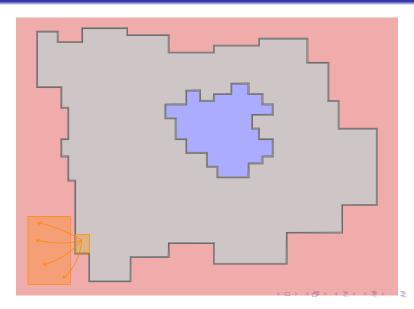


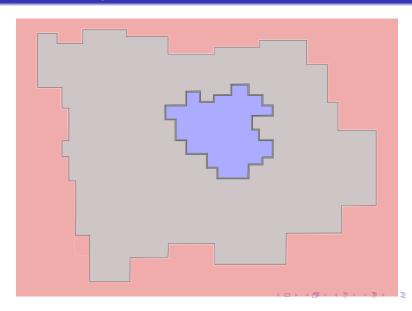


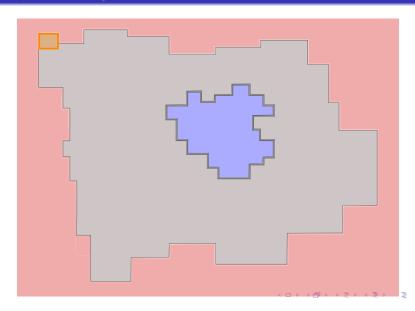


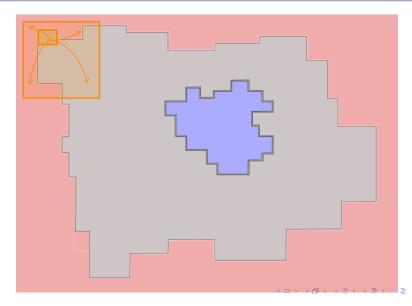


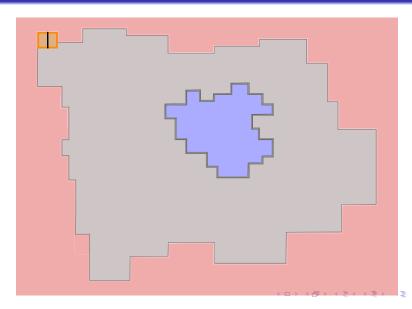












Plan

- Attraction domains
- 2 Capture basin
- 3 Example
- 4 Conclusion

Car on the hill problem

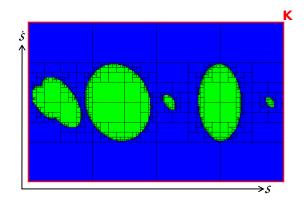
- The landscape is represented by a parametric function g(s)
- State vector: $\mathbf{x} = \begin{pmatrix} s \\ \dot{s} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- Evolution function:

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = -9.81g'(x_1) - alphax_2 + u \end{cases}$$

$$u \in [-2, 2]$$

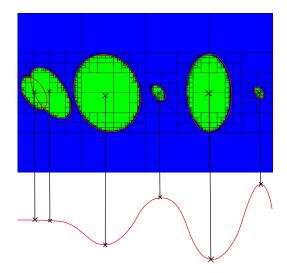
• The car must stay on the landscape, i.e $s \in [0, 12]$

Results of viable set characterization algorithm

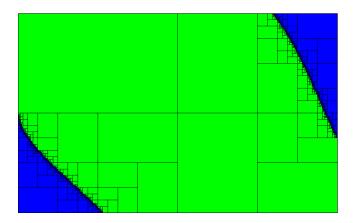


Computation time ≈ 1 minute.

Results explained

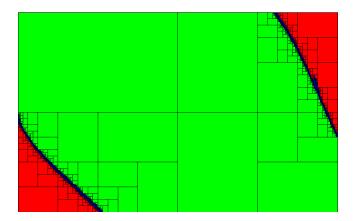


Results of under approximation algorithm



Computation time ≈ 20 minutes

Results of over approximation algorithm



Computation time ≈ 10 minutes

Plan

- Attraction domains
- 2 Capture basin
- 3 Example
- 4 Conclusion

Conclusion

- We are able to deal with many viability problems in a guaranteed way.
- The system must have at least one equilibrium point
- We can deal with 2D problems, but under and over approximation algorithms are not efficient for higher dimensional problems