

Parameter identification with hybrid systems in a bounded-error framework

Moussa MAIGA, <u>Nacim RAMDANI</u>, & Louise TRAVE-MASSUYES Université d'Orléans, Bourges, and LAAS CNRS Toulouse, France.

SWIM 2015, Praha 9-11 June 2015

Extend to hybrid dynamical systems set-membership approaches for model-based FDI

Hybrid dynamical systems

Set membership estimation

- Hybrid reachability approach
- Example
- Research directions

- Interaction discrete + continuous dynamics
- Safety-critical embedded systems
- Networked
 - 4 autonomous systems

Modelling → hybrid automaton (Alur, et al. 1995)

- Non-linear continuous dynamics
- Bounded uncertainty

Discrete dynamics

$$\mathcal{A} \ni e: (q \rightarrow q') = (q, \text{guard}, \sigma, \rho, q'),$$

guard(e): $\gamma_e(\mathbf{x}(t), \mathbf{p}, t) = 0,$

 $t_0 \leq t \leq t_N$, $\mathbf{x}(t_0) \in \mathbb{X}_0 \subseteq \mathbb{R}^n$, $\mathbf{p} \in \mathbb{P}$

Example : the bouncing ball

Example : the bouncing ball

Example : the bouncing ball

Estimation of Hybrid State

■ Modelling → hybrid automaton

- Nonlinear continuous dynamics
- Nonlinear guards sets
- Nonlinear reset functions
- Bounded uncertainty

Estimation of Hybrid State

■ Modelling → hybrid automaton

- Nonlinear continuous dynamics
- Nonlinear guards sets
- Nonlinear reset functions
- Bounded uncertainty
- Faults as discrete modes !!

Estimation of Hybrid State

■ Modelling → hybrid automaton

- Nonlinear ...
- Bounded uncertainty

Faults as a mode !!

FDI → State Estimation → reconstruct system variables

- switching sequence
- continuous variables

Hybrid dynamical systems

Set membership estimation

Hybrid reachability approach

Example

Research directions

Classical Estimation

Classical estimation is probabilistic

Yield valid results only if

- Perturbations, errors and model uncertainties with statistical properties known a priori
- Model structure is correct, no modeling errors

Unknown but bounded-error framework

Hypothesis

Uncertainties and errors are bounded with known prior bounds

A set of feasible solutions

$$\mathbb{S} = \{\mathbf{p} \in \mathbb{P} | \mathbf{f}(\mathbf{p}) \in \mathbb{Y}\} = \mathbf{f}^{-1}(\mathbb{Y}) \cap \mathbb{P}$$

State estimation with continuous systems

- Interval observers
 - (Moisan, et al. 2009), (Meslem & Ramdani, 2011), (Raïssi, et al., 2012), (El Thabet, et al. 2014)

State estimation with continuous systems

- Prediction Correction / Filtering approaches
 - (Raïssi et al., 2005), (Meslem, et al, 2010),
 (Milanese & Novara, 2011), (Kieffer & Walter, 2011) ...

Set inversion. Parameter estimation

Branch-&-bound, branch-&-prune, interval contractors ...
 (Jaulin, et al. 93) (Raïssi et al., 2004)

$$\mathbb{S} = \{ \mathbf{z} \in \mathcal{Z}, \ | \ f(\mathbf{z}) \in \mathcal{Y} \} \quad \rightarrow \underline{\mathbb{S}} \subseteq \mathbb{S} \subseteq \overline{\mathbb{S}}$$

 $\begin{array}{ll} f([\mathbf{z}]) \subseteq \mathcal{Y} & \Rightarrow [\mathbf{z}] \subseteq \underline{\mathbb{S}} : \text{inner approximation} \\ f([\mathbf{z}])) \cap \mathcal{Y} = \emptyset & \Rightarrow [\mathbf{z}] \nsubseteq \overline{\mathbb{S}} : \text{outer approximation} & \Rightarrow [\mathbf{z}] \subseteq \mathcal{Z} \backslash \overline{\mathbb{S}} \\ \text{otherwise} & \text{partition} \ldots \end{array}$

State estimation with Continuous systems

- Interval observers
- Prediction-correction / Filtering approaches
 - Reachability + Set inversion

State estimation with Hybrid systems

- Piecewise affine systems (Bemporad, et al. 2005)
- ODE + CSP (Goldsztejn, et al., 2010)
- Nonlinear case (Benazera & Travé-Massuyès, 2009)
- SAT mod ODE (Eggers, et al., 2012) (Maïga, et al. 2015).

Hybrid dynamical systems

Set membership estimation

Hybrid reachability approach

Example

Research directions

Reachability based approach

Predictor-Corrector approach for hybrid systems

Reachability based approach

Predictor-Corrector approach for hybrid systems

Guaranteed event detection & localization

• An interval constraint propagation approach

•(Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011)

Guaranteed event detection & localization

• An interval constraint propagation approach

•(Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011)

Time grid \rightarrow $t_0 < t_1 < t_2 < \cdots < t_N$

Compute $[\underline{t}^{\star}, \overline{t}^{\star}] \times [\mathcal{X}_{j}^{\star}]$ 20

Guaranteed event detection & localization

An interval constraint propagation approach

•(Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011)

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$

Guaranteed event detection & localization

An interval constraint propagation approach

•(Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011)

Time grid \rightarrow $t_0 < t_1 < t_2 < \cdots < t_N$

20

Guaranteed event detection & localization

An interval constraint propagation approach

•(Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011)

Time grid \rightarrow $t_0 < t_1 < t_2 < \cdots < t_N$

[x](t) = Interval Taylor Series (ITS)(t, [x_j], [x̃_j])
 γ([x](t)) = 0

 $\Rightarrow \gamma \circ \mathsf{ITS}(t, \mathbf{x}_j, [\tilde{\mathbf{x}}_j]) \rightarrow \psi(t, \mathbf{x}_j)$

Solve CSP ($[t_j, t_{j+1}] \times [\mathbf{x}_j], \psi(.,.) \ni 0$)

Detecting and localizing events

Improved and enhanced version. A faster version.

•(Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014)

Detecting and localizing events

- Improved and enhanced version. A faster version.
 - •(Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014)

Detecting and localizing events

Improved and enhanced version

•(Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014)

Detecting and localizing events

Improved and enhanced version

•(Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014)

24

Detecting and localizing events

Improved and enhanced version

•(Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014)

Bouncing ball in 2D.

Detecting and localizing events

Improved and enhanced version

•(Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014)

Bouncing ball in 2D.

Parameter estimation with hybrid systems

Branch-&-bound, branch-&-prune, interval contractors ...
 (Eggers, Ramdani et al., 2012), (Maïga, Ramdani et al., 2015)

$$S = \{ \mathbf{p} \in \mathbb{P}_0 | \quad (\forall t \in [t_0, T_{end}], \\ flow(q) \land Inv(q) \land guard(e)) \\ \land \forall t_j \in \{t_1, t_2, ..., T_n\}, g_q(x, \mathbf{p}, t) \in \mathbb{Y}_j \}$$

Parameter estimation with hybrid systems

Branch-&-bound, branch-&-prune, interval contractors ...
 (Eggers, Ramdani et al., 2012), (Maïga, Ramdani et al., 2015)

$$S = \{ \mathbf{p} \in \mathbb{P}_0 | \quad (\forall t \in [t_0, T_{end}], \\ flow(q) \land Inv(q) \land guard(e)) \\ \land \forall t_j \in \{t_1, t_2, ..., T_n\}, g_q(x, \mathbf{p}, t) \in \mathbb{Y}_j \}$$

$$\underline{\mathbb{S}} \subseteq \mathbb{S} \subseteq \underline{\mathbb{S}} \cup \Delta \mathbb{S} \equiv \overline{\mathbb{S}}$$

Need an inclusion test!

26

Zonotope
$$Z = c \oplus RB^p$$

Strip $S_j = \{x \in \mathbb{R}^n | |\eta^\top x - d_j| \le \sigma_j\} \equiv [y_j]$

Zonotope support strip
$$S_{\mathbf{Z}} = \{x \in \mathbb{R}^n | q_d \leq \eta^\top x \leq q_u\}$$

 $q_u = \min_{x \in \mathbf{Z}} \eta^\top x = \eta^\top c - \|R^\top \eta\|_1$
 $q_d = \max_{x \in \mathbf{Z}} \eta^\top x = \eta^\top c + \|R^\top \eta\|_1$

Theorem [(Vicino and Zappa (1996))]

$$Z \cap \mathcal{S}_j = \emptyset \iff (q_d \ge d_j - \sigma_j) \land (q_u \le d_j + \sigma_j)$$
$$Z \subseteq \mathcal{S}_j \iff (q_u < d_j - \sigma_j) \lor (q_d > d_j + \sigma_j)$$

Zonotope
$$Z = c \oplus RB^p$$

Strip $S_j = \{x \in \mathbb{R}^n | |\eta^\top x - d_j| \le \sigma_j\} \equiv [y_j]$

Zonotope support strip
$$S_{\mathsf{Z}} = \{x \in \mathbb{R}^n | q_d \leq \eta^\top x \leq q_u\}$$

 $q_u = \min_{x \in \mathsf{Z}} \eta^\top x = \eta^\top c - \|R^\top \eta\|_1$
 $q_d = \max_{x \in \mathsf{Z}} \eta^\top x = \eta^\top c + \|R^\top \eta\|_1$

Theorem [(Vicino and Zappa (1996))]

$$\begin{aligned} \mathsf{Z} \cap \mathcal{S}_j &= \emptyset \iff (q_d \geq d_j - \sigma_j) \land (q_u \leq d_j + \sigma_j) \\ \mathsf{Z} \subseteq \mathcal{S}_j \iff (q_u < d_j - \sigma_j) \lor (q_d > d_j + \sigma_j) \end{aligned}$$

Frontier of the reachable set = union of zonotopes

(a) Test: is true

Frontier of the reachable set = union of zonotopes

Frontier of the reachable set = union of zonotopes

Outline

- Hybrid dynamical systems
- Set membership estimation
- Hybrid reachability approach
- **Example**
- Research directions

Parameter identification

Hybrid Mass-Spring

• Velocity-dependent damping. Mode switching driven by velocity.

30

Parameter identification

Hybrid Mass-Spring

- case 1 : Parameters acting on continuous dynamics.
 - CPU time approx. 140 mn!

Parameter identification

Hybrid Mass-Spring

• case 2 : parameters acting on discrete transition.

• CPU time approx. 40 mn

- Hybrid dynamical systems
- Set membership estimation
- Hybrid reachability approach
- Example
- Research directions

Research directions

Contractors for hybrid dynamical systems

• To build upon a hybrid reachability approach

Effective methods for set membership estimation

- SM parameter estimation ...
- SM hybrid state estimation of nonlinear hybrid systems

Combine with decision making for FDI

Application to actual hybrid systems

Focused References

- N. Ramdani and N. S.Nedialkov, Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint propagation techniques, Nonlinear Analysis: Hybrid Systems, 5(2), pp.149-162, 2011.
- A.Eggers, N.Ramdani, N.S.Nedialkov, M.Fränzle, Set-Membership Estimation of Hybrid Systems via SAT Mod ODE. in IFAC SYSID 2012. pp.440-445
- M. Maïga, N. Ramdani, L. Travé-Massuyès, A fast method for solving guard set intersection in nonlinear hybrid reachability, in IEEE CDC 2013, pp.508-513.
- M. Maïga, C. Combastel, N. Ramdani, L. Travé-Massuyès, Nonlinear hybrid reachability using set integration and zonotope enclosures. in ECC 2014, pp.234-239.
- M. Maïga, N. Ramdani, L. Travé-Massuyès, C. Combastel, A CSP versus a zonotope-based method for solving guard set intersection in nonlinear hybrid reachability, Mathematics in Computer Science, 2014.
- M. Maïga, N. Ramdani, L. Travé-Massuyès, Robust fault detection in hybrid systems using setmembership parameter estimation, in IFAC SafeProcess 2015, Paris.