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Introduction

Problems of feedback target control for linear and bilinear dynamical
discrete-time systems under uncertainties and state constraints are considered.

There are known approaches to solving problems of this kind, including ones for
differential systems, based on construction of solvability tubes (Krasovskii’s
bridges).

Since practical construction of such tubes may be cumbersome, different
numerical methods were devised, including methods based on approximations
of sets by polytopes with a large number of vertices. Other techniques are
based on estimates of sets by domains of some fixed shape such as ellipsoids
and parallelepipeds. Such methods are ideologically close to interval analysis.
Their main advantage is that they allow to find solutions by rather simple
means. More accurate approximations may be obtained by using the whole
families of such simple estimates (as proposed by A.B.Kurzhanski).

In particular, constructive computation schemes for solving the feedback target
control problems for linear systems by ellipsoidal techniques were proposed and
then expanded to a polyhedral technique.

Here we continue the development of polyhedral control synthesis for
discrete-time systems using parallelepipeds and papallelotopes as basic sets.
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Definitions of parallelepiped, parallelotope and zone

Parallelepiped in R
n: (P = {pi} ∈ R

n×n, det P 6= 0)

P = P(p ,P , π) = {x | x = p +
∑n

i=1 piπiξi , |ξi |≤1}.

Parallelotope in R
n: (P̄ = {p̄i} ∈ R

n×r , r ≤ n)

P = P[p , P̄ ] = {x | x = p +
∑r

i=1 p̄iξi , |ξi |≤1}.

Zone: intersection of m ≤ n strips: (S={s i}, rankS=m)

S = S(c ,S , σ,m) =
m
⋂

i=1
Σi , Σi = Σ(ci , s

i , σi ) = {x | |s i⊤x−ci |≤σi}.

Each parallelepiped is a parallelotope:

P(p ,P , π)=P[p, P̄ ], P̄=P ·diag π.

Each parallelotope with r = n, det P̄ 6= 0,

and each zone with m = n are parallelepipeds.

p 
π

i

pi 
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Control discrete-time systems with uncertainties

x [k] = (A[k] + V [k] + U[k]) x [k−1] + B [k]u[k] + C [k]v [k], k=1, . . . ,N,

x [N] ∈ M (given target set).

U[k] ≡ 0, u[k] (controls) ∈ R[k] ⊂ R
nu , k=1, . . . ,N, or

U[k] (controls) ∈ U [k]={U∈R
n×n|Abs (U−Ũ[k])≤Û[k]}, u[k] ≡ 0.

v [k] (disrurbances) ∈ Q[k] ⊂ R
nv , k=1, . . . ,N,

V [k] (unknown matrices) ∈ V[k] = {V∈R
n×n|Abs (V−Ṽ [k])≤V̂ [k]}.

We presume:

R[k] = P[r [k], R̄ [k]], Q[k] = P[q[k], Q̄ [k]] (parallelotopes)

M=P(pθ,Pf , πf)=P[pf , P̄f ] (nondegenerate parallelepiped), det P̄f 6=0.

For the above system we consider the following cases:

(I) without uncertainty: V≡0, v is given (i.e., Ṽ≡V̂≡0, Q̄≡0);
(II) under uncertainty including the following two subcases:

(II,i) only additive uncertainty (V ≡ 0);
(II,ii) also matrix uncertainty (V 6≡ 0).

x [k] ∈ Y[k] (state constraints), k=0, . . . ,N−1 (Y[k] are zones).
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Problems

Problem 1 (for the case U[k] ≡ 0)

Let U[k] ≡ 0. For any i , 0≤i≤N−1, find a solvability set W[i ] and
a feedback control strategy u = u[k, x ] with u[k, x ] ∈ R[k] such
that each solution x [·] to

x [k]=(A[k]+V [k])x [k−1]+B [k]u[k, x [k−1]]+C [k]v [k], k=i+1, . . . ,N,

that start from any x [i ] ∈ W[i ] would reach the target set
(x [N] ∈ M) and satisfy state constraints x [k] ∈ Y[k] whatever are
admissible v [·] and V [·].

The function W[k], k=0, . . . ,N, is called a solvability tube W[·].

Solution for cases (I),(II,i) without matrix uncertainty (A.Vazhentsev):

W[k−1] = A[k]−1((W[k]−̇C [k]Q[k]) − B [k]R[k]) ∩ Y[k−1],

k = N, . . . , 1; W[N] = M;

u[k, x ] ∈ U [k, x ] = R[k] ∩ {u|B [k]u∈(W[k]−̇C [k]Q[k])−A[k]x}.
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Operations with sets

We deal with following operations with sets:

Minkowski’s sum: X 1 + X 2 = {y | y = x1 + x2, xk ∈ X k}.

Minkowski’s difference: X 1−̇X 2 = {y | y + X 1 ⊆ X 2}.

Intersection of sets: X 1 ∩ X 2.

External (internal) polyhedral estimate P for Q:

Q ⊆ P (P ⊆ Q).
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Problems (continuation)

Problem 2 (for the case U[k] ≡ 0)

Let U[k] ≡ 0. Find a polyhedral tube P−[·] that satisfies
P−[k] ⊆ Y[k], k=0, . . . ,N−1, and P−[N] = M,
and find a corresponding feedback control strategy u = u[k, x ] such
that u[k, x ] ∈ R[k] for x ∈ P−[k−1], k=1, . . . ,N, and each
solution x [·] to

x [k]=(A[k]+V [k])x [k−1]+B [k]u[k, x [k−1]]+C [k]v [k], k=1, . . . ,N,

with x [0] = x0 ∈ P−[0] would satisfy x [k] ∈ P−[k], k=1, . . . ,N,
whatever are admissible v [·] and V [·].

Introduce a family of such tubes P−[·].
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Problems (continuation)

Problem 3 (for the case u[k] ≡ 0)

Let u[k] ≡ 0. Find a polyhedral tube P−[·] that satisfies
P−[k] ⊆ Y[k], k=0, . . . ,N−1, and P−[N] = M,
and find a corresponding feedback control strategy U = U[k, x ]
such that U[k, x ] ∈ U [k] for x ∈ P−[k−1], k=1, . . . ,N, and each
solution x [·] to

x [k]=(A[k]+U[k, x [k−1]]+V [k])x [k−1]+C [k]v [k], k=1, . . . ,N,

with x [0] = x0 ∈ P−[0] would satisfy x [k] ∈ P−[k], k=1, . . . ,N,
whatever are admissible v [·] and V [·].

Introduce a family of such tubes P−[·].
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Primary polyhedral estimates for sets

Internal estimates for Minkowski’s sum Q = P1 + P2,
where P j = P[pj , P̄ j ], P̄1 ∈ R

n×n, P̄2 ∈ R
n×r :

P
−
Γ (Q) = P[p1 + p2, P̄1 + P̄2Γ], where parameter Γ ∈ Gr×n,

Gr×n = {Γ ∈ R
r×n | ‖Γ‖ ≤ 1} (‖Γ‖ = max1≤α≤r

∑n
β=1 |γ

β
α|).

P1,P2 (red),

Q = P1 + P2 (black),

P
−

Γi (Q), i = 1, 2 (green).

Minkowski’s difference Q = P1−̇P2:

Q = P[p1 − p2, P̄1 diag π∗], if π∗ ≥ 0; otherwise Q = ∅,
where π∗ = e − Abs ((P̄1)−1P̄2) e, e = (1, . . . , 1)⊤.
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Primary polyhedral estimates for sets

Internal estimates for Q =
⋂Υ

j=1 Σj , where Υ ≥ n+1:

P
−

p−,P−
(Q) can be constructed by explicit formulas

for fixed parameters p− (center) ∈ Q, P− (orientation matrix).

One of ways for calculating p− (when P− is fixed):

p− ∈ Argmax {volP−

p−,P−
(Q)| p−∈Q}

(using the Nelder-Mead simplex method).
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Polyhedral control synthesis in Problem 2 without matrix
uncertainty: way I (previous results)

Polyhedral analogue for the above relations for the solvability tube
W[k−1] = A[k]−1((W[k]−̇C [k]Q[k])−B [k]R[k]) ∩ Y[k−1]:

System of relations for polyhedral tubes P−[·] = P[p−[·], P̄−[·]]:

P−[k] = P
−

p−[k],P−[k]
(P0−[k] ∩ Y[k]), k=N−1, . . . , 0,

where P0−[·] = P[p0−[·], P̄0−[·]] satisfy the relations:

P0−[k−1] = A[k]−1
P
−

Γ[k]((P
−[k]−̇C [k]Q[k]) − B [k]R[k]),

k = N, . . . , 1; P−[N] = M.

Admissible parameters Γ[·], P−[·], p−[·]:
such that ‖Γ[k]‖ ≤ 1, det P−[k] 6= 0, p−[k] ∈ P0−[k] ∩ Y[k].

Control strategy:

u[k, x ] ∈ U−[k, x ] = R[k] ∩ {u|B [k]u∈P−[k]−̇C [k]Q[k]−A[k]x}.
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Polyhedral control synthesis in Problem 2: way II

System of relations for polyhedral tubes P−[·] = P[p−[·], P̄−[·]]:

P−[k] = P
−

p−[k],P−[k]
(P0−[k] ∩ Y[k]), k=N−1, . . . , 0,

where P0−[·] = P[p0−[·], P̄0−[·]] satisfy the relations:

p0−[k−1]=D[k]−1(p−[k]−B [k]r [k]−C [k]q[k]), D[k]=A[k]+Ṽ [k],

P̄0−[k−1]=D[k]−1(P̄−[k]diag (e−γ[k]−β[k])−B [k]R̄[k]Γ[k]),

γ[k] = (Abs (P̄−[k]−1C [k]Q̄[k]))e,

β[k]= max
z∈IE(P0−[k−1])

(Abs (P̄−[k]−1))V̂ [k]Abs z

(where IE(P ) denote vertices of P ), k=N, . . . , 1; p−[N]=pf , P̄−[N]=P̄f .

In fact, β[k] satisfies the system of equations: β[k] = H[k, β[k]].
For cases (I), (II,i) (i.e., without matrix uncertainty) β[k]=0.

Admissible parameters Γ[·], P−[·], p−[·]:
such that ‖Γ[k]‖ ≤ 1, det P−[k] 6= 0, p−[k] ∈ P0−[k] ∩ Y[k].
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Polyhedral control synthesis in Problem 2

Control strategy:

u[k, x ] = r [k]+R̄ [k]Γ[k]P̄0−[k−1]−1(x−p0−[k−1]), k=1, . . . ,N.

Theorem 1

Let Γ[·], P−[·], p−[·] be arbitrary admissible parameters and the
above system has a solution (p0−[·], P̄0−[·], p−[·], P̄−[·]) such that
we obtain e−γ[k]−β[k] > 0, det P̄−[k] 6= 0 for k=N, . . . , 1. Then
P−[·] and u[·, ·] give a solution to Problem 2.

If ‖H[k, β1] − H[k, β2]‖ ≤ L[k]‖β1 − β2‖∞, where L[k] ∈ (0, 1),
then the equation β = H[k, β] has a solution β = β[k] ≥ 0, which
can be found by the iteration βl+1 = H[k, βl ], l=0, 1, . . ., β0 = 0.

Let the discrete-time system is obtained by the Euler
approximations of some differential equations: A[k]=I+hNA(tk−1),
B [k]=hNB(tk−1), R[k]=R(tk−1), . . ., tk=khN∈[0, θ], hN=θN−1.
Then we have L[k]<1 and e−γ[k]−β[k] > 0 for a fixed k

if det P̄−[k]6=0 and hN is sufficient small. 13 / 23



Example 1: (without uncertainty and state constr.), n=2
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External estimates for W[0] and W[·], and the target set.
Several cross-sections P

−[0] and some tube P
−[·]

(they also are internal estimates for W[0], W[·]), and controlled trajectories.
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Example 1: case (II,ii) with state constraints, n=2
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Several cross-sections P
−[0], some polyhedral tube P

−[·], several

cross-sections P
−[k] for this P

−[·], and controlled trajectories.

Data:

A ≡ I + τ

[

0 1
−8 0

]

, Ṽ ≡ 0, V̂ ≡ τ ·

[

0 0
0.1 0

]

, B ≡ C ≡ τ · I ,

R ≡ P(0, I , (0, 1)⊤), M = P((−0.5, 0)⊤, I , (0.5, 0.5)⊤),

Q ≡ P(0, I , (0.2, 0)⊤), τ = θ/N , θ = 2, N=200.

State constraints: |x1 + 0.2| ≤ 0.8, |x2| ≤ 2.1.
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Polyhedral control synthesis in Problem 3

System of relations for polyhedral tubes P−[·] = P[p−[·], P̄−[·]]:

P−[k] = P
−

p−[k],P−[k]
(P0−[k] ∩ Y[k]), k=N−1, . . . , 0,

where P0−[·] = P [p0−[·], P̄0−[·]] satisfy the relations:

p0−[k−1]=D[k]−1(p−[k]−C [k]q[k]), D[k]=A[k]+Ũ[k]+Ṽ [k],

P̄0−[k−1] = H[k, P̄0−[k−1]], k = N, . . . , 1,

H[k,P ] = (D[k] − diag α[k,P ; J[k]])−1P̄−[k]diag (e − β[k,P ] − γ[k]),

α[k,P ; J[k]], β[k,P ], γ[k] are given by explicit formulas.

p−[N]=pf , P̄−[N]=P̄f .

Here P = P̄0−[k−1] satisfies the system of equations P = H [k , P].
Admissible parameters: J[·], where J[k ]={j1[k ], . . . , jn[k ]} are arbitrary

permutations of numbers {1, . . . , n},

and P−[·], p−[·] such that detP−[k ] 6= 0, p−[k ] ∈ P0−[k ] ∩ Y[k ].

Control strategy:

U[k, x ] x=Ũ[k] x−diag α[k, P̄0−[k−1]; J[k]] (x−p0−[k−1]), k=1, . . . ,N.
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Polyhedral control synthesis in Problem 3

Theorem 2

Let the above system has a solution (p0−[·], P̄0−[·], p−[·], P̄−[·])
such that we obtain det P̄−[k] 6= 0 and e−β[k, P̄−[k−1]]−γ[k] ≥ 0
for k = N, . . . , 1. Then P−[·] and U[·, ·] give a particular solution
to Problem 3.

Let the discrete-time system be obtained by the Euler approximations of

some differential equations. Let, for a fixed k , det P̄−[k ] 6= 0 and the

time step hN be sufficient small.

Then the above operator H [k , P] is contractive, and, therefore, the

equation P = H [k , P] has a solution P = P̄0−[k−1], which can be found

by the simple iteration P l+1 = H [k , P l ], l = 0, 1, . . ., starting from

P0 = P̄−[k ]. Also, we have e−β[k , P̄0−[k−1]]−γ[k ] > 0.
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Example 2: case (II,ii) with state constraints, n=2
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The polyhedral tube P
−[·], several cross-sections P

−[k] for P−[·],

and the controlled trajectory.

Data:

A ≡ I + τ

[

−0.5 0
0 −0.5

]

, Ũ ≡ τ

[

0 2
0 0

]

, Û ≡ τ

[

0 1.5
0 0

]

,

Ṽ ≡ τ

[

0 0
2 0

]

, V̂ ≡ τ

[

0 0
0.1 0

]

, Q ≡ P(0, I , (0.05, 0)⊤), C ≡ τ · I ,

M = P((1, 1)⊤, I , (0.1, 0.1)⊤), τ = θ/N , θ = 0.25, N=200.

State constraints: |x1 − 0.75| ≤ 0.35
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Example 2: (under uncertainties and state constraints), n=2
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Case (I) without state constraints (SC); case (I) with SC; case (II,ii) with SC.
Cross-sections P

−[0] and controlled trajectories (top).

Several cross-sections P
−[k] and the controlled trajectories (bottom).
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Conclusion

Two types of problems of feedback terminal target control for linear
and bilinear discrete-time uncertain systems under state constraints
are considered, where controls appear either additively or in the
system matrix.

Polyhedral control synthesis using polyhedral (parallelotope-
valued) solvability tubes is elaborated.
The cases without uncertainties, with additive uncertainties, and

also with a matrix uncertainty are considered.

Nonlinear recurrent relations are presented for polyhedral
solvability tubes.

Control strategies, which can be calculated by explicit formulas
on the base of these tubes, are proposed.

The results of numerical simulations are presented.
Proposed polyhedral solvability tubes may turn out to be rather

conservative. But we can easily calculate them, while it is hard to

calculate maximal solvability tubes.

20 / 23



References

1 Anan’evskii, I.M., Anokhin, N.V., Ovseevich, A.I.: Synthesis of a Bounded
Control for Linear Dynamical Systems Using the General Lyapunov
Function. Dokl. Math. 82 (2), 831–834 (2010)

2 Chernousko, F.L.: State Estimation for Dynamic Systems. CRS Press,
Boca Raton (1994)

3 Daryin, A.N., Kurzhanski, A.B.: Parallel algorithm for calculating the
invariant sets of high-dimensional linear systems under uncertainty.
Comput. Math. Math. Phys. 53 (1), 34–43 (2013)

4 Filippova, T.: Differential equations of ellipsoidal state estimates in
nonlinear control problems under uncertainty. Discrete Contin. Dyn. Syst.
2011, Dynamical systems, differential equations and applications. 8th
AIMS Conference, Suppl. vol. I, 410–419 (2011)

5 Gusev, M.I.: External Estimates of the Reachability Sets of Nonlinear
Controlled Systems. Autom. Remote Control 73 (3), 450–461 (2012)

6 Ivlev, R. S., Sokolova, S. P.: Construction of a vector control of a
multidimensional intervally specified plant. (Russian) Vychisl. Tekhnol. 4
(4), 3–13 (1999)

7 Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis
with Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer-Verlag, London (2001)

21 / 23



References

8 Kostousova, E.K.: Control Synthesis via Parallelotopes: Optimization and
Parallel Computations. Optim. Methods Softw. 14 (4), 267–310 (2001)

9 Kostousova, E.K.: On polyhedral estimates in problems of the synthesis of
control strategies in linear multistep systems. (Russian). In: Algorithms
and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel.,
Inst. Mat. Mekh., Ekaterinburg, vol.9, 84–105 (2006)

10 Kostousova, E.K.: On the polyhedral method of solving problems of
control strategy synthesis. (Russian). Trudy Instituta Matematiki i
Mekhaniki UrO RAN 20 (4), 153–167 (2014)

11 Krasovskii, N.N., Subbotin, A.I.: Positional Differential Games. (Russian).
Nauka, Moscow (1974)

12 Kuntsevich, V.M., Kurzhanski, A.B.: Calculation and Control of
Attainability Sets for Linear and Certain Classes of Nonlinear Discrete
Systems. J. Automation and Inform. Sci. 42 (1), 1–18 (2010)

13 Kurzhanskii, A. B., Mel’nikov, N. B.: On the Problem of the Synthesis of
Controls: the Pontryagin Alternative Integral and the Hamilton-Jacobi
Equation. Sb. Math. 191 (5-6), 849–881 (2000)

22 / 23



References

14 Kurzhanski, A.B., Nikonov, O.I.: On the Problem of Synthesizing Control
Strategies. Evolution Equations and Set-Valued Integration. Soviet Math.
Doklady 41 (2), 300–305 (1990)
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