
Validated Explicit and Implicit Runge-Kutta Methods

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier
U2IS, ENSTA ParisTech

8th Small Workshop on Interval Methods, Praha
June 11, 2015



Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0,T ]

ẏ = f (y) with y(0) = y0

IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz in y
but for our purpose we suppose f smooth enough i.e., of class Ck

Goal of numerical integration
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
I Compute a sequence of values: y0, y1, . . . , yn such that

∀i ∈ [0, n], yi ≈ y(ti ; y0) .

I s.t. yn+1 ≈ y(tn + h; yn) with an error O(hp+1) where
I h is the integration step-size
I p is the order of the method
I true with localization assumption i.e., yn = y(tn; y0).

2 / 26



Validated solution of IVP for ODE

Goal of validated numerical integration
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
I Compute a sequence of values: [y0], [y1], . . . , [yn] such that

∀i ∈ [0, n], [yi ] 3 y(ti ; y0) .

A two-step approach

I Exact solution of ẏ = f (y(t)) with
y(0) ∈ Y0

I Safe approximation at discrete time instants
I Safe approximation between time instants

3 / 26



State of the art

Taylor methods
They have been developed since 60’s (Moore, Lohner, Makino and Berz, Rhim,
Jackson and Nedialkov, etc.)

I prove the existence and uniqueness: high order interval Picard-Lindelöf
I works very well on various kinds of problems:

I non stiff and moderately stiff linear and non-linear systems,
I with thin uncertainties on initial conditions
I with (a writing process) thin uncertainties on parameters

I very efficient with automatic differentiation techniques
I wrapping effect fighting: interval centered form and QR decomposition
I many software: AWA, COSY infinity, VNODE-LP, CAPD, etc.

Some extensions
I Taylor polynomial with Hermite-Obreskov (Jackson and Nedialkov)
I Taylor polynomial in Chebyshev basis (T. Dzetkulic)

4 / 26



One question

Why bother to define new methods?

5 / 26



Answer 1: it may fail

A chemical reaction simulated with VNODE-LP
ẏ = z

ż = z2 − 3
0.001 + y2

with
{

y(0) = 10
z(0) = 0

and t ∈ [0, 50]

Result: it is stuck around t = 1 with various order between 5 and 40.

With validated Lobatto-3C (order 4) method with tolerance 10−10, we get in
about 7.6s (Intel i7 3.4Ghz)

I width(y1(50.0)) = 7.67807 · 10−5

I width(y2(50.0)) = 2.338 · 10−6

Note: CAPD can solve this problem
6 / 26



Answer 2: there is no silver bullet

Numerical solutions of IVP for ODEs are produced by
I Adams-Bashworth/Moulton methods
I BDF methods
I Runge-Kutta methods
I etc.

each of these methods is adapted to a particular class of ODEs

Runge-Kutta methods
I have strong stability properties for various kinds of problems (A-stable,

L-stable, algebraic stability, etc.)
I may preserve quadratic algebraic invariant (symplectic methods)
I can produce continuous output (polynomial approximation of y(t))

Can we benefit these properties in validated computations?

7 / 26



Examples of Runge-Kutta methods

Single-step fixed step-size explicit Runge-Kutta method

e.g. explicit Trapzoidal method (or Heun’s method)1 is defined by:

k1 = f (tn, yn) , k2 = f (tn + 1hn, yn + h1k1)

yn+1 = yn + h
(

1
2k1 +

1
2k2

) 0
1 1

1
2

1
2

Intuition
I ẏ = t2 + y2

I y0 = 0.46
I h = 1.0

dotted line is the exact solution.

28 II. Numerical Integrators

II.1.1 Runge–Kutta Methods

In this section, we treat non-autonomous systems of first-order ordinary differential
equations

ẏ = f(t, y), y(t0) = y0. (1.1)

The integration of this equation gives y(t1) = y0 +
∫ t1

t0
f(t, y(t)) dt, and replacing

the integral by the trapezoidal rule, we obtain

y1 = y0 +
h

2

(
f(t0, y0) + f(t1, y1)

)
. (1.2)

This is the implicit trapezoidal rule, which, in addition to its historical impor-
tance for computations in partial differential equations (Crank–Nicolson) and in
A-stability theory (Dahlquist), played a crucial role even earlier in the discovery of
Runge–Kutta methods. It was the starting point of Runge (1895), who “predicted”
the unknown y1-value to the right by an Euler step, and obtained the first of the
following formulas (the second being the analogous formula for the midpoint rule)

k1 = f(t0, y0)

k2 = f(t0 + h, y0 + hk1)

y1 = y0 + h
2

(
k1 + k2

)

k1 = f(t0, y0)

k2 = f(t0 + h
2 , y0 + h

2 k1)

y1 = y0 + hk2.

(1.3)

These methods have a nice geometric interpretation (which is illustrated in the first
two pictures of Fig. 1.2 for a famous problem, the Riccati equation): they consist
of polygonal lines, which assume the slopes prescribed by the differential equation
evaluated at previous points.

Idea of Heun (1900) and Kutta (1901): compute several polygonal lines, each start-
ing at y0 and assuming the various slopes kj on portions of the integration interval,
which are proportional to some given constants aij ; at the final point of each poly-
gon evaluate a new slope ki. The last of these polygons, with constants bi, deter-
mines the numerical solution y1 (see the third picture of Fig. 1.2). This idea leads to
the class of explicit Runge–Kutta methods, i.e., formula (1.4) below with aij = 0
for i ≤ j.

1

1

1

1

1

1

t

y

y0

k1

1
2

k2

y1

expl. trap. rule

t

y

k1

y0 1
2

k2

y1

expl. midp. rule

t

y

y0

k1

a21
c2

a31 a32

c3

b1 b2 b3

1

k2

k3

y1

Fig. 1.2. Runge–Kutta methods for ẏ = t2 + y2, y0 = 0.46, h = 1; dotted: exact solution
1example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.

8 / 26



Examples of Runge-Kutta methods

Single-step fixed step-size implicit Runge-Kutta method

e.g. Runge-Kutta Gauss method (order 4) is defined by:

k1 = f
(

tn +

(
1
2 −
√

3
6

)
hn, yn + h

(
1
4k1 +

(
1
4 −
√

3
6

)
k2

))
(1a)

k2 = f
(

tn +

(
1
2 +

√
3

6

)
hn, yn + h

((
1
4 +

√
3

6

)
k1 +

1
4k2

))
(1b)

yn+1 = yn + h
(

1
2k1 +

1
2k2

)
(1c)

Remark: A non-linear system of equations must be solved at each step.

1example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.

8 / 26



Runge-Kutta methods

s-stage Runge-Kutta methods are described by a Butcher tableau
c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b′1 b′2 · · · b′s (optional)
i

j

Which induces the following recurrence:

ki = f
(

tn + cihn, yn + h
s∑

j=1
aijkj

)
yn+1 = yn + h

s∑
i=1

bi ki (2)

I Explicit method (ERK) if aij = 0 is i 6 j
I Diagonal Implicit method (DIRK) if aij = 0 is i 6 j and at least one aii 6= 0
I Implicit method (IRK) otherwise

9 / 26



Validated Runge-Kutta methods

Challenges
1. Computing with sets of values taking into account dependency problem and

wrapping effect;
2. Bounding the approximation error of Runge-Kutta formula.

Our approach
I Problem 1 is solved using affine arithmetic avoiding centered form and QR

decomposition
I Problem 2 is solved by bounding the Local truncation error of

Runge-Kutta method based on B-series

We focus on Problem 2 in this talk

10 / 26



Order condition for Runge-Kutta methods

Method order of Runge-Kutta methods and Local Truncation Error (LTE)

y(tn; yn−1)− yn = C · O
(
hp+1) with C ∈ R.

we want to bound this!

Order condition
This condition states that a method of Runge-Kutta family is of order p iff

I the Taylor expansion of the exact solution
I and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.

Consequence
The LTE is the difference of Lagrange remainders of two Taylor expansions
. . . but how to compute it?

11 / 26



A quick view of Runge-Kutta order condition theory2

Starting from y(q) = (f (y))(q−1) and with the Chain rule, we have

High order derivatives of exact solution y

ẏ = f (y)
ÿ = f ′(y)ẏ f ′(y) is a linear map

y(3) = f ′′(y)(ẏ, ẏ) + f ′(y)ÿ f ′′(y) is a bi-linear map
y(4) = f ′′′(y)(ẏ, ẏ, ẏ) + 3f ′′(y)(ÿ, ẏ) + f ′(y)y(3) f ′′′(y) is a tri-linear map

y(5) = f (4)(y)(ẏ, ẏ, ẏ, ẏ) + 6f ′′′(y)(ÿ, ẏ, ẏ)
...

+ 4f ′′(y)(y(3), ẏ) + 3f ′′(y)(ÿ, ÿ) + f ′(y)y(4)

...

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
12 / 26



A quick view of Runge-Kutta order condition theory2

Inserting the value of ẏ, ÿ, . . . , we have:

High order derivatives of exact solution y

ẏ = f
ÿ = f ′(f )

y(3) = f ′′(f , f ) + f ′(f ′(f ))

y(4) = f ′′′(f , f , f ) + 3f ′′(f ′f , f ) + f ′(f ′′(f , f )) + f ′(f ′(f ′(f )))
...

I Elementary differentials , are denoted by F (τ)

Remark a tree structure is made apparent in these computations

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
12 / 26



A quick view of Runge-Kutta order condition theory2

Rooted trees
I f is a leaf
I f ′ is a tree with one branch, . . . , f (k) is a tree with k branches

Example

f ′′(f ′f , f ) is associated to

f ′′
f f ′

f

Remark: this tree is not unique e.g., symmetry

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
12 / 26



A quick view of Runge-Kutta order condition theory2

Theorem 1 (Butcher, 1963)
The qth derivative of the exact solution is given by

y(q) =
∑

r(τ)=q

α(τ)F (τ)(y0) with r(τ) the order of τ i.e., number of nodes
α(τ) a positive integer

We can do the same for the numerical solution

Theorem 2 (Butcher, 1963)
The qth derivative of the numerical solution is given by

y(q)
1 =

∑
r(τ)=q

γ(τ)φ(τ)α(τ)F (τ)(y0) with γ(τ) a positive integer
φ(τ) depending on a Butcher tableau

Theorem 3, order condition (Butcher, 1963)
A Runge-Kutta method has order p iff φ(τ) = 1

γ(τ) ∀τ, r(τ) 6 p
2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.

12 / 26



LTE formula for explicit and implicit Runge-Kutta

From Theorem 1 and Theorem 2, if a Runge-Kutta has order p then

y(tn; yn−1)− yn =
hp+1

(p + 1)!
∑

r(τ)=p+1

α(τ) [1− γ(τ)φ(τ)]F (τ)(y(ξ))

ξ ∈ [tn−1, tn]

I α(τ) and γ(τ) are positive integer (with some combinatorial meaning)
I φ(τ) function of the coefficients of the RK method,

Example

φ
( )

is associated to
s∑

i,j=1
biaijcj with cj =

s∑
k=1

ajk

Note: y(ξ) may be over-approximated using Interval Picard-Lindelöf operator.

13 / 26



Implementation of LTE formula

Elementary differentials

F (τ)(y) = f (m)(y) (F (τ1)(y), . . . ,F (τm)(y)) for τ = [τ1, . . . , τm]

translate as a sum of partial derivatives of f associated to sub-trees

Notations
I n the state-space dimension
I p the order of a Rung-Kutta method

Two ways of computing F (τ)
1. Direct form (current): complexity O(np+1)

2. Factorized form (under test): complexity O(n(p + 1) 5
2 )

based on the work of Ferenc Bartha and Hans Munthe-Kaas
“Computing of B-series by automatic differentiation”, 2014

14 / 26



Experimentation

Toy example (
ẏ1
ẏ2

)
=

(
−y2
y1

)
with

(
y1(0) = [0, 0.1]

y2(0) = [0.95, 1.05]

)
Validated RK4 method with tolerance 10−8 we get in about 3s (Intel i7 3.4Ghz)

I width(y1(100.0)) = 0.146808
I width(y2(100.0)) = 0.146902

15 / 26



Experimentation

Usefulness of affine arithmetic
ẏ1 = 1, y1(0) = 0
ẏ2 = y3, y2(0) = 0

ẏ3 =
1
6y3

2 − y2 + 2 sin(p · y1) with p ∈ [2.78, 2.79], y3(0) = 0 .

Validated RK4 method with tolerance 10−6 we get in about 2.3s (Intel i7 3.4Ghz)
I width(y1(10.0)) = 7.10543 · 10−15

I width(y2(10.0)) = 6.11703
I width(y3(10.0)) = 7.47225

Note: none of the method in the Vericomp benchmark can reach 10s
Note 2: CAPD can solve it

16 / 26



Experimentation
Based on Vericomp benchmark 3 (around 70 problems)

IVP non-stiff (P.I)

linear (L)

nonlinear (L)

simple (A)

moderate (B)

complicate (C)

Uncertain (U) or not

idem

with the following metrics:
I c5t: user time taken to simulate the problem for 1 second.
I c5w: the final diameter of the solution (infinity norm is used).
I c6t: the time to breakdown the method with a maximal limit of 10 seconds.
I c6w: the diameter of the solution a the breakdown time.
3http://vericomp.inf.uni-due.de/

17 / 26

http://vericomp.inf.uni-due.de/


Summary – RK vs Vnode-LP – c5w

I Vnode-LP: order 15, 20, 25 (tolerances 10−14)
I RK4, LC3, LA3: tolerances 10−8 to 10−14 (order 4)

18 / 26



Summary – RK vs Vnode-LP – c6w

I Vnode-LP: order 15, 20, 25 (tolerances 10−14)
I RK4, LC3, LA3: tolerances 10−8 to 10−14 (order 4)

19 / 26



Conclusion

We presented a new approach to validate Runge-Kutta methods
I a new formula to compute LTE based on B-series
I fully parametrized by a Butcher tableau
I affine arithmetic avoiding QR decomposition

implementation as a plugin of IBEX, code name DynIbex, available at
http://perso.ensta-paristech.fr/˜chapoutot/dynibex/

Future work
I finish testing the implementation of LTE with automatic differentiation
I implement new a priori enclosure methods based on Runge-Kutta
I define new methods mixing different Runge-Kutta in one simulation
I solve new IVP problems such as for DAE (next talk) or DDE

20 / 26

http://perso.ensta-paristech.fr/~chapoutot/dynibex/


BACKUP

21 / 26



Note on the number of trees (up to order 11 (left)):

Number of Rooted Trees
1842 719 286 115 48 20 9 4 2 1 1 (total 3047)

22 / 26



Quick remainder: Taylor series method

Taylor series development of y(t) (assume y(tn) ∈ [yn])

y(tn+1) = y(tn) +
N−1∑
i=1

hi

i!
d i y
dt i (tn) +

hN
n+1
N!

dNx

dtN (t ′)

∈ [yn] +
N−1∑
i=1

hi f [i−1](y(tn)
)
+ hN f [N−1](y(t ′))

∈ [yn] +
N−1∑
i=1

hi f [i−1]([yn]) + hN f [N−1]([ỹn]) , [yn+1]

Challenges
I Computation of [ỹn] such that ∀t ∈ [tn, tn+1], y(t) ∈ [ỹn]

Solution: interval Picard-Lindelöf operator
I With that formula: width([yn+1]) > width([yn])

Solutions: interval centered form + QR decomposition

23 / 26



Variable step-size explicit Runge-Kutta methods

Single-step variable step-size explicit Runge-Kutta method

e.g. Bogacki-Shampine (ode23) is defined by:

k1 = f (tn, yn)

k2 = f (tn +
1
2hn, yn +

1
2hk1)

k3 = f (tn +
3
4hn, yn +

3
4hk2)

yn+1 = yn + h
(

2
9k1 +

1
3k2 +

4
9k3

)
k4 = f (tn + 1hn, yn+1)

zn+1 = yn + h
(

7
24k1 +

1
4k2 +

1
3k3 +

1
8k4

)

0
1
2

1
2

3
4 0 3

4
1 2

9
1
3

4
9

2
9

1
3

4
9

7
24

1
4

1
3

1
8

Remark: the step-size h is adapted following ‖ yn+1 − zn+1 ‖6 tol

24 / 26



Gauss-Legendre methods

Single-step fixed step-size implicit Runge-Kutta method

e.g. Runge-Kutta Gauss method (order 4) is defined by:

k1 = f
(

tn +

(
1
2 −
√

3
6

)
hn, yn + h

(
1
4k1 +

(
1
4 −
√

3
6

)
k2

))
(3a)

k2 = f
(

tn +

(
1
2 +

√
3

6

)
hn, yn + h

((
1
4 +

√
3

6

)
k1 +

1
4k2

))
(3b)

yn+1 = yn + h
(

1
2k1 +

1
2k2

)
(3c)

Remark: A non-linear system of equations must be solved at each step.

25 / 26



Note on building IRK Gauss’ method

ẏ = f (y) with y(0) = y0 ⇔ y(t) = y0 +

∫ tn+1

tn

f (y(s))ds

We solve this equation using quadrature formula.

IRK Gauss method is associated to a collocation method (polynomial
approximation of the integral) such that for i , j = 1, . . . , s:

aij =

∫ ci

0
`j(t)dt and bj =

∫ 1

0
`j(t)dt

with `j(t) =
∏

k 6=j
t−ck
cj−ck

the Lagrange polynomial.
And the ci are chosen as the solution of the Shifted Legendre polynomial of
degree s:

Ps(x) = (−1)s
s∑

k=0

(
s
k

)(
s + k

s

)
(−x)k

Example: 1, 2x − 1, 6x2 − 6x + 1, 20x3 − 30x2 + 12x − 1, etc.
26 / 26


	Appendix

