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Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0,T ]

ẏ = f (y) with y(0) = y0

IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz in y
but for our purpose we suppose f smooth enough i.e., of class Ck

Goal of numerical integration
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
I Compute a sequence of values: y0, y1, . . . , yn such that

∀i ∈ [0, n], yi ≈ y(ti ; y0) .

I s.t. yn+1 ≈ y(tn + h; yn) with an error O(hp+1) where
I h is the integration step-size
I p is the order of the method
I true with localization assumption i.e., yn = y(tn; y0).
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Validated solution of IVP for ODE

Goal of validated numerical integration
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
I Compute a sequence of values: [y0], [y1], . . . , [yn] such that

∀i ∈ [0, n], [yi ] 3 y(ti ; y0) .

A two-step approach

I Exact solution of ẏ = f (y(t)) with
y(0) ∈ Y0

I Safe approximation at discrete time instants
I Safe approximation between time instants
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State of the art

Taylor methods
They have been developed since 60’s (Moore, Lohner, Makino and Berz, Rhim,
Jackson and Nedialkov, etc.)

I prove the existence and uniqueness: high order interval Picard-Lindelöf
I works very well on various kinds of problems:

I non stiff and moderately stiff linear and non-linear systems,
I with thin uncertainties on initial conditions
I with (a writing process) thin uncertainties on parameters

I very efficient with automatic differentiation techniques
I wrapping effect fighting: interval centered form and QR decomposition
I many software: AWA, COSY infinity, VNODE-LP, CAPD, etc.

Some extensions
I Taylor polynomial with Hermite-Obreskov (Jackson and Nedialkov)
I Taylor polynomial in Chebyshev basis (T. Dzetkulic)

4 / 26



One question

Why bother to define new methods?
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Answer 1: it may fail

A chemical reaction simulated with VNODE-LP
ẏ = z

ż = z2 − 3
0.001 + y2

with
{

y(0) = 10
z(0) = 0

and t ∈ [0, 50]

Result: it is stuck around t = 1 with various order between 5 and 40.

With validated Lobatto-3C (order 4) method with tolerance 10−10, we get in
about 7.6s (Intel i7 3.4Ghz)

I width(y1(50.0)) = 7.67807 · 10−5

I width(y2(50.0)) = 2.338 · 10−6

Note: CAPD can solve this problem
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Answer 2: there is no silver bullet

Numerical solutions of IVP for ODEs are produced by
I Adams-Bashworth/Moulton methods
I BDF methods
I Runge-Kutta methods
I etc.

each of these methods is adapted to a particular class of ODEs

Runge-Kutta methods
I have strong stability properties for various kinds of problems (A-stable,

L-stable, algebraic stability, etc.)
I may preserve quadratic algebraic invariant (symplectic methods)
I can produce continuous output (polynomial approximation of y(t))

Can we benefit these properties in validated computations?
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Examples of Runge-Kutta methods

Single-step fixed step-size explicit Runge-Kutta method

e.g. explicit Trapzoidal method (or Heun’s method)1 is defined by:

k1 = f (tn, yn) , k2 = f (tn + 1hn, yn + h1k1)

yn+1 = yn + h
(

1
2k1 +

1
2k2

) 0
1 1

1
2

1
2

Intuition
I ẏ = t2 + y2

I y0 = 0.46
I h = 1.0

dotted line is the exact solution.

28 II. Numerical Integrators

II.1.1 Runge–Kutta Methods

In this section, we treat non-autonomous systems of first-order ordinary differential
equations

ẏ = f(t, y), y(t0) = y0. (1.1)

The integration of this equation gives y(t1) = y0 +
∫ t1

t0
f(t, y(t)) dt, and replacing

the integral by the trapezoidal rule, we obtain

y1 = y0 +
h

2

(
f(t0, y0) + f(t1, y1)

)
. (1.2)

This is the implicit trapezoidal rule, which, in addition to its historical impor-
tance for computations in partial differential equations (Crank–Nicolson) and in
A-stability theory (Dahlquist), played a crucial role even earlier in the discovery of
Runge–Kutta methods. It was the starting point of Runge (1895), who “predicted”
the unknown y1-value to the right by an Euler step, and obtained the first of the
following formulas (the second being the analogous formula for the midpoint rule)

k1 = f(t0, y0)

k2 = f(t0 + h, y0 + hk1)

y1 = y0 + h
2

(
k1 + k2

)

k1 = f(t0, y0)

k2 = f(t0 + h
2 , y0 + h

2 k1)

y1 = y0 + hk2.

(1.3)

These methods have a nice geometric interpretation (which is illustrated in the first
two pictures of Fig. 1.2 for a famous problem, the Riccati equation): they consist
of polygonal lines, which assume the slopes prescribed by the differential equation
evaluated at previous points.

Idea of Heun (1900) and Kutta (1901): compute several polygonal lines, each start-
ing at y0 and assuming the various slopes kj on portions of the integration interval,
which are proportional to some given constants aij ; at the final point of each poly-
gon evaluate a new slope ki. The last of these polygons, with constants bi, deter-
mines the numerical solution y1 (see the third picture of Fig. 1.2). This idea leads to
the class of explicit Runge–Kutta methods, i.e., formula (1.4) below with aij = 0
for i ≤ j.
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Fig. 1.2. Runge–Kutta methods for ẏ = t2 + y2, y0 = 0.46, h = 1; dotted: exact solution
1example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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Examples of Runge-Kutta methods

Single-step fixed step-size implicit Runge-Kutta method

e.g. Runge-Kutta Gauss method (order 4) is defined by:

k1 = f
(

tn +

(
1
2 −
√

3
6

)
hn, yn + h

(
1
4k1 +

(
1
4 −
√

3
6

)
k2

))
(1a)

k2 = f
(

tn +

(
1
2 +

√
3

6

)
hn, yn + h

((
1
4 +

√
3

6

)
k1 +

1
4k2

))
(1b)

yn+1 = yn + h
(

1
2k1 +

1
2k2

)
(1c)

Remark: A non-linear system of equations must be solved at each step.

1example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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Runge-Kutta methods

s-stage Runge-Kutta methods are described by a Butcher tableau
c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b′1 b′2 · · · b′s (optional)
i

j

Which induces the following recurrence:

ki = f
(

tn + cihn, yn + h
s∑

j=1
aijkj

)
yn+1 = yn + h

s∑
i=1

bi ki (2)

I Explicit method (ERK) if aij = 0 is i 6 j
I Diagonal Implicit method (DIRK) if aij = 0 is i 6 j and at least one aii 6= 0
I Implicit method (IRK) otherwise
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Validated Runge-Kutta methods

Challenges
1. Computing with sets of values taking into account dependency problem and

wrapping effect;
2. Bounding the approximation error of Runge-Kutta formula.

Our approach
I Problem 1 is solved using affine arithmetic avoiding centered form and QR

decomposition
I Problem 2 is solved by bounding the Local truncation error of

Runge-Kutta method based on B-series

We focus on Problem 2 in this talk
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Order condition for Runge-Kutta methods

Method order of Runge-Kutta methods and Local Truncation Error (LTE)

y(tn; yn−1)− yn = C · O
(
hp+1) with C ∈ R.

we want to bound this!

Order condition
This condition states that a method of Runge-Kutta family is of order p iff

I the Taylor expansion of the exact solution
I and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.

Consequence
The LTE is the difference of Lagrange remainders of two Taylor expansions
. . . but how to compute it?
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A quick view of Runge-Kutta order condition theory2

Starting from y(q) = (f (y))(q−1) and with the Chain rule, we have

High order derivatives of exact solution y

ẏ = f (y)
ÿ = f ′(y)ẏ f ′(y) is a linear map

y(3) = f ′′(y)(ẏ, ẏ) + f ′(y)ÿ f ′′(y) is a bi-linear map
y(4) = f ′′′(y)(ẏ, ẏ, ẏ) + 3f ′′(y)(ÿ, ẏ) + f ′(y)y(3) f ′′′(y) is a tri-linear map

y(5) = f (4)(y)(ẏ, ẏ, ẏ, ẏ) + 6f ′′′(y)(ÿ, ẏ, ẏ)
...

+ 4f ′′(y)(y(3), ẏ) + 3f ′′(y)(ÿ, ÿ) + f ′(y)y(4)

...

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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A quick view of Runge-Kutta order condition theory2

Inserting the value of ẏ, ÿ, . . . , we have:

High order derivatives of exact solution y

ẏ = f
ÿ = f ′(f )

y(3) = f ′′(f , f ) + f ′(f ′(f ))

y(4) = f ′′′(f , f , f ) + 3f ′′(f ′f , f ) + f ′(f ′′(f , f )) + f ′(f ′(f ′(f )))
...

I Elementary differentials , are denoted by F (τ)

Remark a tree structure is made apparent in these computations

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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A quick view of Runge-Kutta order condition theory2

Rooted trees
I f is a leaf
I f ′ is a tree with one branch, . . . , f (k) is a tree with k branches

Example

f ′′(f ′f , f ) is associated to

f ′′
f f ′

f

Remark: this tree is not unique e.g., symmetry

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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A quick view of Runge-Kutta order condition theory2

Theorem 1 (Butcher, 1963)
The qth derivative of the exact solution is given by

y(q) =
∑

r(τ)=q

α(τ)F (τ)(y0) with r(τ) the order of τ i.e., number of nodes
α(τ) a positive integer

We can do the same for the numerical solution

Theorem 2 (Butcher, 1963)
The qth derivative of the numerical solution is given by

y(q)
1 =

∑
r(τ)=q

γ(τ)φ(τ)α(τ)F (τ)(y0) with γ(τ) a positive integer
φ(τ) depending on a Butcher tableau

Theorem 3, order condition (Butcher, 1963)
A Runge-Kutta method has order p iff φ(τ) = 1

γ(τ) ∀τ, r(τ) 6 p
2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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LTE formula for explicit and implicit Runge-Kutta

From Theorem 1 and Theorem 2, if a Runge-Kutta has order p then

y(tn; yn−1)− yn =
hp+1

(p + 1)!
∑

r(τ)=p+1

α(τ) [1− γ(τ)φ(τ)]F (τ)(y(ξ))

ξ ∈ [tn−1, tn]

I α(τ) and γ(τ) are positive integer (with some combinatorial meaning)
I φ(τ) function of the coefficients of the RK method,

Example

φ
( )

is associated to
s∑

i,j=1
biaijcj with cj =

s∑
k=1

ajk

Note: y(ξ) may be over-approximated using Interval Picard-Lindelöf operator.
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Implementation of LTE formula

Elementary differentials

F (τ)(y) = f (m)(y) (F (τ1)(y), . . . ,F (τm)(y)) for τ = [τ1, . . . , τm]

translate as a sum of partial derivatives of f associated to sub-trees

Notations
I n the state-space dimension
I p the order of a Rung-Kutta method

Two ways of computing F (τ)
1. Direct form (current): complexity O(np+1)

2. Factorized form (under test): complexity O(n(p + 1) 5
2 )

based on the work of Ferenc Bartha and Hans Munthe-Kaas
“Computing of B-series by automatic differentiation”, 2014

14 / 26



Experimentation

Toy example (
ẏ1
ẏ2

)
=

(
−y2
y1

)
with

(
y1(0) = [0, 0.1]

y2(0) = [0.95, 1.05]

)
Validated RK4 method with tolerance 10−8 we get in about 3s (Intel i7 3.4Ghz)

I width(y1(100.0)) = 0.146808
I width(y2(100.0)) = 0.146902
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Experimentation

Usefulness of affine arithmetic
ẏ1 = 1, y1(0) = 0
ẏ2 = y3, y2(0) = 0

ẏ3 =
1
6y3

2 − y2 + 2 sin(p · y1) with p ∈ [2.78, 2.79], y3(0) = 0 .

Validated RK4 method with tolerance 10−6 we get in about 2.3s (Intel i7 3.4Ghz)
I width(y1(10.0)) = 7.10543 · 10−15

I width(y2(10.0)) = 6.11703
I width(y3(10.0)) = 7.47225

Note: none of the method in the Vericomp benchmark can reach 10s
Note 2: CAPD can solve it
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Experimentation
Based on Vericomp benchmark 3 (around 70 problems)

IVP non-stiff (P.I)

linear (L)

nonlinear (L)

simple (A)

moderate (B)

complicate (C)

Uncertain (U) or not

idem

with the following metrics:
I c5t: user time taken to simulate the problem for 1 second.
I c5w: the final diameter of the solution (infinity norm is used).
I c6t: the time to breakdown the method with a maximal limit of 10 seconds.
I c6w: the diameter of the solution a the breakdown time.
3http://vericomp.inf.uni-due.de/
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Summary – RK vs Vnode-LP – c5w

I Vnode-LP: order 15, 20, 25 (tolerances 10−14)
I RK4, LC3, LA3: tolerances 10−8 to 10−14 (order 4)
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Summary – RK vs Vnode-LP – c6w

I Vnode-LP: order 15, 20, 25 (tolerances 10−14)
I RK4, LC3, LA3: tolerances 10−8 to 10−14 (order 4)
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Conclusion

We presented a new approach to validate Runge-Kutta methods
I a new formula to compute LTE based on B-series
I fully parametrized by a Butcher tableau
I affine arithmetic avoiding QR decomposition

implementation as a plugin of IBEX, code name DynIbex, available at
http://perso.ensta-paristech.fr/˜chapoutot/dynibex/

Future work
I finish testing the implementation of LTE with automatic differentiation
I implement new a priori enclosure methods based on Runge-Kutta
I define new methods mixing different Runge-Kutta in one simulation
I solve new IVP problems such as for DAE (next talk) or DDE
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BACKUP
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Note on the number of trees (up to order 11 (left)):

Number of Rooted Trees
1842 719 286 115 48 20 9 4 2 1 1 (total 3047)
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Quick remainder: Taylor series method

Taylor series development of y(t) (assume y(tn) ∈ [yn])

y(tn+1) = y(tn) +
N−1∑
i=1

hi

i!
d i y
dt i (tn) +

hN
n+1
N!

dNx

dtN (t ′)

∈ [yn] +
N−1∑
i=1

hi f [i−1](y(tn)
)
+ hN f [N−1](y(t ′))

∈ [yn] +
N−1∑
i=1

hi f [i−1]([yn]) + hN f [N−1]([ỹn]) , [yn+1]

Challenges
I Computation of [ỹn] such that ∀t ∈ [tn, tn+1], y(t) ∈ [ỹn]

Solution: interval Picard-Lindelöf operator
I With that formula: width([yn+1]) > width([yn])

Solutions: interval centered form + QR decomposition
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Variable step-size explicit Runge-Kutta methods

Single-step variable step-size explicit Runge-Kutta method

e.g. Bogacki-Shampine (ode23) is defined by:

k1 = f (tn, yn)

k2 = f (tn +
1
2hn, yn +

1
2hk1)

k3 = f (tn +
3
4hn, yn +

3
4hk2)

yn+1 = yn + h
(

2
9k1 +

1
3k2 +

4
9k3

)
k4 = f (tn + 1hn, yn+1)

zn+1 = yn + h
(

7
24k1 +

1
4k2 +

1
3k3 +

1
8k4

)

0
1
2

1
2

3
4 0 3

4
1 2

9
1
3

4
9

2
9

1
3

4
9

7
24

1
4

1
3

1
8

Remark: the step-size h is adapted following ‖ yn+1 − zn+1 ‖6 tol
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Gauss-Legendre methods

Single-step fixed step-size implicit Runge-Kutta method

e.g. Runge-Kutta Gauss method (order 4) is defined by:

k1 = f
(

tn +

(
1
2 −
√

3
6

)
hn, yn + h

(
1
4k1 +

(
1
4 −
√

3
6

)
k2

))
(3a)

k2 = f
(

tn +

(
1
2 +

√
3

6

)
hn, yn + h

((
1
4 +

√
3

6

)
k1 +

1
4k2

))
(3b)

yn+1 = yn + h
(

1
2k1 +

1
2k2

)
(3c)

Remark: A non-linear system of equations must be solved at each step.
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Note on building IRK Gauss’ method

ẏ = f (y) with y(0) = y0 ⇔ y(t) = y0 +

∫ tn+1

tn

f (y(s))ds

We solve this equation using quadrature formula.

IRK Gauss method is associated to a collocation method (polynomial
approximation of the integral) such that for i , j = 1, . . . , s:

aij =

∫ ci

0
`j(t)dt and bj =

∫ 1

0
`j(t)dt

with `j(t) =
∏

k 6=j
t−ck
cj−ck

the Lagrange polynomial.
And the ci are chosen as the solution of the Shifted Legendre polynomial of
degree s:

Ps(x) = (−1)s
s∑

k=0

(
s
k

)(
s + k

s

)
(−x)k

Example: 1, 2x − 1, 6x2 − 6x + 1, 20x3 − 30x2 + 12x − 1, etc.
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