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Introduction

Many ideas and results are summarized in the wonderful book:

Some results: joint research with M. Hlad́ık, M. Rada, O. Sokol,
J. Horáček, J. Antoch et al.
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The core problem of Interval Analysis

We are given a (continuous, say) function f : Rn → R and a box
x ∈ IR

n. We are to determine the range

f (x) = [f (x), f (x)] = {f (x) : x ∈ x}.

Which particular functions f are interesting in statistics & data
analysis?

Outline:

Part I: one-dimensional interval-valued data
Part II: multivariate data & regression
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Part I. One-dimensional data
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One-dimensional data: a model

Assumptions.

Let x1, . . . , xn be a dataset; for example, let the data be a random
sample from a distribution Φ. The dataset is unobservable.

What is observable is a collection of intervals x1, . . . , xn such that

x1 ∈ x1, . . . , xn ∈ xn a.s.

A general goal: We want to make inference about the original
dataset x1, . . . , xn, about the generating distribution Φ, about its
parameters, we want to test hypotheses etc.

We are given a statistic S(x1, . . . , xn) and we want to
determine/estimate its value, distribution, or other properties, using
only the observable interval-valued data x1, . . . , xn.

Now: the appropriate toolbox depends on whether we can make
further assumptions on the distribution of (x , x).
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Example

Allmaras et al., SIAM Review 55 (2013); Aguilar et al., SIAM Review
57 (2015)

Measurement of a falling box: the aim is to estimate the gravity
acceleration and air resistance

A camera takes snaps in discrete times: the position xi (= distance
traveled in time i) is uncertain due to unpredictable rotation

They make an assumption that the distribution of xi given x i , x i is
beta and apply Bayesian framework
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Example (contd.)

known initial height

xi
x
i

sc
a
le

(β-distributed)
xi: true distance traveled
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The possibilistic approach

Interval computation comes into play when the only assumption
about the distribution of (x , x) we make is x ∈ x a.s. Nothing more.

Then, given a statistic S , the only information we can infer about S
from the observable interval-valued data x is the pair of tight bounds

S = max{S(ξ) : ξ ∈ x},

S = min{S(ξ) : ξ ∈ x},

clearly satisfying
S 6 S(x) 6 S a.s.

Remark. In econometrics, partial knowledge about the distribution
(x , x) is referred to as partial identification: see the survey paper
E. Tamer, Partial identification in econometrics, Annual Review of
Economics 2 (2010), pp. 167–195.

Also many papers in Econometrica and other journals.
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Which statistics are interesting?

Descriptive statistics: sample mean, variance, median, coefficient of
variation, quantiles, higher-order moments, . . .

Many well-known people did a lot of work: Kreinovich, Ferson,
Ginzburg, Aviles, Longpré, Xiang, Ceberio, Dantsin, Wolpert,

Hajagos, Oberkampf, Jaulin, Patangay, Starks, Beck, . . . (sorry that I
cannot mention all)

Estimators of parameters of the data-generating distribution Φ

Test statistics for various hypotheses
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Test statistics

We are to test a null hypothesis (H0) against an alternative A

We usually construct a test statistic S s.t. its distribution D under H0

is known

Then, quantiles of D determine the critical region, where we reject H0

at a pre-selected level α of confidence (say, α = 95%)

Given the intervals x1, . . . , xn: if we can compute S ,S , then we can
make at least partial conclusions:

D

95%

2.5%2.5%

S S

D

95%

2.5%2.5%

S S

D

95%

2.5%2.5%

S S

DO NOT REJECT REJECT ???
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Test statistics: An example

Example. Say that x1, . . . , xn/2 and x(n/2)+1, . . . , xn are two
independent samples from N(µ1, σ

2
1) and N(µ2, σ

2
2), respectively.

We want to test stability of variance: σ2
1 = σ2

2 .

A well-known test statistic: F -ratio

F =
sample variance of x1, . . . , xn/2

sample variance of x(n/2)+1, . . . , xn
.

Problem: computation of both values F ,F is NP-hard! (How serious
is this obstacle? We will see later...)
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Test statistics: Further examples

Let x1, . . . , xn be a N(µ, σ2) sample

Given µ0 ∈ R, to test µ = µ0 we use the t-ratio (coefficient of
variation)

t =
|µ̂− µ0|

σ̂
=

∣∣( 1
n

∑n
i=1 xi

)
− µ0

∣∣
√

1
n−1

∑n
j=1

(
xj −

1
n

∑n
k=1 xk

)2 .

Some results:

t is NP-hard and inapproximable with an arbitrary absolute error
t is computable in pseudopolynomial time
t computable in polynomial time
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Test statistics: Further examples

Testing independence: Durbin-Watson statistic

DW =

∑n
i=2(ri − ri−1)

2

∑n
j=1 r

2
i

,

where ri = xi −
1
n

∑n
k=1 xk .

Testing stability of mean (important e.g. in quality control):
H0: Ex1 = Ex2 = · · · = Exn
A:
∃k : Ex1 = Ex2 = · · · = Exk = µ1 6= µ2 = Exk+1 = Exk+2 = · · · = Exn.
Test statistic:

T = max
k=1,...,n−1

√
n

k(n−k)

∑k
`=1(x` −

1
n

∑n
ι=1 xι)

√
1

n−1

∑n

i=1

(
xi −

1
n

∑n

j=1 xj

)2
.

Computational aspects of S and S have been investigated for many
statistics S ... and many are still waiting...
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Sample variance

s2 = max





1

n − 1

n∑

i=1


xi −

1

n

n∑

j=1

xj




2

: x ∈ x



 ,

s2 = min





1

n− 1

n∑

i=1


xi −

1

n

n∑

j=1

xj




2

: x ∈ x



 .

Observation: s2 → CQP → weakly polynomial time

Ferson et al.: a strongly polynomial algorithm O(n2)

Unfortunately: s2 is NP-hard

Even worse: s2 is NP-hard to approximate with an arbitrary absolute
error
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NP-hardness of s2

NP-hardness of s2 → investigation of special cases solvable in
polynomial time

Ferson et al.: consider the “1
n
-narrowed” intervals

1
n
xi := [xCi − 1

n
x∆i , x

C
i + 1

n
x∆i ], i = 1, . . . , n.

Theorem: If 1
n
xi ∩

1
n
xj = ∅ for all i 6= j , then s2 can be computed in

polynomial time.

Another formulation: If there is no k-tuple of indices
1 6 i1 < · · · < ik 6 n such that

⋂

`∈{i1,...,ik}

1
n
x` 6= ∅,

then s2 can be computed in time O(p(n) · 2k), where p is a
polynomial.
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Computation of s2 & Ferson et al. (contd.)

Graph-theoretic reformulation: Let Gn(Vn,En) be the interval graph
over 1

n
x1, . . . ,

1
n
xn:

Vertices: Vn = set of the narrowed intervals 1
n
x1, . . . ,

1
n
xn

Edges: {i , j} ∈ E (i 6= j) iff 1
n
xi ∩

1
n
xj 6= ∅

Let ωn be the size of the largest clique of Gn. Now: the algorithm
works in time O(p(n) · 2ωn).

Remark. Determining the largest clique of an interval graph is easy.

Remark. The worst case is bad — e.g. when xC1 = xC2 = · · · = xCn . (Such
instances result from the NP-hardness proof.)

But: What if the data are generated by a random process? Then, do the
“ugly” instances occur frequently, or only rarely?
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Simulations

Assumption: The centers and radii of intervals xi are generated by a
“reasonable” random process:

Centers xCi : sampled from a “reasonable” distribution (continuous,
finite variance) — uniform, normal, exp, . . .

Radii x∆i : sampled from a “reasonable” nonnegative distribution
(continuous, finite variance) — uniform, one-sided normal, exp, . . .

Simulations show Sokol’s conjecture: The clique is logarithmic on
average! Thus: The algorithm is polynomial on average.
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Sokol’s conjecture
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Sokol’s conjecture II

Furthermore: It seems that var(ωn) = O(1) (“Sokol’s conjecture II’).

Say, for simplicity, that indeed Eωn = log n. By Chebyshev’s
inequality we get:

Pr[ωn > log n + 10
√

var(ωn)︸ ︷︷ ︸
=:K (constant)

] 6 1%.

Thus: in 99% cases, the algorithm of Ferson et al. works in time at
most

p(n) · 2K+log n,

where K does not grow with n.
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Sokol’s conjecture II
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A pair of remarks

To summarize:

We have random intersection (interval) graphs and we need to
estimate the average size of the largest clique and its variance

This department has a strong tradition both in intersection graphs
and random graphs — Jǐŕı Matoušek (†2015); Jan Kratochv́ıl et al.

Interesting problem: our model of a random graph is different from
the traditional models Gn,p and Gn,m
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Computation of s2: Xiang et al.

Another interesting algorithm by Xiang et al.:

Definition. If there is no pair of indices i , j such that

1
n
xi ⊆ interior( 1

n
xj),

we say that the dataset x1, . . . , xn satisfies the no-subset property.

Remark. Very natural when the intervals have the same radii —
e.g. when the data have been measured by the same device with a
single error radius.

Theorem. If the dataset satisfies the no-subset property, then s2 can
be computed in polynomial time.

A more general statement: Let J ⊆ {1, . . . , n} be a set of indices
such that the dataset {xi : i ∈ {1, . . . , n} \ J} satisfies the no-subset
property. Then s2 can be computed in time O(p(n) · 2|J|).
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A brief summary

Further good news: s2 is computable pseudopolynomially

Main message: although NP-hard in theory, s2 is efficiently
computable “almost always” (in the probabilistic setup) — hard
instances are rare

A nice interdisciplinary problem: statistical motivation,
interval-theoretic and graph-theoretic methods
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A pair of remarks

(Some) ideas can be (sometimes) generalized: observe that s2 can be
written as

s2 = 1
n−1Q

2 − 1
n(n−1)L

2,

where Q2 =
∑

i x
2
i and L =

∑
i xi .

Many more statistics can be written as “simple functions” of Q and
L, e.g. the t-ratio (coefficient of variation):

t2 =
1
n2
L2

1
n−1Q

2 − 1
n(n−1)L

2
.

Recall also the F -ratio

F =
sample variance of x1, . . . , xn/2

sample variance of x(n/2)+1, . . . , xn
;

positive results for sample variance apply here directly, too.

M. Černý (VŠE Prague) Interval computing & statistics 24 / 42



Part II. The multivariate case
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The core problem of Interval Analysis more generally

We are given a (continuous, say) function f : Rn → R
m and a box

x ∈ IR
n.

We are to say something reasonable about the range

f (x) = {f (x) ∈ R
m : x ∈ x}.
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Motivation: Joint regions for dependent statistics

Statistics are often dependent: we are, e.g., interested in the joint
region for

S(x1, . . . , xn) = (sample mean, sample variance) ∈ R
2, x ∈ x.

J. Stoye, Partial identification of spread parameters, Quantitative
Economics, 2010: “ This paper analyzes partial identification of parameters

that measure a distribution’s spread, for example, the variance, Gini coefficient,

entropy, or interquartile range. The core results are tight, two-dimensional

identification regions (that are typically not rectangles) for the expectation and

variance, the median and interquartile ratio, and many other combinations of

parameters. They are developed for numerous identification settings, including but

not limited to cases where one can bound either the relevant cumulative

distribution function or the relevant probability measure. Applications include

missing data, interval data, (...) contaminated data (...). “
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J. Stoye (Quant Econ, 2010): Example
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Regression

The most important statistical application (J. Á. V́ı̌sek: “95% of
practical statistical problems involve regression”)
The most practically important joint region of dependent statistics:
the set of estimates of regression coefficients
Recall the falling box example: regression model

yt =
1

C
log cosh

(√
gC (t − t0)

)
+ εt ,

following from Newton’s equations, where C , g , t0 are unknown
parameters, εt is random noise, and the dependent variable yt is the
(interval-valued) distance traveled.

known initial height

y
t

y
t

sc
a
le

yt: true distance traveled
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Regression

A general form of the linear regression model with interval data:

y = Xθ + ε, y ∈ y, X ∈ X,

where observable data are (X, y) and the only property of the joint
distribution of (X ,X, ε, y) is that y ∈ y, X ∈ X holds a.s.
The most important statistics:

θ̂ = θ̂(X , y) (∈ R
p): an estimator

R = R(X , y) = ‖y − X θ̂‖ (∈ R): loss function (goodness-of-fit
measure); here ‖ · ‖ is some vector norm

A nice case (observed by Schön, Kutterer and others): if X = X =: X
and θ̂ is the least-squares estimator, then the joint region of estimates

{θ∗ ∈ R
p : θ∗ = (XTX )−1XTy , y ∈ y}

is a zonotope in the parameter space.

The general case {θ∗ ∈ R
p : θ∗ = (XTX )−1XTy , y ∈ y,X ∈ X} —

very tough (only enclosures, often redundant)
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Residual values

We will consider minimum-norm estimators:

θ̂k := argmin‖y − Xθ‖k with k ∈ {1, 2,∞}:
k = 1: Least Absolute Deviations (LAD), can be written as a linear
program
k = 2: Ordinary Least Squares (OLS), can be written explicitly
k = ∞: Chebyshev Approximation, can be written as a linear program

The residual value: Rk = ‖y − X θ̂k‖k

Main goal: to compute Rk ,Rk for X ∈ X, y ∈ y

M. Černý (VŠE Prague) Interval computing & statistics 31 / 42



Complexity of computation of the residual values

Case: I II III IV V

p unbounded unbounded O(1) unbounded O(1)

X interval interval interval X = X X = X

y interval interval interval interval interval
θ θ ∈ R

p θ > 0 θ ∈ R
p θ ∈ R

p θ ∈ R
p

R
1

NPH NPH P P P

R1 NPH P P P P

R
2

NPH NPH NPH NPH NPH

R2 NPH P P P P

R
∞

NPH NPH P P P
R∞ NPH P P P P

Proof idea: Use the orthant decomposition of the parameter space R
p

and Oettli-Prager Theorem
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An application of interval methods in statistics:
EIV regression models
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EIV regression models

Now: forget intervals — the setup is entirely probabilistic

Regression model
y = Xθ + ε;

observable data are (y ,Z ), where

Z = X + Ξ;

here, εi ’s are random errors in (observations of) the dependent
variable and Ξij ’s are random errors in (observations of) regressors.
Moreover, X can be taken as a random matrix.

Since we observe regressors with errors, we speak about
Errors-In-Variables (EIV).
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EIV regression models

true regression line

to be estimatedε2
Ξ1

Ξ2

estimated regression line

ε1

x

y
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Total Least Squares

Under traditional assumptions: say, all errors are independent and
N(0, σ2) — a “good estimator” is Total Least Squares (TLS):

Find ∆Z ,∆y , θ̂ s.t.
(Z −∆Z )θ̂ = y −∆y and

‖(∆Z ,∆y)‖F is minimal, where ‖Q‖F =
√∑

ij Q
2
ij =

√
trace(QTQ) is

the Frobenius norm

Then: θ̂ is a “good” estimate of θ; ∆y is an estimate of ε and ∆Z is
an estimate of Ξ

x

y
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Now: Change the matrix norm!

Let’s change the assumptions on the error distributions:

Let all errors have a bounded distribution with support (−γ,+γ),
where γ > 0 is an unknown constant

Assume that asymptotically, when n → ∞, the errors approach the
bounds ±γ arbitrarily close with Pr → 1

Interesting: no independence, zero means or id assumptions are
needed

Theorem. Replace the Frobenius norm by Chebyshev norm and you
get a consistent estimator.

To compute the estimator, we are to solve the Chebyshev Norm
Problem (CNP):

Find ∆Z ,∆y , θ̂ s.t.

(Z −∆Z )θ̂ = y −∆y and
‖(∆Z ,∆y)‖max is minimal, where ‖Q‖max = maxij |Qij | is the
Chebyshev norm
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Solving CNP via Oettli-Prager

(CNP) Find ∆Z ,∆y , θ̂ s.t.

(Z −∆Z )θ̂ = y −∆y and
‖(∆Z ,∆y)‖max is minimal, where ‖Q‖max = maxij |Qij | is the
Chebyshev norm

Equivalently: Find the minimum δ s.t. the interval-valued linear
system

[Z ± δE ]x = [y ± δe]

is solvable (here E is all-one matrix and e is all-one vector).

Now Oettli-Prager helps: the solution set is a union of polyhedra,
convex in each orthant; the polyhedra are parametrized by δ:

solution set = {x : |Zx − y | 6 δE |x | + δe}

=
⋃

s∈{±1}p



x :

Zx − y 6 δEDsx + δe,

Zx − y > −δEDsx − δe,

Dsx > 0



 ,

where Ds = diag(s).
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Solving CNP via Oettli-Prager: Example

Z =




3 −0.5
0.5 3
0.6 3


 , y =




0.2
0.7
−0.1


 .

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

β̂n, (δn)∗ = 0.323

0.7

0.6

0.5
0.4

0.34

0.8
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And the last step is easy...

Just rewrite the solution set

⋃

s∈{±1}p



x :

Zx − y 6 δEDsx + δe,

Zx − y > −δEDsx − δe,

Dsx > 0





as

⋃

s∈{±1}p




x :

zTi x−yi
eTDsx+1

6 δ, i = 1, . . . , n,
−zT

i
x+yi

eTDsx+1
6 δ, i = 1, . . . , n,

Dsx > 0





Now, in the orthant s, the minimum δ can be found efficiently via the
Generalized Linear-Fractional Program

min
x∈Rp





max
i∈{1,...,n}
k∈{0,1}

(−1)1−kzTi x + (−1)kyi
eTDsx + 1

∣∣∣∣∣ Dsx > 0





.
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To conclude

Summary:

The consistent estimator reduces to solving 2p GLFPs (p = number
of regression parameters)

This is good news: the method is not exponential in the number of
observations

In general, CNP is NP-hard, so nothing better can be achieved

Both the proof of consistence of the estimator and construction of the
“efficient” algorithm for its computation require interval methods
(The main tool: Oettli-Prager’s decomposition of the space of
parameters of the regression model)

Interesting special case: If we know a priori the signs of regression
coefficients (say, θ > 0), then one GLFP suffices!
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And the last slide. . .

Thank you!
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