Comparison of Kalman versus Interval based loop detection problem

Clément Aubry*, Luc Jaulin*

clement.aubry@gmail.com, luc.jaulin@ensta-bretagne.fr

*Lab-STICC / OSM ENSTA Bretagne, 2 rue françois verny 29200 Brest Cedex, France

> SWIM 2015 9-11th June 2015

Outline

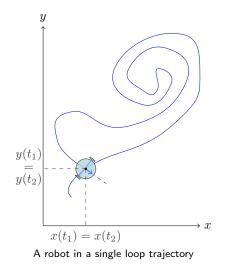
1. Introduction

- 2. Loop detection
 - 3. Comparison
- 4. Conclusion and discussion

Introduction

Definition

Human readable definition



A loop is :

- ✓ two identical positions,
- ✓ at two different times.

We want to characterize the set of all feasible loops in the trajectory.

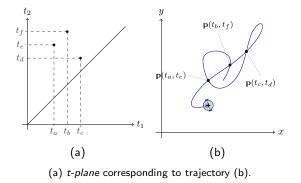
Introduction

└─ Formalism

Formalism and representation of the loop set

Definition (Loop Set)

$$\mathbb{T}^* = \left\{ (t_1, t_2) \in [0, t_{\max}]^2 \mid \mathbf{p}(t_1) = \mathbf{p}(t_2) \text{ , } t_1 < t_2 \right\}.$$



Interval based approach

Interval based approach

Context

- ✓ position $\mathbf{p}(t)$ unknown,
- \checkmark speed $\left[\mathbf{v}
 ight](t)$ known with a tube,

$$\checkmark$$
 [**p**] (t) = $\int_0^t [\mathbf{v}] (\tau) d\tau$

Problem

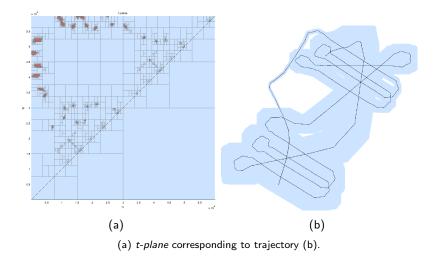
$$\mathbb{T} = \left\{ (t_1, t_2) \mid 0 \le t_1 < t_2 \le t_{max}, \ \exists \mathbf{v} \in [\mathbf{v}] \,, \ \int_{t_1}^{t_2} \mathbf{v}(\tau) d\tau = \mathbf{0} \right\}.$$

And find a subpaving approximation such that $\mathbb{T}^- \subset \mathbb{T} \subset \mathbb{T}^+.$

C. Aubry, R. Desmare, and L. Jaulin. "Loop detection of mobile robots using interval analysis". In: *Automatica* 49.2 (2013), pp. 463–470.

Interval based approach

Resolution with interval analysis



Kalman based approach

Kalman predictor (1)

Robot classical state equations

$$x_{k+1} = A_k x_k + u_k, \text{ where } \begin{cases} u_k & \text{represent inputs} \\ A_k & \text{the state matrix} \\ x_k & \text{the state of the robot} \end{cases}$$
(1)

In order to estimate x,

Kalman predictor (no exteroceptive measurement)

$$\begin{cases} \hat{x}_{k+1} = A_k \hat{x}_k + u_k \\ \Gamma_{k+1} = A_k \Gamma_k A_k^T + \Gamma_\alpha \end{cases}$$
(2)

where Γ_{k+1} is the covariance matrix representing the uncertainty and Γ_{α} the covariance associated with a normally distributed noise.

Kalman based approach

Kalman predictor (2)

From [NJP14], we know that:

$$\hat{x}_{k} = P_{k}^{0} \hat{x}_{0} + \sum_{i=0}^{k-1} P_{k+1}^{i} u_{i}$$
(3)

$$\Gamma_{k} = P_{k}^{0} \Gamma_{0} \left(P_{k}^{0}\right)^{T} + \sum_{i=1}^{k} P_{k}^{i} \Gamma_{\alpha} \left(P_{k}^{i}\right)^{T}$$
(4)

$$P_{k}^{i} = A_{k-1} A_{k-2} \dots A_{i} . I,$$

$$P_{k}^{k} = I,$$

$$P_{k}^{i} = P_{k}^{l} P_{l}^{i},$$

$$P_{k}^{i} = P_{k}^{l} \left(P_{l}^{0}\right)^{-1}.$$

Jeremy Nicola, Luc Jaulin, and Sébastien Pennec. "Toward the hybridization of probabilistic and set-membership methods for the localization of an underwater vehicle." In: *7th Small Workshop on Interval Methods.* Uppsala, Sweden. 2014.

Kalman based approach

Kalman predictor (2)

Which allow us to get an evaluation of $\hat{x}_{k_1}, \Gamma_{k_1}$ and $\hat{x}_{k_2}, \Gamma_{k_2}$ in order to compute distances between uncertain position:

Distance operator:

- ✓ Euclidean distances $d(\hat{x}_{k_1}, \hat{x}_{k_2})$.
- ✓ Mahalanobis distance $D_m(\hat{x}_{k_1}, \hat{x}_{k_2}) = \sqrt{(\hat{x}_{k_1} - \hat{x}_{k_2})^T \Gamma_{k_1, k_2}^{-1} (\hat{x}_{k_1} - \hat{x}_{k_2})}.$

With

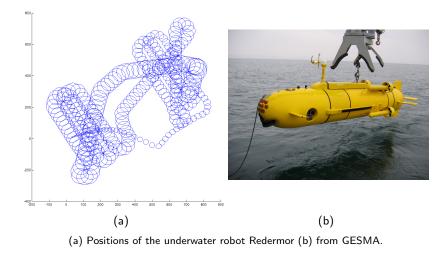
$$\Gamma_{k_1,k_2} = P_{k_2}^{k_1} \Gamma_{k_1} \left(P_{k_2}^{k_1} \right)^T + \sum_{i=k_1+1}^{k_2} P_{k_2}^i \Gamma_{\alpha} \left(P_{k_2}^i \right)^T$$
(5)

10 / 20

- Loop detection

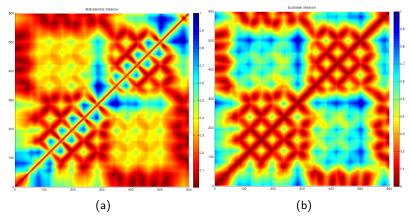
Kalman based approach

Kalman predictor (2)



Results

Results: normalized distances

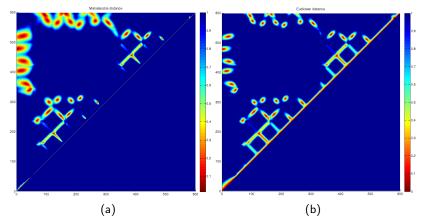


T-planes: Normalized Mahalnobis distance (a), Normalized Euclidean distance (b).

Maximum distances: 1148.02(euclidean); 1105.79(Mahalanobis).

Results

Results: thresholded normalized distances

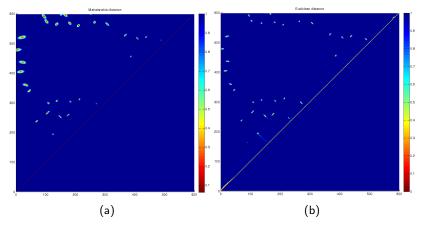


t-planes: (a) Normalized Mahalnobis distance, (b) Normalized Euclidean distance.

With a threshold at 200

Results

Results: thresholded normalized distances



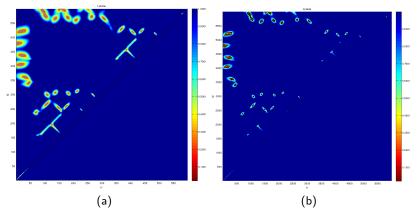
t-planes: (a) Normalized Mahalnobis distance, (b) Normalized Euclidean distance.

With a threshold at 50

Results

Comparison: decreasing threshold (1)

T-planes from Kalman + Mahalanobis in the background and from inner test of interval analysis on the foreground.

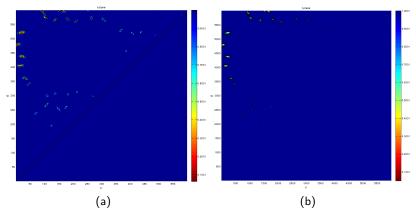


t-planes results of loop detection problem solved by both methods with Mahalanobis distance and a threshold at 150 (a), 50 (b).

Results

Comparison: decreasing threshold (2)

T-planes from Kalman + Mahalanobis in the background and from inner test of interval analysis on the foreground.

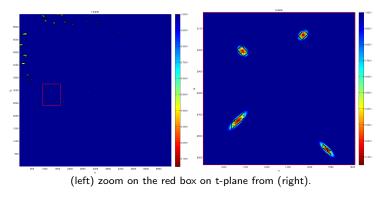


t-planes results of loop detection problem solved by both methods with Mahalanobis distance and a threshold at 25 (a) and 10 (b).

Comparison of Kalman	versus	Interval	based	loop	detection	problem
The second second second second						

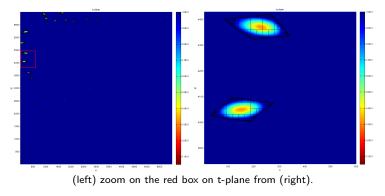
"Fusion" of Kalman and Interval method (1)

On each figures, t-planes from Kalman with thresholded (value=10) Mahalanobis distance in the background and boxes that pass inner test of interval based method. Zoom on some parts of the loop set.



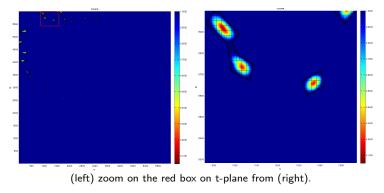
"Fusion" of Kalman and Interval method (2)

On each figures, t-planes from Kalman with thresholded (value=10) Mahalanobis distance in the background and boxes that pass inner test of interval based method. Zoom on some parts of the loop set.



"Fusion" of Kalman and Interval method (2)

On each figures, t-planes from Kalman with thresholded (value=10) Mahalanobis distance in the background and boxes that pass inner test of interval based method. Zoom on some parts of the loop set.



Conclusion and discussion

- 1. State model of the robot helps us to compute Kalman estimates $(A_k = I)$.
- 2. Kalman bring us an information: where is (probably!) the loop in a subpavement that compose the loop set.
- 3. The further we are from $t_1 = t_2$ line, the better is the quality of Kalman information compared to Interval method.

Thanks for your attention. Questions?