

Robust indoor location tracking via interval analysis

Mohamed-Hédi AMRI, Yasmina BECIS, Didier AUBRY & <u>Nacim RAMDANI</u> Université d'Orléans, Bourges, France.

> SWIM 2015, Praha 9-11 June 2015

Outline

Motivations

Set membership estimation

- Indoor location tracking
- Experimental evaluation
- Research directions

Monitoring for Healthcare

Motivations

Smart home sensors + Robust data fusion = Indoor location tracking, = Activity Dailing Living characterization.

Indoor location tracking set-membership state reconstruction Robust to sensor failures

Outline

Motivations

Set membership estimation

- Indoor location tracking
- Experimental evaluation
- Research directions

Classical Estimation

Classical estimation is probabilistic

Yield valid results only if

- Perturbations, errors and model uncertainties with statistical properties known a priori
- Model structure is correct, no modeling errors

Set Membership Estimation

Unknown but bounded-error framework

Hypothesis

Uncertainties and errors are bounded with known prior bounds

A set of feasible solutions

$$\mathbb{S} = \{\mathbf{p} \in \mathbb{P} | \mathbf{f}(\mathbf{p}) \in \mathbb{Y}\} = \mathbf{f}^{-1}(\mathbb{Y}) \cap \mathbb{P}$$

Set Membership Estimation

State estimation with continuous systems

- Prediction Correction / Filtering approaches
 - (Kieffer, et al., 1999) ...

Set inversion. Parameter estimation

Branch-&-bound, branch-&-prune, interval contractors ...
 (Jaulin, et al. 93) (Raïssi et al., 2004)

$$\mathbb{S} = \{ \mathbf{z} \in \mathcal{Z}, \ | \ f(\mathbf{z}) \in \mathcal{Y} \} \quad \rightarrow \underline{\mathbb{S}} \subseteq \mathbb{S} \subseteq \overline{\mathbb{S}}$$

 $\begin{array}{ll} f([\mathbf{z}]) \subseteq \mathcal{Y} & \Rightarrow [\mathbf{z}] \subseteq \underline{\mathbb{S}} : \text{inner approximation} \\ f([\mathbf{z}])) \cap \mathcal{Y} = \emptyset & \Rightarrow [\mathbf{z}] \nsubseteq \overline{\mathbb{S}} : \text{outer approximation} & \Rightarrow [\mathbf{z}] \subseteq \mathcal{Z} \backslash \overline{\mathbb{S}} \\ \text{otherwise} & \text{partition} \ldots \end{array}$

Outline

Motivations

Set membership estimation

- Indoor location tracking
- Experimental evaluation
- Research directions

Binary sensors

Figure: Infra-red sensor coverage

Figure: The Living Lab : GIS Madonnah at Bourges (France)

Figure: repartition of sensors and zoning areas

$$\begin{aligned} x_{k+1} &= (p(y_{k+1}) \land (f_1(x_k) + \omega_{1k})) \lor \\ &\quad (\neg p(y_{k+1}) \land (f_2(x_k) + \omega_{2k})) \end{aligned}$$

$y_{k+1} = h(x_{k+1}) + v_{k+1}$

Predictor-Corrector Approach

Prediction step

$$X_{k+1}^+ = (p(y_{k+1}) \land f_1(X_k)) \lor (\neg p(y_{k+1}) \land f_2(X_k)) + W_{k+1}$$

Correction step

$$X_{k+1}^{-} = h^{-1}(y_{k+1} + V_{k+1})$$

Prediction step : random walk

Figure: Prediction step

Prediction step, no motion detected

Figure: No movement detected

Figure: Result of three rings intersection

Correction step

Figure: Correction step

{0}	$\{1\}$	Ö
$\bigcap^{\{0\}} X_i = \bigcap X_i$	$\bigcap X_i$	$\bigcap^{(i)} X_i$

Outline

Motivations

Set membership estimation

- Indoor location tracking
- Experimental evaluation
- Research directions

Location Tracking using binary sensors only

Figure: Reconstructed location zones

Location Tracking using binary sensors + RFID RSSI

Figure: Impact of the use of RFID sensors

Location tracking of single inhabitant (IEEE ICRA 2015)

Location tracking of single inhabitant (IEEE ICRA 2015)

Location tracking of two inhabitants (IEEE CASE 2015)

Location tracking of two inhabitants (IEEE CASE 2015)

Outline

Motivations

Set membership estimation

- Indoor location tracking
- Experimental evaluation
- Research directions

Research directions

- Use forward-backward predictions
- Extend to multiple inhabitants
- Use with multi-modality
- Apply to FDI (IFAC SafeProcess 2015)

Combine set-membership and stochastic modeling of errors.

Focused References

- M.H. Amri, Y. Becis, D. Aubry, N. Ramdani, M. Fränzle, Robust Indoor Location Tracking of Multiple Inhabitants Using Only Binary Sensors. IEEE CASE 2015, Gothenburg, Accepted.
- M.H. Amri, D. Aubry, Y. Becis, N. Ramdani, Robust Fault Detection and Isolation applied to Indoor Localization. IFAC SafeProcess 2015, Paris, Accepted.
- M.H. Amri, D. Aubry, Y. Becis,
 N. Ramdani, Indoor Human/Robot Localization using Robust Multi-modal Data Fusion, IEEE ICRA 2015. Accepted.