Intervals of Sign Regular Matrices

Mohammad Adm Jürgen Garloff Jihad Titi

University of Konstanz

Department of Mathematics and Statistics

and

University of Applied Sciences/ HTWG Konstanz

Faculty of Computer Sciences

June 10, 2015
Outline

1. Notations
2. Background: Systems of linear interval equations
3. Classes of matrices possessing the interval property
4. A conjecture which dates back to 1982 and its solution
5. Open problem
Notations

\(\mathbb{IR} \): set of the compact, nonempty real intervals \([a] = [a, \bar{a}], a \leq \bar{a} \),

\(\mathbb{IR}^n \): set of \(n \)-vectors with components from \(\mathbb{IR} \), interval vectors

\(\mathbb{IR}^{n \times n} \): set of \(n \)-by-\(n \) matrices with entries from \(\mathbb{IR} \). interval matrices

Elements from \(\mathbb{IR}^n \) and \(\mathbb{IR}^{n \times n} \) may be regarded as vector intervals and matrix intervals, respectively, w.r.t. the usual entrywise partial ordering, e.g.,

\[
[A] = ([a_{ij}])_{i,j=1}^n = ([a_{ij}, \bar{a}_{ij}])_{i,j=1}^n = [A, \bar{A}], \quad \text{where } A = (a_{ij})_{i,j=1}^n, \quad \bar{A} = (\bar{a}_{ij})_{i,j=1}^n.
\]

A vertex matrix of \([A]\) is a matrix \(A = (a_{ij})_{i,j=1}^n \) with \(a_{ij} \in \{a_{ij}, \bar{a}_{ij}\}, \)

\(i, j = 1, \ldots, n \).
A suitable partial order for the special class of matrices is the checkerboard order. For $A, B \in \mathbb{R}^{n \times n}$ define

$$A \leq^* B := (-1)^{i+j} a_{ij} \leq (-1)^{i+j} b_{ij}, \quad i, j = 1, 2, \ldots, n.$$

This partial order is related to the usual entry-wise partial order by

$$A \leq^* B \Leftrightarrow A^* \leq B^*, \text{ where } A^* := SAS, \ S := \text{diag}(1, -1, \ldots, (-1)^{n+1}),$$

is the checkerboard transformation.
A matrix interval \([A, \overline{A}]\) with respect to the usual entry-wise partial order can be represented as an interval \([\downarrow A, \uparrow A]^*\) with respect to the checkerboard order, where

\[
(\downarrow A)_{ij} := \begin{cases}
 a_{ij} & \text{if } i + j \text{ is even,} \\
 \overline{a}_{ij} & \text{if } i + j \text{ is odd,}
\end{cases}
\]

\[
(\uparrow A)_{ij} := \begin{cases}
 \overline{a}_{ij} & \text{if } i + j \text{ is even,} \\
 a_{ij} & \text{if } i + j \text{ is odd.}
\end{cases}
\]
Systems of linear interval equations \([A]x = [b]\)

Solution set
\[\Sigma := \Sigma ([A], [b]) := \{ x \in \mathbb{R}^n \mid Ax = b, \ A \in [A], \ b \in [b] \} \]

The matrix interval \([A]\) is called *regular* if \(A\) is nonsingular for all \(A \in [A]\).

Properties of the solution set

- \(\Sigma\) is closed.
- If \([A]\) is regular, then \(\Sigma\) is compact, connected, and convex in each orthant.
(Interval) Hull of the solution set

\[[A]^H [b] := \square \Sigma ([A], [b]) \]

Examples

\[
\begin{pmatrix}
2 & 4 \\
-1 & 2
\end{pmatrix}
\begin{pmatrix}
x \\
x
\end{pmatrix} =
\begin{pmatrix}
-2 & 2 \\
-2 & 2
\end{pmatrix}
\begin{pmatrix}
x \\
x
\end{pmatrix}
\]

Solution sets for Barth-Nuding and Hansen interval systems

Examples (cont'd)

\[
\begin{pmatrix}
2 & 3 \\
1 & 2
\end{pmatrix}
\begin{pmatrix}
x \\
x
\end{pmatrix} =
\begin{pmatrix}
0 & 120 \\
60 & 240
\end{pmatrix}
\]

Interval hulls for Barth-Nuding and Hansen interval systems
Important classes of matrices

An n-by-n matrix A is called

- **M-matrix** if A can be written as $A = \alpha I - B$ for some nonnegative matrix B and positive scalar $\alpha > \rho(B)$.
- **inverse M-matrix** if A^{-1} exists and A^{-1} is an M-matrix.
- **inverse nonnegative** if A^{-1} exists and $0 \leq A^{-1}$.
- **positive (semi)-definite** if A is symmetric and all principal minors of A are positive (nonnegative).
• **sign regular (SR)** with signature \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) if all its minors of order \(k \) have sign \(\epsilon_k \) or are allowed also to vanish for all \(k = 1, \ldots, n \).

• **strictly sign regular (SSR)** with signature \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) if all its minors of order \(k \) are nonzero and have sign \(\epsilon_k \) for all \(k = 1, \ldots, n \).

• **almost strictly sign regular (ASSR)** with signature \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) if \(A \) is SR with signature \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) and any minor is nonzero if and only if the entries on the main diagonal of the corresponding submatrix are nonzero.

• **totally nonnegative (TN)** and **totally positive (TP)** if \(A \) is SR and SSR with signature \(\epsilon = (1, \ldots, 1) \), respectively.

• **totally nonpositive (t.n.p.)** and **totally negative (t.n.)** if \(A \) is SR and SSR with signature \(\epsilon = (-1, \ldots, -1) \), respectively.
Inverse nonnegative matrices

Examples of inverse nonnegative matrices

- **M-matrices.**

- Let $S = \text{diag} \left(1, -1, \ldots, (-1)^{n-1} \right)$. Then for any nonsingular SR matrix A with signature $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ such that $\epsilon_{n-1} \cdot \epsilon_n = 1$, SAS is inverse nonnegative.

- Let $S = \text{diag} \left(1, -1, \ldots, (-1)^{n-1} \right)$. Then for any nonsingular SR matrix A with signature $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ such that $\epsilon_{n-1} \cdot \epsilon_n = -1$, $-SAS$ is inverse nonnegative.

Proposition [Kuttler, 1971]

Let $[A] = [A, \bar{A}]$ be a matrix interval and A and \bar{A} be inverse nonnegative. Then $[A]$ is inverse nonnegative and $\bar{A}^{-1} \leq A^{-1}$.
Theorem [Beeck, 1974]

If $[A] \in \mathbb{IR}^{n \times n}$ is inverse nonnegative, then

$$A^H b = \begin{cases}
\left[A^{-1} b, \ A^{-1} \bar{b} \right] & \text{if } 0 \leq b, \\
\left[A^{-1} b, \ A^{-1} \bar{b} \right] & \text{if } 0 \in [b], \\
\left[A^{-1} b, \ \bar{A}^{-1} \bar{b} \right] & \text{if } \bar{b} \leq 0.
\end{cases}$$

In the general case, one has to solve at most $2n$ linear systems to find $\inf(A^H b)$ and similarly $\sup(A^H b)$.
Interval Property

We say that a class C of n-by-n matrices possesses the interval property if for any n-by-n interval matrix $[A] = [\underline{A}, \overline{A}] = ([a_{ij}, \overline{a}_{ij}])_{i,j=1,...,n}$ the membership $[A] \subseteq C$ can be inferred from the membership to C of a specified set of its vertex matrices.
Classes of matrices possessing the interval property

- M-matrices or, more generally, inverse-nonnegative matrices [Kuttler, 1971], where only the bound matrices A and \bar{A} are required to be in the class;
- inverse M-matrices [Johnson and Smith, 2002], where all vertex matrices are needed;
- positive definite matrices [Bialas and Garloff, 1984], [Rohn, 1994], where a subset of cardinality 2^{n-1} is required (here only symmetric matrices in $[A]$ are considered).
In the following classes of matrices only $\downarrow A$ and $\uparrow A$ are needed:

- *SSR* matrices [Garloff, 1982], [Adm and Garloff].
- The following classes of matrices [Adm and Garloff, 2013], [Adm and Garloff]:
 - nonsingular *ASSR* matrices,
 - nonsingular tridiagonal *SR* matrices,
 - nonsingular totally nonnegative,
 - tridiagonal *TN* matrices,
 - nonsingular totally nonpositive.
If $\downarrow A$ and $\uparrow A$ are non-singular and totally nonnegative then the whole matrix interval $[\downarrow A, \uparrow A]^*$ is non-singular and totally nonnegative.
We denote by \leq the lexicographic order on \mathbb{N}^2, i.e.,

$$(g, h) \leq (i, j) : \iff (g < i) \text{ or } (g = i \text{ and } h \leq j).$$

Set $E^\circ := \{1, \ldots, n\}^2 \setminus \{(1, 1)\}$, $E := E^\circ \cup \{(n + 1, 2)\}$.

Let $(s, t) \in E^\circ$. Then

$$(s, t)^+ := \min \{(i, j) \in E \mid (s, t) \leq (i, j), (s, t) \neq (i, j)\}.$$
Algorithm

Let $A \in \mathbb{R}^{n \times n}$. As r runs in decreasing order over the set E, we define matrices $A^{(r)} = (a^{(r)}_{ij}) \in \mathbb{R}^{n \times n}$ as follows.

1. Set $A^{(n+1,2)} := A$.

2. For $r = (s, t) \in E^\circ$:

 (a) if $a^{(r^+)}_{st} = 0$ then put $A^{(r)} := A^{(r^+)}$.

 (b) if $a^{(r^+)}_{st} \neq 0$ then put

 $$a^{(r)}_{ij} := \begin{cases}
 a^{(r^+)}_{ij} - \frac{a^{(r^+)}_{it} a^{(r^+)}_{sj}}{a^{(r^+)}_{st}} & \text{for } i < s \text{ and } j < t, \\
 a^{(r^+)}_{ij} & \text{otherwise.}
 \end{cases}$$

3. Set $\tilde{A} := A^{(1,2)}$ is called the matrix obtained from A (by the Cauchon Algorithm).
Example

If \(n = 5 \) and \(A \) is totally positive, then

\[
\tilde{A} = \begin{bmatrix}
\end{bmatrix}
\]
Theorem [Goodearl, Launois and Lenagan, 2011], [Adm and Garloff, 2013]

- A is totally nonnegative iff $0 \leq \tilde{A}$ and for all $i, j = 1, \ldots, n$
 \[\tilde{a}_{ij} = 0 \implies \tilde{a}_{ik} = 0 \quad k = 1, \ldots, j - 1, \quad \text{or} \quad \tilde{a}_{kj} = 0 \quad k = 1, \ldots, i - 1. \]

\[
\tilde{A} = \begin{bmatrix}
0 \\
\vdots \\
0
\end{bmatrix}
\]

- If A is totally nonnegative matrix then A is nonsingular iff $0 < \text{diag}(\tilde{A})$.

\[
\tilde{A} = \begin{bmatrix}
0 & \cdots & 0 \\
0 & \cdots & 0 \\
\end{bmatrix}
\]
Theorem [Adm and Garloff, 2013]

Let A, B be nonsingular and totally nonnegative matrices and let $A \preceq^* Z \preceq^* B$. Then

1. $\tilde{A} \preceq^* \tilde{Z} \preceq^* \tilde{B}$;
2. Z is nonsingular and totally nonnegative;
3. if A, B possess the same pattern of zero minors then Z has this pattern, too.
The assumption of nonsingularity of certain principal minors cannot be relaxed:

\[
A := \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \lesssim^* Z := \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \lesssim^* B := \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

totally nonnegative \quad has a negative minor \quad totally nonnegative
Corollary [Adm and Garloff, 2013]

Let $A, B, Z \in \mathbb{R}^{n,n}$ with $A \preceq^* Z \preceq^* B$. If A, B are totally nonnegative and $A[2,\ldots,n]$ and $B[2,\ldots,n]$ or $A[1,\ldots,n-1]$ and $B[1,\ldots,n-1]$ are nonsingular, then Z is totally nonnegative, too.
Conjecture [Adm and Garloff]

Assume that $\downarrow A$ and $\uparrow A$ are nonsingular and SR matrices, then $[\downarrow A, \uparrow A]^*$ is nonsingular and SR?

A partial result

It was shown in [Garloff, 1996] that the conclusion is true if we consider instead of the two bound matrices a set of vertex matrices with the cardinality of at most 2^{2n-1} (n being the order of the matrices).
References

M. Adm and J. Garloff (2013)
Intervals of totally nonnegative matrices
Linear Algebra Appl. 439, 3796–3806.

M. Adm and J. Garloff (2014)
Improved tests and characterizations of totally nonnegative matrices

M. Adm and J. Garloff
Intervals of special sign regular matrices
Submitted.

H. Beeck (1974)
Zur scharfen AuSenabschatzung der Lösungsmenge bei linearen Intervallgleichungssystemen
ZAMM, 54, T208–T209.

S. Bialas and J. Garloff (1984)
Intervals of P-matrices and related matrices
Linear Algebra Appl., 58, 33–41.
S. M. Fallat and C. R. Johnson (2011)

Totally Nonnegative Matrices

J. Garloff (1982)

Criteria for sign regularity of sets of matrices

J. Garloff (1996)

Vertex implications for totally nonnegative matrices

K. R. Goodearl, S. Launois and T. H. Lenagan (2011)

Totally nonnegative cells and matrix Poisson varieties

C. Jansson (1997)

Calculation of exact bounds for the solution set of linear interval systems

C. R. Johnson and R. S. Smith (2002)
Intervals of inverse M-matrices

J. R. Kuttler (1971)
A fourth-order finite-difference approximation for the fixed membrane eigenproblem

S. Launois and T. H. Lenagan (2014)
Efficient recognition of totally nonnegative matrix cells

A. Pinkus (2010)
Totally Positive Matrices

J. Rohn (1994)
Positive definiteness and stability of interval matrices
THANK YOU VERY MUCH