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Notations

IR: set of the compact, nonempty real intervals [a] = [a, a], a ≤ a,
IRn: set of n-vectors with components from IR, interval vectors

IRn×n: set of n-by-n matrices with entries from IR. interval matrices

Elements from IRn and IRn×n may be regarded as vector intervals and
matrix intervals, respectively, w.r.t. the usual entrywise partial ordering,
e.g.,

[A] = ([aij ])
n
i ,j=1 =

(
[aij , aij ]

)n
i ,j=1

= [A,A], where A =
(
aij
)n
i ,j=1

, A = (aij)
n
i ,j=1 .

A vertex matrix of [A] is a matrix A = (aij)
n
i ,j=1 with aij ∈ {aij , aij},

i , j = 1, . . . , n.
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A suitable partial order for the special class of matrices is the checkerboard
order. For A,B ∈ Rn×n define

A ≤∗ B := (−1)i+jaij ≤ (−1)i+jbij , i , j = 1, 2, . . . , n.

This partial order is related to the usual entry-wise partial order by

A ≤∗ B ⇔ A∗ ≤ B∗, where A∗ := SAS , S := diag(1,−1, . . . , (−1)n+1),

is the checkerboard transformation.
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A matrix interval [A,A] with respect to the usual entry-wise partial order
can be represented as an interval [↓ A, ↑ A]∗ with respect to the
checkerboard order, where

(↓ A)ij :=

{
aij if i + j is even,
aij if i + j is odd,

(↑ A)ij :=

{
aij if i + j is even,
aij if i + j is odd.
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Systems of linear interval equations [A]x = [b]

Solution set Σ := Σ ([A], [b]) := {x ∈ Rn | Ax = b, A ∈ [A], b ∈ [b]}

The matrix interval [A] is called regular if A is nonsingular for all A ∈ [A].

Properties of the solution set

Σ is closed.

If [A] is regular, then Σ is compact, connected, and convex in each
orthant.
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(Interval) Hull of the solution set

[A]H [b] := 2Σ ([A], [b])
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Important classes of matrices

An n-by-n matrix A is called

M-matrix if A can be written as A = αI − B for some nonnegative
matrix B and positive scalar α > ρ(B).

inverse M-matrix if A−1 exists and A−1 is an M-matrix.

inverse nonnegative if A−1 exists and 0 ≤ A−1.

positive (semi)-definite if A is symmetric and all principal minors of A
are positive (nonnegative).
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sign regular (SR) with signature ε = (ε1, . . . , εn) if all its minors of
order k have sign εk or are allowed also to vanish for all k = 1, . . . , n.

strictly sign regular (SSR) with signature ε = (ε1, . . . , εn) if all its
minors of order k are nonzero and have sign εk for all k = 1, . . . , n.

almost strictly sign regular (ASSR) with signature ε = (ε1, . . . , εn) if
A is SR with signature ε = (ε1, . . . , εn) and any minor is nonzero if
and only if the entries on the main diagonal of the corresponding
submatrix are nonzero.

totally nonnegative (TN) and totally positive (TP) if A is SR and
SSR with signature ε = (1, . . . , 1), respectively.

totally nonpositive (t.n.p.) and totally negative (t.n.) if A is SR and
SSR with signature ε = (−1, . . . ,−1), respectively.
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Inverse nonnegative matrices

Examples of inverse nonnegative matrices

M-matrices.

Let S = diag (1,−1, . . . , (−1)n−1). Then for any nonsingular SR
matrix A with signature ε = (ε1, . . . , εn) such that εn−1 · εn = 1, SAS
is inverse nonnegative.

Let S = diag (1,−1, . . . , (−1)n−1). Then for any nonsingular SR
matrix A with signature ε = (ε1, . . . , εn) such that εn−1 · εn = −1,
−SAS is inverse nonnegative.

Proposition [Kuttler, 1971]

Let [A] = [A,A] be a matrix interval and A and A be inverse nonnegative.
Then [A] is inverse nonnegative and A−1 ≤ A−1.
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Theorem [Beeck, 1974]

If [A] ∈ IRn×n is inverse nonnegative, then

AHb =


[A
−1

b, A−1b] if 0 ≤ b,

[A−1b, A−1b] if 0 ∈ [b],

[A−1b, A
−1

b] if b ≤ 0.

In the general case, one has to solve at most 2n linear systems to find
inf(AHb) and similarly sup(AHb).

M. Adm, J. Garloff, J. Titi (U. Konstanz) Intervals of Sign Regular Matrices June 10, 2015 11 / 27



Matrix Intervals

Interval Property

We say that a class C of n-by-n matrices possesses the interval property if
for any n-by-n interval matrix [A] = [A,A] = ([aij , aij ])i ,j=1,...,n the
membership [A] ⊆ C can be inferred from the membership to C of a
specified set of its vertex matrices.
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Classes of matrices possessing the interval property

M-matrices or, more generally, inverse-nonnegative matrices
[Kuttler, 1971], where only the bound matrices A and A are required
to be in the class;

inverse M-matrices [Johnson and Smith, 2002], where all vertex
matrices are needed;

positive definite matrices [Bialas and Garloff, 1984], [Rohn, 1994],
where a subset of cardinality 2n−1 is required (here only symmetric
matrices in [A] are considered).
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In the following classes of matrices only ↓ A and ↑ A are needed:

SSR matrices [Garloff, 1982], [Adm and Garloff].

The following classes of matrices [Adm and Garloff, 2013],
[Adm and Garloff]:

nonsingular ASSR matrices,
nonsingular tridiagonal SR matrices,
nonsingular totally nonnegative,
tridiagonal TN matrices,
nonsingular totally nonpositive.
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Garloff’s Conjecture [Garloff, 1982]

[Garloff, 1982]

If ↓ A and ↑ A are non-singular and totally nonnegative then the whole
matrix interval [↓ A, ↑ A]∗ is non-singular and totally nonnegative.
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Cauchon Algorithm [Launois and Lenagan, 2014]

We denote by ≤ the lexicographic order on N2, i.e.,

(g , h) ≤ (i , j) :⇔ (g < i) or (g = i and h ≤ j).

Set E ◦ := {1, ..., n}2 \ {(1, 1)}, E := E ◦ ∪ {(n + 1, 2)}.
Let (s, t) ∈ E ◦ . Then
(s, t)+ := min {(i , j) ∈ E | (s, t) ≤ (i , j), (s, t) 6= (i , j)}.
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Algorithm

Let A ∈ Rn,n. As r runs in decreasing order over the set E , we define

matrices A(r) = (a
(r)
ij ) ∈ Rn,n as follows.

1. Set A(n+1,2) := A.

2. For r = (s, t) ∈ E ◦:

(a) if a
(r+)
st = 0 then put A(r) := A(r+).

(b) if a
(r+)
st 6= 0 then put

a
(r)
ij :=

 a
(r+)
ij − a

(r+)
it a

(r+)
sj

a
(r+)
st

for i < s and j < t,

a
(r+)
ij otherwise.

3. Set Ã := A(1,2) is called the matrix obtained from A (by the Cauchon
Algorithm).
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Example

If n = 5 and A is totally positive, then

Ã =



[12345]
[2345]

[1234|2345]
[234|345]

[123|345]
[23|45]

[12|45]
[2|5] a15

[2345|1234]
[345|234]

[2345]
[345]

[234|345]
[34|45]

[23|45]
[3|5] a25

[345|123]
[45|23]

[345|234]
[45|34]

[345]
[45]

[34|45]
[4|5] a35

[45|12]
[5|2]

[45|23]
[5|3]

[45|34]
[5|4]

[45]
[5] a45

a51 a52 a53 a54 a55


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Theorem [Goodearl, Launois and Lenagan, 2011],
[Adm and Garloff, 2013]

A is totally nonnegative iff 0 ≤ Ã and for all i , j = 1, . . . , n
ãij = 0 ⇒ ãik = 0 k = 1, . . . , j − 1, or ãkj = 0 k = 1, . . . , i − 1.

Ã =



0

or →
...

↓ 0

0 . . . 0


If A is totally nonnegative matrix then A is nonsingular iff
0 < diag(Ã).
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Theorem [Adm and Garloff, 2013]

Let A,B be nonsingular and totally nonnegative matrices and let
A ≤∗ Z ≤∗ B. Then

1. Ã ≤∗ Z̃ ≤∗ B̃;

2. Z is nonsingular and totally nonnegative;

3. if A,B possess the same pattern of zero minors then Z has this
pattern, too.
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The assumption of nonsingularity of certain principal minors cannot be
relaxed:

A :=


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ≤∗ Z :=


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

 ≤∗ B :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


totally nonnegative has a negative minor totally nonnegative
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Corollary [Adm and Garloff, 2013]

Let A,B,Z ∈ Rn,n with A ≤∗ Z ≤∗ B. If A,B are totally nonnegative and

A[2, . . . , n] and B[2, . . . , n]

or
A[1, . . . , n − 1] and B[1, . . . , n − 1]

are nonsingular, then Z is totally nonnegative, too.
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Open Problem

Conjecture [Adm and Garloff]

Assume that ↓ A and ↑ A are nonsingular and SR matrices, then
[↓ A, ↑ A]∗ is nonsingular and SR?

A partial result

It was shown in [Garloff, 1996] that the conclusion is true if we consider
instead of the two bound matrices a set of vertex matrices with the
cardinality of at most 22n−1 (n being the order of the matrices).
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