Gaussian Nonlinear set inversion

Jeremy Nicola^{1,2} and Luc Jaulin¹

¹ ENSTA Bretagne (ex ENSIETA), STIC/OSM, Lab-STICC/CID/IHSEV, 2 Rue F. Verny, 29806, Brest Cedex 9, France {luc.jaulin}@ensta-bretagne.fr ² iXBlue, Rue Rivoalon, Sainte Anne du Portzic, 29200, Brest, France jeremy.nicola@ensta-bretagne.org

Keywords: interval, parameter estimation, state estimation, set-inversion, hybridization, contractors

Introduction

In this presentation, we treat the problem of estimating the parameters of a nonlinear model from experimental data in a reliable and precise manner. Using interval analysis, we are able to compute the set of all the parameters that are consistent with a given probability with the experimental data. Using statistical properties of the uncertainties associated with each measurement, we will show that a geometrical constraint can be extracted that enables us to drastically reduce size of the solution set.

Description

Let $\tilde{\mathbf{y}} \in \mathbb{R}^n$ be the vector of all the collected data, and $\mathbf{p} \in \mathbb{R}^m$ the parameters we want to estimate which parametrize a function $\mathbf{f}(\mathbf{p})$.

In the context of a bounded-error model, each measurement \tilde{y}_i is associated to an interval $[y_i]$ which is assumed to contain the true value y_i , and the vector of intervals $[\mathbf{y}]$ defines the set \mathbb{Y} which is an n-dimensional axis-aligned box. Then, the problem to be solved is characterizing the set S of all values of **p** consistent with the data:

$$\mathbb{S} = \{\mathbf{p} \in \mathbb{R}^m | \mathbf{f}(\mathbf{p}) \in \mathbb{Y}\} = \mathbf{f}^{-1}(\mathbb{Y})$$

which is a set-inversion problem and can be efficiently solved using interval analysis [1], [2].

These methods are reliable, in the sense that no approximation, no linearization is made on the model, and guarantees that not a single feasible solution will be lost.

However the bounded-error assumption, while compatible with an infinity of probability distribution, doesn't take into acount the statistical properties of the perturbation on each measurements y_i . In [3], a method is proposed that allows to compute the set of all the parameters that are consistent with a given probability with a set of measurements, while taking into account the statistical properties of the perturbation.

We will study the widespread case where each measurement y_i is subject to a normaly distributed perturbation w_i , that is: $\tilde{y}_i = y_i + w_i$.

In this case, the set \mathbb{Y} is not a box anymore, but an n-dimensional ellipsoid which expression is given by:

$$\mathbb{Y} = \{\mathbf{y} | (\tilde{\mathbf{y}} - \mathbf{y}) \mathbf{Q}^{-1} (\tilde{\mathbf{y}} - \mathbf{y})^T \le \alpha(\eta) \}$$

with $\alpha(\eta)$ a confidence threshold depending on a given probability η of $\tilde{\mathbf{y}}$ being in \mathbb{Y} , and \mathbf{Q} the covariance matrix of the random vector \mathbf{w} .

The set-inversion problem now consists of inverting an ellipsoid, whose volume, as will be shown, is much smaller than the volume of its n-dimensional box counterpart.

As will be presented, this additional constraint will greatly enhance the precision of the estimation, in the sense that the set S will be much smaller.

The improvements will be presented on some test-cases.

References

- [1] L. JAULIN, M. KIEFFER, O. DIDRIT AND E. WALTER, Applied Interval Analysis with Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, 2001.
- [2] L. JAULIN AND E. WALTER, Guaranteed Nonlinear Parameter Estimation via Interval Computations, Interval Computations 3:61– 75, 1993.
- [3] L. JAULIN, Probabilistic set-membership estimation, Second Workshop on Principles and Methods of Statistical Inference with Interval Probability, 2009