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The problem

A subspace U ∈ Cn×k is called invariant under H ∈ Cn×n if Hu is in
U for all u in U [1]. The invariant subspace problem can be stated
as finding U ∈ Cn×k and R ∈ Ck×k such that HU = UR, and the
eigenvalues of R are a specified subset of those of H.

If one constrains U to be in the form U =

[
Ik×k

X(n−k)×k

]
, the problem

of finding an invariant subspace can be recast as a non-Hermitian
algebraic Riccati equation (NARE)

F (X) := Q+XA+ ÃX −XGX = 0, (1)

where H =

[
Ak×k −Gk×(n−k)

−Q(n−k)×k −Ã(n−k)×(n−k)

]
and R = A−GX.

Permuted graph bases

An idea reappeared recently in the matrix equation community [3] is
that by applying a suitable permutation of the entries one can get an
equation in which the solution X has smaller entries.



Theorem 1 ([2]). Let U ∈ Cn×k have full column rank. Then, there
exists a permutation matrix P ∈ Rn×n so that the top k×k submatrix E

of P TU =

[
E
A

]
is nonsingular, and the matrix Z = AE−1 ∈ R(n−k)×k

is such that |Zij| ≤ 1 for all i, j.

By constructing this permutation P , we can replace the original
NARE (1) with the one associated with H̃ = PHP T , whose solution
Z has smaller entries.

An efficient enclosure for the solutions to NAREs

From now on we focus on the NARE(1). We wish to use the following
classical result to find an enclosure for the solution X.

Theorem 2 ([4] (modified Krawczyk method)). Assume that f : D ⊂
CN → CN is continuous in D. Let x̃ ∈ D and z ∈ ICN be such
that x̃+ z ⊆ D. Moreover, assume that S ⊂ CN×N is a set of matrices
containing all slopes S(x̃, y) for y ∈ x̃+z := x. Finally, let R ∈ CN×N .
Denote by Kf(x̃, R, z,S) the set

Kf(x̃, R, z,S) := {−Rf(x̃) + (I −RS)z : S ∈ S, z ∈ z}.

Then, if
Kf(x̃, R, z,S) ⊆ int z,

the function f has a zero x∗ in x̃+Kf(x̃, R, z,S) ⊆ x. Moreover, if S
also contains all slope matrices S(x, y) for x, y ∈ x, then this zero is
unique in x.

The recent works [5, 6] have successfully applied the modified Krawczyk
method to several matrix equations, adding some crucial issues:

1. Let
A−GX = V1Λ1W1; withV1,W1,Λ1 ∈ Ck×k,

Λ1 = Diag(λ11, . . . , λk1), V1W1 = I,



and

Ã∗ −G∗X∗ = V2Λ2W2; withV2,W2,Λ2 ∈ C(n−k)×(n−k),

Λ2 = Diag(λ12, . . . , λ(n−k)2), V2W2 = I.

Then, set

R = (V −T1 ⊗W ∗
2 ).∆−1.(V T

1 ⊗W−∗
2 ), where ∆ = I ⊗ Λ∗2 + ΛT

1 ⊗ I.

This choice of R is so that its computation can be performed in
O(n3), rather than the O(n5) obtained by vectorization without
this improvement.

2. To reduce the problematic wrapping effect of interval arithmetic,
use f̂ as a linearly transformed function instead of f

f̂(x̂) = (V T
1 ⊗W−∗

2 )f((V −T1 ⊗W ∗
2 )x̂),

where (V −T1 ⊗W ∗
2 )x̂ = x.

We combine ideas from these two approaches to obtain an algorithm
that can find enclosures for a larger class of problems in our experi-
ments. A suitable modification of the ideas in Theorem 1 [3] can be
used to work with structured invariant subspace problems and Hermi-
tian algebraic Riccati equations (CAREs).
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