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Ramsey property

Definition
A class K of finite (first order) structures has the Ramsey property (= is
Ramsey) when for any:

I X ∈ K (small structure, to be colored),

I Y ∈ K (medium structure, to be reconstituted),

I k ∈ N (number of colors),

there exists Z ∈ K (very large structure) such that:

Z −→ (Y )Xk .

i.e. whenever copies of X in Z are colored with k colors,
there is Ỹ ∼= Y where all copies of X have same color.
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Examples and non examples of Ramsey classes

The following are Ramsey classes:

I Finite sets (Ramsey, 30).

I Finite Boolean algebras (Graham-Rothschild, 71).

I Finite vector spaces (Graham-Leeb-Rothschild, 72).

The following are NOT Ramsey classes:

I Finite graphs, finite relational structures in a fixed countable language.

I Finite Kn-free graphs.

I Finite posets.

I Finite equivalence relations.

...BUT...
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Non-examples of Ramsey classes

...They can be expanded into Ramsey classes:

I Finite graphs, finite relational structures in a fixed countable
language: Add arbitrary linear orderings (Nešeťril-Rödl, 77;
Abramson-Harrington, 78).

I Finite Kn-free graphs: Arbitrary linear orderings (Nešeťril-Rödl, 83).

I Finite posets: Linear extensions (Nešeťril-Rödl, 84).

I Finite equivalence relations: Convex linear orderings (Rado, 54).

Those results do have a substantial combinatorial content. In some sense,
those classes are “close” to be Ramsey.

Question
Can we formalize this notion of being “close to be Ramsey” more
precisely?
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G -flows

Definition
Let G be a Hausdorff topological group.
A G -flow is a continuous action of G on a compact Hausdorff space X .
Notation: G y X .
G y X is minimal when every x ∈ X has dense orbit in X :

∀x ∈ X G · x = X

G y X is universal when:

∀G y Y minimal, ∃π : X −→ Y continuous, onto, and so that
∀g ∈ G ∀x ∈ X π(g · x) = g · π(x).

“Every minimal G -flow is a continuous image of G y X .”
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Universal minimal flow

Theorem (Folklore)

Let G be a Hausdorff topological group.
Then there is a unique G-flow that is both minimal and universal.
Notation: G y M(G ).

Remark

I When G is compact, M(G ) = G with action on itself by left
translation.

I When G is not compact:

I M(G ) may be not metrizable (E.g. G locally compact)
I M(G ) may be a singleton, G is then called extremely amenable (eg:

Aut(Q, <), Pestov, 98).
I M(G ) may be metrizable (eg: M(S∞) = S∞ y LO(N), Glasner-Weiss,

02)
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Kechris-Pestov-Todorcevic theorem

Theorem (Kechris-Pestov-Todorcevic, 05)

Let K be a Fräıssé class whose elements are rigid (have no non-trivial
automorphisms). Let F be its Fräıssé limit. TFAE:

i) Aut(F) is extremely amenable.

ii) K has the Ramsey property.

Question
Is there a similar theorem for those Fräıssé classes that admit a Ramsey
expansion?
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A trivial answer

Proposition

Every Fräıssé class K admits a Ramsey expansion.

Proof.
Consider F = {xn : n ∈ N}, the Fräıssé limit of K. Expand it with
countably many unary relations A∗n, n ∈ N:

A∗n(x)⇔ x = xn.

Then F∗ := (F, (A∗n)n∈N) is rigid, and the class of its finite substructures is
a Ramsey expansion of K.

Of course, the above result has empty combinatorial content. We must
rephrase the question and ask which classes admit “non-trivial”
expansions.
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Only linear orderings?

I In view of the aforementioned classical results, expansions by linear
orderings should definitely by considered as “non-trivial”.

I But we should allow more: Recall that the dense local order S(2) is
the tournament defined by:
Vertices: Rational points of S1 (no antipodal pair).
Arcs: x → y iff (counterclockwise angle from x to y) < π.
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I For a linear ordering < on S(2), the class of finite substructures of
(S(2), <) is never Ramsey: there is 2-coloring of the vertices with no
monochromatic 3-cycle, namely, left and right part.
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The case of S(2)

I Ramsey property holds if S(2) is enriched differently:

&%
'$S1 S2

I Key fact: (S(2), S1,S2) ∼= (Q,Q1,Q2, <), Q1,Q2 dense subsets of Q
(Reversing the arcs between points in different parts).

I The corresponding class of finite substructures is Ramsey, and not for
trivial reasons.
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Precompact expansions

Definition
Let K be a class of finite structures in some some language L, K∗ an
expansion of K in a language L∗ ⊃ L. Then K∗ is a precompact expansion
of K when every element of K only has finitely many expansions in K∗.

Theorem
Let K be a Fräıssé class. Call F the corresponding Fräıssé limit and set
G = Aut(F). TFAE:

1. K admits a Fräıssé, precompact expansion K∗ that is Ramsey and has
rigid elements.

2. M(G ) is metrizable and has a generic orbit.

3. G admits a closed, extremely amenable subgroup G ∗ such that G/G ∗

is precompact.
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What the theorem says

I Admitting a precompact Ramsey expansion seems to be a reasonable
notion for “being close to Ramsey”, and suggests that many other
non trivial Ramsey theorems could be found: start from your favorite
Fräıssé class, and try to expand it in a precompact way to make it
Ramsey!

I Item 3 indicates that looking for a large extremely amenable subgroup
is the right thing to do in order to prove that a universal minimal flow
is metrizable (this method is due to Pestov, and is so far the most
powerful one to compute universal minimal flows in concrete cases).
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A few words on the proof

I 1⇒2 and 3⇒1 are essentially due to KPT. 2⇒3 uses other facts.

I 1⇒2: Given K∗, refine it into a precompact Ramsey K∗∗ with the
so-called the Expansion Property. Ramsey ensures that the flow

Ĝ/G ∗∗ is precompact, Expansion property ensures that it is minimal.

I 2⇒3: Let H be the stabilizer of some point in the generic orbit of
M(G ).

i) G/H is precompact. Proved by showing that the Samuel
compactification of G/H is a continuous image of M(G ), hence
metrizable.

ii) The pair (G ,H) is relatively extremely amenable (every continuous
G -action on a compact space has an H-fixed point). Due to the fact
that H is contained in a stabilizer of a point of M(G ).

iii) There is a closed extremely amenable sugbroup G∗ of G containing H.

I 3⇒1: Take K∗ corresponding to G ∗.
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Which Fräıssé classes have Fräıssé precompact Ramsey
expansions?

The following admit Fräıssé precompact Ramsey expansions:

I All Fräıssé classes of finite graphs (based on known results).

I All Fräıssé classes of finite tournaments
(idem+Laflamme-NVT-Sauer).

I All Fräıssé classes of finite posets (based on work of Sokić).

I In fact, apparently, all Fräıssé classes of finite directed graphs!
(Jasiński-Laflamme-NVT).

Conjecture

Every Fräıssé class with finitely many isomorphism types in each
cardinality have a Fräıssé precompact Ramsey expansion. Equivalently,
every oligomorphic closed subgroup of S∞ has a metrizable universal
minimal flow with a generic orbit.
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About the conjecture

My view on the conjecture:

I Test it on any specific case.

I Test it on any class of structures where a classification result is known
(e.g. Fräıssé classes of n-tournaments).

I There are known counterexamples when G is not oligomorphic (e.g
Aut(Z, <Z, dZ) = Z)

I Would say that Ramsey classes are not so rare after all, and that
there are plenty of interesting combinatorial cases to be discovered.

I Will not say anything about how to expand Fräıssé class into Ramsey
classes in practice (so no risk of losing your job if you are working in
structural Ramsey theory).

I So far, the most reasonable attempt of proof is from topological
dynamics, as the combinatorics still exhibits a variety of seemingly
different situations.
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