# The minimal flows of $S_{\infty}$

**Todor Tsankov** 

Université Paris Diderot - Paris 7

Second Workshop on Homogeneous Structures, Prague, July 2012

### **Minimal flows**

G — topological group.

A G-flow,  $G \sim X$ , is a compact Hausdorff space X equipped with a continuous action of G.

Morphisms: if X and Y are G-flows, a homomorphism from X to Y is a continuous map  $\pi: X \to Y$  that commutes with the G-actions, i.e.

 $\pi(g \cdot x) = g \cdot \pi(x)$  for all  $x \in X, g \in G$ .

### **Minimal flows**

G — topological group.

A G-flow,  $G \sim X$ , is a compact Hausdorff space X equipped with a continuous action of G.

Morphisms: if X and Y are G-flows, a homomorphism from X to Y is a continuous map  $\pi: X \to Y$  that commutes with the G-actions, i.e.

 $\pi(g \cdot x) = g \cdot \pi(x)$  for all  $x \in X, g \in G$ .

A flow is minimal if it has no proper subflows or, equivalently, if every orbit is dense.

Compactness + Zorn's lemma  $\implies$  every flow contains a minimal subflow.

Minimal flows are some of the main objects of study in topological dynamics.

# The universal minimal flow

For every group *G*, there exists a universal minimal *G*-flow (a minimal *G*-flow that maps onto any other minimal *G*-flow). For example, one can take any minimal subflow of the product

 $\prod \{M : M \text{ is a minimal } G\text{-flow}\}.$ 

It is a standard theorem that the universal property characterizes the universal minimal flow up to isomorphism.

# The universal minimal flow

For every group *G*, there exists a universal minimal *G*-flow (a minimal *G*-flow that maps onto any other minimal *G*-flow). For example, one can take any minimal subflow of the product

 $\prod \{M : M \text{ is a minimal } G\text{-flow}\}.$ 

It is a standard theorem that the universal property characterizes the universal minimal flow up to isomorphism.

Alternatively, if G is discrete, the pointed flow  $(\beta G, 1_G)$  is a universal pointed flow for G, i.e. for every flow  $G \curvearrowright X$  and every  $x_0 \in X$ , there exists a homomorphism

 $\pi: \beta G \to X$  such that  $\pi(1_G) = x_0$ .

Consequently, any minimal subflow of  $\beta G$  is universal for all the minimal flows.

## The universal minimal flow (cont.)

We see that in this case, the universal minimal flow is non-metrizable and not amenable to a concrete description. This is reflected by the large variety of minimal flows that exist for discrete groups. For example, studying (minimal) subflows of the shift  $\mathbb{Z} \sim 2^{\mathbb{Z}}$  is a subject of its own (symbolic dynamics).

## The universal minimal flow (cont.)

We see that in this case, the universal minimal flow is non-metrizable and not amenable to a concrete description. This is reflected by the large variety of minimal flows that exist for discrete groups. For example, studying (minimal) subflows of the shift  $\mathbb{Z} \sim 2^{\mathbb{Z}}$  is a subject of its own (symbolic dynamics).

If G is compact, then every minimal G-flow is transitive, that is, of the form  $G \sim G/H$ , where H is a closed subgroup of G and the universal minimal flow is the left action of G on itself.

## The universal minimal flow (cont.)

We see that in this case, the universal minimal flow is non-metrizable and not amenable to a concrete description. This is reflected by the large variety of minimal flows that exist for discrete groups. For example, studying (minimal) subflows of the shift  $\mathbb{Z} \sim 2^{\mathbb{Z}}$  is a subject of its own (symbolic dynamics).

If G is compact, then every minimal G-flow is transitive, that is, of the form  $G \curvearrowright G/H$ , where H is a closed subgroup of G and the universal minimal flow is the left action of G on itself.

Another case in which the situation trivializes is when the group *G* is **extremely amenable**, i.e. its universal minimal flow is a singleton. This turns out to be the case for many symmetry groups of continuous objects (the infinite-dimensional unitary group, the group of measure-preserving transformations of the interval, etc.)

# The universal minimal flow of $S_{\infty}$

 $S_{\infty}$  is the group of all permutations of the natural numbers, equipped with the pointwise convergence topology: a basis at the identity is given by the open subgroups

$$V_n = \{g \in S_\infty : g \cdot i = i \text{ for all } i = 0, ..., n-1\}.$$

### The universal minimal flow of $S_{\infty}$

 $S_{\infty}$  is the group of all permutations of the natural numbers, equipped with the pointwise convergence topology: a basis at the identity is given by the open subgroups

$$V_n = \{g \in S_\infty : g \cdot i = i \text{ for all } i = 0, \dots, n-1\}.$$

The set

$$LO = \{x \in 2^{N \times N} : x \text{ is a linear order}\}\$$

is a compact subset of  $2^{N \times N}$  on which  $S_{\infty}$  acts via the logic action:

$$a <_{g \cdot x} b \iff g^{-1} \cdot a <_x g^{-1} \cdot b, \quad g \in S_{\infty}, x \in LO, a, b \in \mathbf{N}.$$

## The universal minimal flow of $S_{\infty}$

 $S_{\infty}$  is the group of all permutations of the natural numbers, equipped with the pointwise convergence topology: a basis at the identity is given by the open subgroups

$$V_n = \{g \in S_\infty : g \cdot i = i \text{ for all } i = 0, ..., n-1\}.$$

The set

$$LO = \{x \in 2^{N \times N} : x \text{ is a linear order}\}\$$

is a compact subset of  $2^{N \times N}$  on which  $S_{\infty}$  acts via the logic action:

$$a <_{g \cdot x} b \iff g^{-1} \cdot a <_x g^{-1} \cdot b, \quad g \in S_{\infty}, x \in LO, a, b \in \mathbf{N}.$$

The action is minimal: if  $U \subseteq LO$  is the open set 0 < 1 < 2 < 3 and  $x \in LO$  is such that  $3 <_x 2 <_x 0 <_x 1$ , then there is an obvious permutation g that sends x in U.

# The universal minimal flow of $S_{\infty}$ (cont.)

#### Theorem (Glasner–Weiss)

The flow  $S_{\infty} \curvearrowright \text{LO}$  is the universal minimal flow of  $S_{\infty}$ .

Let  $\eta_0 \in \text{LO}$  be a linear order isomorphic to  $(\mathbf{Q}, <)$ . For  $x \in \text{LO}$ ,  $x \in S_{\infty} \cdot \eta_0$  iff x is isomorphic to  $\eta_0$  iff

$$\forall a, b \exists c \quad a <_x c <_x b;$$
 and  
 $\forall a \exists b, c \quad b <_x a <_x c,$ 

which shows that the orbit  $S_{\infty} \cdot \eta_0$  is  $G_{\delta}$ .

# The universal minimal flow of $S_{\infty}$ (cont.)

#### Theorem (Glasner–Weiss)

The flow  $S_{\infty} \curvearrowright LO$  is the universal minimal flow of  $S_{\infty}$ .

Let  $\eta_0 \in \text{LO}$  be a linear order isomorphic to  $(\mathbf{Q}, <)$ . For  $x \in \text{LO}$ ,  $x \in S_{\infty} \cdot \eta_0$  iff x is isomorphic to  $\eta_0$  iff

$$\forall a, b \exists c \quad a <_x c <_x b;$$
 and  
 $\forall a \exists b, c \quad b <_x a <_x c,$ 

which shows that the orbit  $S_{\infty} \cdot \eta_0$  is  $G_{\delta}$ .

Let *H* be the stabilizer of  $\eta_0$  in  $S_\infty$ . Then *H* is isomorphic to Aut( $\mathbf{Q}$ , <) and

#### Theorem (Pestov)

The group  $Aut(\mathbf{Q}, <)$  is extremely amenable.

# The universal minimal flow of $S_{\infty}$ (proof)

Say that the homogeneous space G/H is precompact if the natural uniformity, whose entourages of the diagonal are

 $\mathcal{U}_V = \{(gH, vgH) : v \in V, g \in G\}, V \text{ is a symmetric nbhd of } 1_G,$ 

is precompact. Equivalently, for every open V, there exists a finite F such that VFH = G.

For  $G \leq S_{\infty}$ ,  $S_{\infty}/G$  is precompact iff  $G \sim \mathbf{N}$  is oligomorphic.

# The universal minimal flow of $S_{\infty}$ (proof)

Say that the homogeneous space G/H is precompact if the natural uniformity, whose entourages of the diagonal are

 $\mathcal{U}_V = \{(gH, vgH) : v \in V, g \in G\}, V \text{ is a symmetric nbhd of } 1_G,$ 

is precompact. Equivalently, for every open V, there exists a finite F such that VFH = G.

For  $G \leq S_{\infty}$ ,  $S_{\infty}/G$  is precompact iff  $G \curvearrowright \mathbf{N}$  is oligomorphic.

H — the stabilizer of  $\eta_0$  in LO.  $S_\infty/H$  is precompact. It is not difficult to check that

$$(S_{\infty} \curvearrowright \widehat{S_{\infty}/H}) \cong (S_{\infty} \curvearrowright \mathrm{LO}).$$

# The universal minimal flow of $S_{\infty}$ (proof)

Say that the homogeneous space G/H is precompact if the natural uniformity, whose entourages of the diagonal are

 $\mathcal{U}_V = \{(gH, vgH) : v \in V, g \in G\}, V \text{ is a symmetric nbhd of } 1_G,$ 

is precompact. Equivalently, for every open V, there exists a finite F such that VFH = G.

For  $G \leq S_{\infty}$ ,  $S_{\infty}/G$  is precompact iff  $G \curvearrowright \mathbf{N}$  is oligomorphic.

H — the stabilizer of  $\eta_0$  in LO.  $S_{\infty}/H$  is precompact. It is not difficult to check that

$$(S_{\infty} \curvearrowright \widehat{S_{\infty}/H}) \cong (S_{\infty} \curvearrowright \mathrm{LO}).$$

Let now  $S_{\infty} \curvearrowright X$  be any flow. As H is extremely amenable, there exists  $x_0 \in X$  fixed by H. Define a map  $\phi: S_{\infty}/H \to X$  by  $\phi(gH) = g \cdot x_0$ .  $\phi$  is uniformly continuous and extends to a map  $\hat{\phi}: LO \to X$ .

### Invariant closed equivalence relations

As LO is the universal minimal flow for  $S_{\infty}$ , for any other minimal flow X, there exists a quotient  $S_{\infty}$ -map  $\pi: LO \to X$ . To every such map corresponds an equivalence relation  $\Re_{\pi}$  on LO defined by

$$x \mathfrak{R}_{\pi} y \iff \pi(x) = \pi(y).$$

 $\mathcal{R}_{\pi}$  is an invariant, closed equivalence relation, icer for short. Conversely, any icer gives a quotient of LO.

## Invariant closed equivalence relations

As LO is the universal minimal flow for  $S_{\infty}$ , for any other minimal flow X, there exists a quotient  $S_{\infty}$ -map  $\pi: LO \to X$ . To every such map corresponds an equivalence relation  $\mathcal{R}_{\pi}$  on LO defined by

$$x \mathfrak{R}_{\pi} y \iff \pi(x) = \pi(y).$$

 $\mathcal{R}_{\pi}$  is an invariant, closed equivalence relation, icer for short. Conversely, any icer gives a quotient of LO.

Classifying the minimal flows of  $S_{\infty}$  therefore boils down to classifying the icers on LO.

It turns out that there are only countably many such icers, each one of them can be generated by a single pair  $(x, y) \in LO \times LO$ , and each quotient can be expressed as the set of models of a universal theory (like the theory of linear orders) and is, in particular, zero-dimensional.

## Quotients coming from groups

We define certain  $S_{\infty}$ -maps  $\pi: LO \to 2^{\mathbb{N}^k}$ . Then  $\pi(LO)$  is a minimal flow of  $S_{\infty}$ .

the betweenness relation (BR) (k = 3)

$$B_x(a,b,c) \iff (a <_x b <_x c) \lor (c <_x b <_x a);$$

• the circular order (CO) (k = 3)

$$K_x(a,b,c) \iff (a <_x b <_x c) \lor (b <_x c <_x a) \lor (c <_x a <_x b);$$

• the separation relation (SR) (k = 3)

$$S_x(a,b,c,d) \iff (K_x(a,b,c) \land K_x(b,c,d) \land K_x(c,d,a)) \lor \\ (K_x(d,c,b) \land K_x(c,b,a) \land K_x(b,a,d))$$

# The rest

• 
$$LO_{m,n} (k = m + n + 1)$$

$$P_{m,n}^{x}(a_{1},\ldots,a_{m},b,c_{1},\ldots,c_{n}) \iff (\bar{a} <_{x} b <_{x} \bar{c}) \land (\bigwedge_{i\neq j} a_{i} \neq a_{j}) \land (\bigwedge_{i\neq j} c_{i} \neq c_{j}).$$

Two linear orders which are identified in LO<sub>2,1</sub>:



## The rest

• 
$$LO_{m,n} (k = m + n + 1)$$

$$P_{m,n}^{x}(a_{1},\ldots,a_{m},b,c_{1},\ldots,c_{n}) \iff (\bar{a} <_{x} b <_{x} \bar{c}) \land (\bigwedge_{i\neq j} a_{i} \neq a_{j}) \land (\bigwedge_{i\neq j} c_{i} \neq c_{j}).$$

Two linear orders which are identified in LO<sub>2,1</sub>:



• 
$$BR_n = LO_{n,n}/flip (k = 2n + 1)$$

$$Q_n^x(a_1,\ldots,a_n,b,c_1,\ldots,c_n) \iff P_{n,n}^x(\bar{a},b,\bar{c}) \vee P_{n,n}^x(\bar{c},b,\bar{a}).$$

# The complete picture

÷



The arrows represent all possible homomorphisms between the flows.

÷

## History

 Frasnay in 1965 classifies certain sequences of finite groups related to "bi-orders" (sets carrying two linear orders), a classification that basically amounts to the picture above;

## History

- Frasnay in 1965 classifies certain sequences of finite groups related to "bi-orders" (sets carrying two linear orders), a classification that basically amounts to the picture above;
- Cameron in 1976 (unaware of the work of Frasnay) classifies all groups between Aut(Q, <) and S<sub>∞</sub> (the red nodes of the diagram);
- Hodges, Lachlan and Shelah in 1977 independently prove a theorem about indiscernibles that also amounts to a special case of Frasnay's work.