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Minimal flows

G— topological group.

AG-flow,G ↷ X, is a compact Hausdorff space X equipped with a
continuous action ofG.

Morphisms: if X and Y areG-flows, a homomorphism from X to Y is
a continuous map π∶X→ Y that commutes with theG-actions, i.e.

π(g ⋅ x) = g ⋅ π(x) for all x ∈ X, g ∈ G.

A flow is minimal if it has no proper subflows or, equivalently, if
every orbit is dense.

Compactness + Zorn’s lemma Ô⇒ every flow contains a minimal
subflow.

Minimal flows are some of the main objects of study in topological
dynamics.
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The universal minimal flow

For every groupG, there exists a universal minimalG-flow (a
minimalG-flow that maps onto any other minimalG-flow). For
example, one can take any minimal subflow of the product

∏{M ∶ M is a minimalG-flow}.

It is a standard theorem that the universal property characterizes
the universal minimal flow up to isomorphism.

Alternatively, ifG is discrete, the pointed flow (βG, 1G) is a universal
pointed flow forG, i.e. for every flowG ↷ X and every x0 ∈ X, there
exists a homomorphism

π∶ βG → X such that π(1G) = x0.

Consequently, any minimal subflow of βG is universal for all the
minimal flows.
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The universal minimal flow (cont.)

We see that in this case, the universal minimal flow is
non-metrizable and not amenable to a concrete description.

This is reflected by the large variety of minimal flows that exist for
discrete groups. For example, studying (minimal) subflows of the
shift Z↷ 2Z is a subject of its own (symbolic dynamics).

IfG is compact, then every minimalG-flow is transitive, that is, of
the formG ↷ G/H, whereH is a closed subgroup ofG and the
universal minimal flow is the left action ofG on itself.

Another case in which the situation trivializes is when the groupG
is extremely amenable, i.e. its universal minimal flow is a singleton.
This turns out to be the case for many symmetry groups of
continuous objects (the infinite-dimensional unitary group, the
group of measure-preserving transformations of the interval, etc.)
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The universal minimal flow of S∞

S∞ is the group of all permutations of the natural numbers,
equipped with the pointwise convergence topology: a basis at the
identity is given by the open subgroups

Vn = {g ∈ S∞ ∶ g ⋅ i = i for all i = 0, . . . ,n − 1}.

The set
LO = {x ∈ 2N×N ∶ x is a linear order}

is a compact subset of 2N×N on which S∞ acts via the logic action:

a <g⋅x b ⇐⇒ g−1 ⋅ a <x g−1 ⋅ b, g ∈ S∞,x ∈ LO,a,b ∈ N.

The action is minimal: ifU ⊆ LO is the open set 0 < 1 < 2 < 3 and
x ∈ LO is such that 3 <x 2 <x 0 <x 1, then there is an obvious
permutation g that sends x inU.
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The universal minimal flow of S∞ (cont.)

Theorem (Glasner–Weiss)

The flow S∞ ↷ LO is the universal minimal flow of S∞.

Let η0 ∈ LO be a linear order isomorphic to (Q,<). For x ∈ LO,
x ∈ S∞ ⋅ η0 iff x is isomorphic to η0 iff

∀a,b ∃c a <x c <x b; and

∀a ∃b, c b <x a <x c,

which shows that the orbit S∞ ⋅ η0 isGδ.

LetH be the stabilizer of η0 in S∞. ThenH is isomorphic to
Aut(Q,<) and

Theorem (Pestov)

The group Aut(Q,<) is extremely amenable.
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The universal minimal flow of S∞ (proof)

Say that the homogeneous spaceG/H is precompact if the natural
uniformity, whose entourages of the diagonal are

UV = {(gH,vgH) ∶ v ∈ V , g ∈ G}, V is a symmetric nbhd of 1G,

is precompact. Equivalently, for every open V , there exists a finite F
such that VFH = G.
ForG ≤ S∞, S∞/G is precompact iffG ↷ N is oligomorphic.

H— the stabilizer of η0 in LO. S∞/H is precompact. It is not
difficult to check that

(S∞ ↷ Ŝ∞/H) ≅ (S∞ ↷ LO).

Let now S∞ ↷ X be any flow. AsH is extremely amenable, there
exists x0 ∈ X fixed byH. Define a map ϕ∶ S∞/H → X by
ϕ(gH) = g ⋅ x0. ϕ is uniformly continuous and extends to a map
ϕ̂∶LO→ X.
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Invariant closed equivalence relations

As LO is the universal minimal flow for S∞, for any other minimal
flow X, there exists a quotient S∞-map π∶LO→ X. To every such
map corresponds an equivalence relationRπ on LO defined by

xRπ y ⇐⇒ π(x) = π(y).

Rπ is an invariant, closed equivalence relation, icer for short.
Conversely, any icer gives a quotient of LO.

Classifying the minimal flows of S∞ therefore boils down to
classifying the icers on LO.

It turns out that there are only countably many such icers, each one
of them can be generated by a single pair (x, y) ∈ LO × LO, and
each quotient can be expressed as the set of models of a universal
theory (like the theory of linear orders) and is, in particular,
zero-dimensional.
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Quotients coming from groups

We define certain S∞-maps π∶LO→ 2N
k
. Then π(LO) is a minimal

flow of S∞.
▸ the betweenness relation (BR) (k = 3)

Bx(a,b, c) ⇐⇒ (a <x b <x c) ∨ (c <x b <x a);

▸ the circular order (CO) (k = 3)

Kx(a,b, c) ⇐⇒ (a <x b <x c) ∨ (b <x c <x a) ∨ (c <x a <x b);

▸ the separation relation (SR) (k = 3)

Sx(a,b, c,d) ⇐⇒ (Kx(a,b, c) ∧ Kx(b, c,d) ∧ Kx(c,d,a))∨
(Kx(d, c,b) ∧ Kx(c,b,a) ∧ Kx(b,a,d))



The rest

▸ LOm,n (k = m + n + 1)

Px
m,n(a1, . . . ,am,b, c1, . . . , cn) ⇐⇒

(ā <x b <x c̄) ∧ (⋀
i≠j

ai ≠ aj) ∧ (⋀
i≠j

ci ≠ cj).

Two linear orders which are identified in LO2,1:

...
0
..

1
..

1

..

0

▸ BRn = LOn,n/flip (k = 2n + 1)

Qx
n(a1, . . . ,an,b, c1, . . . , cn) ⇐⇒ Px

n,n(ā,b, c̄) ∨ Px
n,n(c̄,b, ā).
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The complete picture
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The arrows represent all possible homomorphisms between the
flows.



History

▸ Frasnay in 1965 classifies certain sequences of finite groups
related to “bi-orders” (sets carrying two linear orders), a
classification that basically amounts to the picture above;

▸ Cameron in 1976 (unaware of the work of Frasnay) classifies all
groups between Aut(Q,<) and S∞ (the red nodes of the
diagram);

▸ Hodges, Lachlan and Shelah in 1977 independently prove a
theorem about indiscernibles that also amounts to a special
case of Frasnay’s work.
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