TBA

Michael Pinsker

2nd Workshop on Homogeneous Structures

Prague 2012

Topological Birkhoff & Applications

Michael Pinsker

2nd Workshop on Homogeneous Structures

Prague 2012

Michael Pinsker (Paris 7)

Topological Birkhoff by Manuel Bodirsky and Michael Pinsker on arXiv since March 2012.

 Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras

- Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras
- Thus: Universal algebra meets model theory

- Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras
- Thus: Universal algebra meets model theory
- Corollary in the purely model theoretic language: Primitive positive interpretations

- Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras
- Thus: Universal algebra meets model theory
- Corollary in the purely model theoretic language: Primitive positive interpretations
- Applications to Constraint Satisfaction Problems with homogeneous templates

Topological Birkhoff by Manuel Bodirsky and Michael Pinsker on arXiv since March 2012.

- Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras
- Thus: Universal algebra meets model theory
- Corollary in the purely model theoretic language: Primitive positive interpretations
- Applications to Constraint Satisfaction Problems with homogeneous templates

Implication chain: ↓ Motivation chain: ↑

Part I: Birkhoff's theorem

An algebra is a structure with purely *functional* signature.

An algebra is a structure with purely *functional* signature. Let C be a class of algebras of the same signature τ .

An algebra is a structure with purely *functional* signature.

Let ${\mathbb C}$ be a class of algebras of the same signature $\tau.$

- P(C)... class of all products of algebras in C.
- S(C)... class of all subalgeras of algebras in C.
- $H(\mathcal{C})$... class of all homomorphic images of algebras in \mathcal{C} .

An algebra is a structure with purely *functional* signature.

Let ${\mathcal C}$ be a class of algebras of the same signature $\tau.$

- $P(\mathcal{C})$... class of all products of algebras in \mathcal{C} .
- $S(\mathcal{C})$... class of all subalgeras of algebras in \mathcal{C} .
- $H(\mathcal{C})$... class of all homomorphic images of algebras in \mathcal{C} .

Variety... class of τ -algebras closed under P, S, H.

An algebra is a structure with purely *functional* signature.

Let ${\mathcal C}$ be a class of algebras of the same signature $\tau.$

- $P(\mathcal{C})$... class of all products of algebras in \mathcal{C} .
- $S(\mathcal{C})$... class of all subalgeras of algebras in \mathcal{C} .
- $H(\mathcal{C})$... class of all homomorphic images of algebras in \mathcal{C} .

Variety... class of τ -algebras closed under P, S, H.

■ P^{fin}(C)... class of all *finite* powers of algebras in C.

An algebra is a structure with purely *functional* signature.

Let ${\mathcal C}$ be a class of algebras of the same signature $\tau.$

- $P(\mathcal{C})$... class of all products of algebras in \mathcal{C} .
- $S(\mathcal{C})$... class of all subalgeras of algebras in \mathcal{C} .
- $H(\mathcal{C})$... class of all homomorphic images of algebras in \mathcal{C} .

Variety... class of τ -algebras closed under P, S, H.

■ P^{fin}(C)... class of all *finite* powers of algebras in C.

Pseudovariety... class of τ -algebras closed under P^{fin}, S, H.

An algebra is a structure with purely *functional* signature.

Let ${\mathcal C}$ be a class of algebras of the same signature $\tau.$

- P(C)... class of all products of algebras in C.
- $S(\mathcal{C})$... class of all subalgeras of algebras in \mathcal{C} .
- $H(\mathcal{C})$... class of all homomorphic images of algebras in \mathcal{C} .

Variety... class of τ -algebras closed under P, S, H.

■ $P^{fin}(\mathcal{C})$... class of all *finite* powers of algebras in \mathcal{C} .

Pseudovariety... class of τ -algebras closed under P^{*fin*}, S, H.

Problem. Given an algebra \mathfrak{A} .

What is the variety / pseudovariety generated by 21?

An algebra is a structure with purely *functional* signature.

Let ${\mathcal C}$ be a class of algebras of the same signature $\tau.$

- P(C)... class of all products of algebras in C.
- $S(\mathcal{C})$... class of all subalgeras of algebras in \mathcal{C} .
- $H(\mathcal{C})$... class of all homomorphic images of algebras in \mathcal{C} .

Variety... class of τ -algebras closed under P, S, H.

■ $P^{fin}(\mathcal{C})$... class of all *finite* powers of algebras in \mathcal{C} .

Pseudovariety... class of τ -algebras closed under P^{fin}, S, H.

Problem. Given an algebra \mathfrak{A} .

What is the variety / pseudovariety generated by 21?

Fact (Birkhoff)

- The variety generated by \mathfrak{A} equals HSP(\mathfrak{A}).
- The pseudovariety generated by \mathfrak{A} equals HSP^{fin}(\mathfrak{A}).

Let \mathfrak{A} be a τ -algebra.

Let ${\mathfrak A}$ be a $\tau\text{-algebra}.$

Given τ -algebra \mathfrak{B} :

Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?

Let ${\mathfrak A}$ be a $\tau\text{-algebra}.$

Given τ -algebra \mathfrak{B} :

Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?

Every abstract τ -term *t* induces a function $t^{\mathfrak{A}}$ on \mathfrak{A} .

Let ${\mathfrak A}$ be a $\tau\text{-algebra}.$

Given τ -algebra \mathfrak{B} :

Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?

Every abstract τ -term *t* induces a function $t^{\mathfrak{A}}$ on \mathfrak{A} .

 $Clo(\mathfrak{A}) := \{ t^{\mathfrak{A}} : t \text{ is an abstract } \tau\text{-term} \}$

Let \mathfrak{A} be a τ -algebra.

Given τ -algebra \mathfrak{B} :

Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?

Every abstract τ -term *t* induces a function $t^{\mathfrak{A}}$ on \mathfrak{A} .

 $Clo(\mathfrak{A}) := \{ t^{\mathfrak{A}} : t \text{ is an abstract } \tau\text{-term} \}$

 $Clo(\mathfrak{A})$ is a clone, i.e., a set of finitary operations which

- closed under composition and
- contains all projections.

Let \mathfrak{A} be a τ -algebra.

Given τ -algebra \mathfrak{B} :

Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?

Every abstract τ -term *t* induces a function $t^{\mathfrak{A}}$ on \mathfrak{A} .

 $Clo(\mathfrak{A}) := \{ t^{\mathfrak{A}} : t \text{ is an abstract } \tau\text{-term} \}$

 $Clo(\mathfrak{A})$ is a clone, i.e., a set of finitary operations which

- closed under composition and
- contains all projections.

Different abstract τ -terms *s*, *t* might induce the same function:

$$s^{\mathfrak{A}} = t^{\mathfrak{A}}$$

Those are the *equations* that hold in \mathfrak{A} .

Theorem 1 (Birkhoff)

 $\mathfrak{B}\in\mathsf{HSP}(\mathfrak{A})\leftrightarrow$ all equations of \mathfrak{A} also hold in $\mathfrak{B}.$

Theorem 1 (Birkhoff)

 $\mathfrak{B} \in \mathsf{HSP}(\mathfrak{A}) \leftrightarrow$ all equations of \mathfrak{A} also hold in \mathfrak{B} .

Theorem 2 (Birkhoff)

Let $\mathfrak{A}, \mathfrak{B}$ be finite.

```
\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}) \leftrightarrow
all equations in \mathfrak{A} also hold in \mathfrak{B}.
```

Theorem 1 (Birkhoff)

 $\mathfrak{B}\in\mathsf{HSP}(\mathfrak{A})\leftrightarrow$ all equations of \mathfrak{A} also hold in $\mathfrak{B}.$

```
Theorem 2 (Birkhoff)
```

Let $\mathfrak{A}, \mathfrak{B}$ be finite.

```
\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}) \leftrightarrow
all equations in \mathfrak{A} also hold in \mathfrak{B}.
```

Observations.

Theorem 1 (Birkhoff)

 $\mathfrak{B} \in \mathsf{HSP}(\mathfrak{A}) \leftrightarrow$ all equations of \mathfrak{A} also hold in \mathfrak{B} .

```
Theorem 2 (Birkhoff)
```

Let $\mathfrak{A}, \mathfrak{B}$ be finite.

```
\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}) \leftrightarrow
all equations in \mathfrak{A} also hold in \mathfrak{B}.
```

Observations.

 \blacksquare In Theorem 2, \rightarrow follows from Theorem 1, while \leftarrow does not.

Theorem 1 (Birkhoff)

 $\mathfrak{B} \in \mathsf{HSP}(\mathfrak{A}) \leftrightarrow$ all equations of \mathfrak{A} also hold in \mathfrak{B} .

```
Theorem 2 (Birkhoff)
```

Let $\mathfrak{A}, \mathfrak{B}$ be finite.

```
\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}) \leftrightarrow
all equations in \mathfrak{A} also hold in \mathfrak{B}.
```

Observations.

- \blacksquare In Theorem 2, \rightarrow follows from Theorem 1, while \leftarrow does not.
- When A is infinite and B is finite, then Theorem 2 does not necessarily hold.

Theorem 1 (Birkhoff)

 $\mathfrak{B} \in \mathsf{HSP}(\mathfrak{A}) \leftrightarrow$ all equations of \mathfrak{A} also hold in \mathfrak{B} .

```
Theorem 2 (Birkhoff)
```

Let $\mathfrak{A}, \mathfrak{B}$ be finite.

```
\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}) \leftrightarrow
all equations in \mathfrak{A} also hold in \mathfrak{B}.
```

Observations.

- In Theorem 2, \rightarrow follows from Theorem 1, while \leftarrow does not.
- When A is infinite and B is finite, then Theorem 2 does not necessarily hold.

Bad for *aesthetic* and *computational* reasons.

TBA

Troubling

Reformulating Birkhoff: clone homomorphisms
When all equations of \mathfrak{A} also hold in \mathfrak{B} , then the map

 $\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}$

is a well-defined function from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

When all equations of \mathfrak{A} also hold in \mathfrak{B} , then the map

 $\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}$

is a well-defined function from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

 ξ is called the natural homomorphism from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

When all equations of \mathfrak{A} also hold in \mathfrak{B} , then the map

 $\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}$

is a well-defined function from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

 ξ is called the natural homomorphism from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

$$\xi(f^{\mathfrak{A}}(g_{1}^{\mathfrak{A}},\ldots,g_{n}^{\mathfrak{A}}))=\xi(f^{\mathfrak{A}})(\xi(g_{1}^{\mathfrak{A}}),\ldots,\xi(g_{n}^{\mathfrak{A}}))$$

When all equations of \mathfrak{A} also hold in \mathfrak{B} , then the map

 $\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}$

is a well-defined function from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

 ξ is called the natural homomorphism from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

$$\xi(f^{\mathfrak{A}}(g_{1}^{\mathfrak{A}},\ldots,g_{n}^{\mathfrak{A}}))=\xi(f^{\mathfrak{A}})(\xi(g_{1}^{\mathfrak{A}}),\ldots,\xi(g_{n}^{\mathfrak{A}}))$$

 ξ preserves the *algebraic structure* of Clo(\mathfrak{A}).

When all equations of \mathfrak{A} also hold in \mathfrak{B} , then the map

 $\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}$

is a well-defined function from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

 ξ is called the natural homomorphism from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$.

$$\xi(f^{\mathfrak{A}}(g_{1}^{\mathfrak{A}},\ldots,g_{n}^{\mathfrak{A}}))=\xi(f^{\mathfrak{A}})(\xi(g_{1}^{\mathfrak{A}}),\ldots,\xi(g_{n}^{\mathfrak{A}}))$$

 ξ preserves the *algebraic structure* of Clo(\mathfrak{A}).

```
Theorem 2 (Birkhoff)Let \mathfrak{A}, \mathfrak{B} be finite.\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}) \leftrightarrowthe natural homomorphism from \mathsf{Clo}(\mathfrak{A}) to \mathsf{Clo}(\mathfrak{B}) exists.
```

Some excitement:

Some excitement:

Generalize to which class of infinite algebras?

Some excitement:

- Generalize to which class of infinite algebras?
- Same statement?

Some excitement:

- Generalize to which class of infinite algebras?
- Same statement?

Clo(\mathfrak{A}) carries also *topological structure*: subset of $\bigcup_{n\geq 1}\mathfrak{A}^{\mathfrak{A}^n}$. Each $\mathfrak{A}^{\mathfrak{A}^n}$ has product topology, where \mathfrak{A} is taken to be discrete.

Some excitement:

- Generalize to which class of infinite algebras?
- Same statement?

Clo(\mathfrak{A}) carries also *topological structure*: subset of $\bigcup_{n\geq 1}\mathfrak{A}^{\mathfrak{A}^n}$. Each $\mathfrak{A}^{\mathfrak{A}^n}$ has product topology, where \mathfrak{A} is taken to be discrete.

Remark. Topological structure of $Clo(\mathfrak{A})$ trivial when \mathfrak{A} finite.

Some excitement:

- Generalize to which class of infinite algebras?
- Same statement?

Clo(\mathfrak{A}) carries also *topological structure*: subset of $\bigcup_{n\geq 1}\mathfrak{A}^{\mathfrak{A}^n}$. Each $\mathfrak{A}^{\mathfrak{A}^n}$ has product topology, where \mathfrak{A} is taken to be discrete.

Remark. Topological structure of $Clo(\mathfrak{A})$ trivial when \mathfrak{A} finite.

A permutation group acting on a set X is called oligomorphic iff its componentwise action on X^n has finitely many orbits, for all $n \ge 1$.

Some excitement:

- Generalize to which class of infinite algebras?
- Same statement?

Clo(\mathfrak{A}) carries also *topological structure*: subset of $\bigcup_{n\geq 1}\mathfrak{A}^{\mathfrak{A}^n}$. Each $\mathfrak{A}^{\mathfrak{A}^n}$ has product topology, where \mathfrak{A} is taken to be discrete.

Remark. Topological structure of $Clo(\mathfrak{A})$ trivial when \mathfrak{A} finite.

A permutation group acting on a set X is called oligomorphic iff its componentwise action on X^n has finitely many orbits, for all $n \ge 1$.

Definition

■ A clone is locally oligomorphic ↔ its topological closure contains an oligomorphic permutation group.

Some excitement:

- Generalize to which class of infinite algebras?
- Same statement?

Clo(\mathfrak{A}) carries also *topological structure*: subset of $\bigcup_{n\geq 1}\mathfrak{A}^{\mathfrak{A}^n}$. Each $\mathfrak{A}^{\mathfrak{A}^n}$ has product topology, where \mathfrak{A} is taken to be discrete.

Remark. Topological structure of $Clo(\mathfrak{A})$ trivial when \mathfrak{A} finite.

A permutation group acting on a set X is called oligomorphic iff its componentwise action on X^n has finitely many orbits, for all $n \ge 1$.

Definition

- A clone is locally oligomorphic ↔ its topological closure contains an oligomorphic permutation group.
- An algebra A is locally oligomorphic ↔ Clo(A) is locally oligomorphic.

 Clone generalizes transformation monoid generalizes permutation group.

- Clone generalizes transformation monoid generalizes permutation group.
- Oligomorphic clone generalizes oligomorphic permutation group.

- Clone generalizes transformation monoid generalizes permutation group.
- Oligomorphic clone generalizes oligomorphic permutation group.
- A closed permutation group is oligomorphic \leftrightarrow it is of the form Aut(Δ), where Δ is an ω -categorical structure.

- Clone generalizes transformation monoid generalizes permutation group.
- Oligomorphic clone generalizes oligomorphic permutation group.
- A closed permutation group is oligomorphic \leftrightarrow it is of the form Aut(Δ), where Δ is an ω -categorical structure.
- A closed clone is oligomorphic \leftrightarrow it is of the form Pol(Δ), where Δ is an ω -categorical structure.

- Clone generalizes transformation monoid generalizes permutation group.
- Oligomorphic clone generalizes oligomorphic permutation group.
- A closed permutation group is oligomorphic \leftrightarrow it is of the form Aut(Δ), where Δ is an ω -categorical structure.
- A closed clone is oligomorphic \leftrightarrow it is of the form Pol(Δ), where Δ is an ω -categorical structure.

 $Pol(\Delta)$... the clone of all finitary functions preserving Δ .

- Clone generalizes transformation monoid generalizes permutation group.
- Oligomorphic clone generalizes oligomorphic permutation group.
- A closed permutation group is oligomorphic \leftrightarrow it is of the form Aut(Δ), where Δ is an ω -categorical structure.
- A closed clone is oligomorphic \leftrightarrow it is of the form Pol(Δ), where Δ is an ω -categorical structure.

Pol(Δ)... the clone of all finitary functions preserving Δ . = set of all homomorphisms from some Δ^n to Δ .

Topological Birkhoff

Topological Birkhoff

Theorem 2 (Birkhoff)

Let $\mathfrak{A}, \mathfrak{B}$ be finite.

 \mathfrak{B} is in HSP^{fin}(\mathfrak{A}) \leftrightarrow

the natural homomorphism from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$ exists.

Theorem 2 (Birkhoff)

Let $\mathfrak{A}, \mathfrak{B}$ be finite.

 \mathfrak{B} is in HSP^{fin}(\mathfrak{A}) \leftrightarrow the natural homomorphism from $Clo(\mathfrak{A})$ to $Clo(\mathfrak{B})$ exists.

Theorem "Topological Birkhoff" (Bodirsky + MP)

Let $\mathfrak{A}, \mathfrak{B}$ be locally oligomorphic or finite.

 \mathfrak{B} is in HSP^{fin}(\mathfrak{A}) \leftrightarrow the natural homomorphism from Clo(\mathfrak{A}) to Clo(\mathfrak{B}) exists and is continuous.

There are algebras $\mathfrak{A},\mathfrak{B}$ with common signature such that

- \mathfrak{A} is locally oligomorphic;
- B is finite;
- $\blacksquare \ \mathfrak{B} \in \mathsf{HSP}(\mathfrak{A});$
- **B** $\mathfrak{B} \notin \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}).$

There are algebras $\mathfrak{A},\mathfrak{B}$ with common signature such that

- \mathfrak{A} is locally oligomorphic;
- B is finite;
- $\blacksquare \ \mathfrak{B} \in \mathsf{HSP}(\mathfrak{A});$
- **B** \notin HSP^{fin}(\mathfrak{A}).

Thus: ξ : Clo(\mathfrak{A}) \rightarrow Clo(\mathfrak{B}) exists but is not continuous.

There are algebras $\mathfrak{A},\mathfrak{B}$ with common signature such that

- \mathfrak{A} is locally oligomorphic;
- B is finite;
- $\blacksquare \ \mathfrak{B} \in \mathsf{HSP}(\mathfrak{A});$
- $\blacksquare \mathfrak{B} \notin \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}).$

Thus: ξ : Clo(\mathfrak{A}) \rightarrow Clo(\mathfrak{B}) exists but is not continuous.

Set $\tau := \{f_i\}_{i \in \omega} \cup \{g_i\}_{i \in \omega}$, all function symbols unary.

There are algebras $\mathfrak{A}, \mathfrak{B}$ with common signature such that

- \mathfrak{A} is locally oligomorphic;
- B is finite;
- $\blacksquare \ \mathfrak{B} \in \mathsf{HSP}(\mathfrak{A});$
- $\blacksquare \mathfrak{B} \notin \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}).$

Thus: ξ : Clo(\mathfrak{A}) \rightarrow Clo(\mathfrak{B}) exists but is not continuous.

Set $\tau := \{f_i\}_{i \in \omega} \cup \{g_i\}_{i \in \omega}$, all function symbols unary.

Let ${\mathfrak A}$ be any $\tau\text{-algebra on }\omega$ such that

- the functions $f_i^{\mathfrak{A}}$ form a locally oligomorphic permutation group;
- no $g_i^{\mathfrak{A}}$ is injective;
- $f_0^{\mathfrak{A}}$ is contained in the topological closure of $\{g_i^{\mathfrak{A}}\}_{i \in \omega}$.

There are algebras $\mathfrak{A}, \mathfrak{B}$ with common signature such that

- $\blacksquare \ \mathfrak{A} \text{ is locally oligomorphic;}$
- B is finite;
- $\blacksquare \ \mathfrak{B} \in \mathsf{HSP}(\mathfrak{A});$
- $\blacksquare \mathfrak{B} \notin \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}).$

Thus: ξ : Clo(\mathfrak{A}) \rightarrow Clo(\mathfrak{B}) exists but is not continuous.

Set $\tau := \{f_i\}_{i \in \omega} \cup \{g_i\}_{i \in \omega}$, all function symbols unary.

Let ${\mathfrak A}$ be any $\tau\text{-algebra on }\omega$ such that

- the functions $f_i^{\mathfrak{A}}$ form a locally oligomorphic permutation group;
- no $g_i^{\mathfrak{A}}$ is injective;
- $f_0^{\mathfrak{A}}$ is contained in the topological closure of $\{g_i^{\mathfrak{A}}\}_{i \in \omega}$.

Let \mathfrak{B} be the τ -algebra on $\{0, 1\}$ such that

- $f_i^{\mathfrak{B}}$ is the identity function for all $i \in \omega$;
- $g_i^{\mathfrak{B}}$ is the constant function with value 0.

Links to model theory

Links to model theory

A structure Δ is ω -categorical \leftrightarrow Pol(Δ) is oligomorphic.

- A structure Δ is ω -categorical \leftrightarrow Pol(Δ) is oligomorphic.
- Can view Pol(Δ) as the clone of an oligomorphic algebra (polymorphism algebra of Δ).

- A structure Δ is ω -categorical \leftrightarrow Pol(Δ) is oligomorphic.
- Can view Pol(Δ) as the clone of an oligomorphic algebra (polymorphism algebra of Δ).
- HSP^{fin} reminds us of ...

- A structure Δ is ω -categorical \leftrightarrow Pol(Δ) is oligomorphic.
- Can view Pol(Δ) as the clone of an oligomorphic algebra (polymorphism algebra of Δ).
- HSP^{fin} reminds us of ...

Interpretations!

Part II: Topological clones and interpretations

Interpretations
A σ -structure Δ as an interpretation in a τ -structure Γ iff

A σ -structure Δ as an interpretation in a τ -structure Γ iff there exist $d \geq 1$ (the *dimension*),

A σ -structure Δ as an interpretation in a τ -structure Γ iff there exist

- $d \geq 1$ (the *dimension*),
- a τ -formula $\delta(x_1, \ldots, x_d)$ (the *domain formula*),

A σ -structure Δ as an interpretation in a τ -structure Γ iff there exist

- $d \geq 1$ (the *dimension*),
- a τ -formula $\delta(x_1, \ldots, x_d)$ (the *domain formula*),
- for every atomic σ -formula $\phi(y_1, \ldots, y_k)$ a τ -formula $\phi'(\bar{u}_1, \ldots, \bar{u}_k)$,

A σ -structure Δ as an interpretation in a τ -structure Γ iff there exist

- $d \geq 1$ (the *dimension*),
- a τ -formula $\delta(x_1, \ldots, x_d)$ (the *domain formula*),
- for every atomic σ -formula $\phi(y_1, \ldots, y_k)$ a τ -formula $\phi'(\bar{u}_1, \ldots, \bar{u}_k)$,
- a surjective map $h: \delta(\Gamma^d) \to \Delta$, such that

A σ -structure Δ as an interpretation in a τ -structure Γ iff there exist

- $d \ge 1$ (the *dimension*),
- a τ -formula $\delta(x_1, \ldots, x_d)$ (the *domain formula*),
- for every atomic σ -formula $\phi(y_1, \ldots, y_k)$ a τ -formula $\phi'(\bar{u}_1, \ldots, \bar{u}_k)$,
- a surjective map $h: \delta(\Gamma^d) \to \Delta$, such that

for all atomic σ -formulas $\phi(y_1, \ldots, y_k)$ and all $\bar{a}_1, \ldots, \bar{a}_k \in \delta(\Gamma^d)$

$$\Delta \models \phi(h(\bar{a}_1), \ldots, h(\bar{a}_k)) \leftrightarrow \Gamma \models \phi'(\bar{a}_1, \ldots, \bar{a}_k)$$

A σ -structure Δ as an interpretation in a τ -structure Γ iff there exist

- $d \ge 1$ (the *dimension*),
- a τ -formula $\delta(x_1, \ldots, x_d)$ (the *domain formula*),
- for every atomic σ -formula $\phi(y_1, \ldots, y_k)$ a τ -formula $\phi'(\bar{u}_1, \ldots, \bar{u}_k)$,
- a surjective map $h: \delta(\Gamma^d) \to \Delta$, such that

for all atomic σ -formulas $\phi(y_1, \ldots, y_k)$ and all $\bar{a}_1, \ldots, \bar{a}_k \in \delta(\Gamma^d)$

$$\Delta \models \phi(h(\bar{a}_1),\ldots,h(\bar{a}_k)) \leftrightarrow \Gamma \models \phi'(\bar{a}_1,\ldots,\bar{a}_k)$$

The interpretation is called primitive positive (pp) iff all involved formulas are primitive positive, i.e., of the form

$$\exists v_1, \ldots v_r, \psi_1 \land \ldots \land \psi_l,$$

for atomic ψ_i .

A σ -structure Δ as an interpretation in a τ -structure Γ iff there exist

- $d \ge 1$ (the *dimension*),
- a τ -formula $\delta(x_1, \ldots, x_d)$ (the *domain formula*),
- for every atomic σ -formula $\phi(y_1, \ldots, y_k)$ a τ -formula $\phi'(\bar{u}_1, \ldots, \bar{u}_k)$,
- a surjective map $h : \delta(\Gamma^d) \to \Delta$, such that

for all atomic σ -formulas $\phi(y_1, \ldots, y_k)$ and all $\bar{a}_1, \ldots, \bar{a}_k \in \delta(\Gamma^d)$

$$\Delta \models \phi(h(\bar{a}_1), \ldots, h(\bar{a}_k)) \leftrightarrow \Gamma \models \phi'(\bar{a}_1, \ldots, \bar{a}_k)$$

The interpretation is called primitive positive (pp) iff all involved formulas are primitive positive, i.e., of the form

$$\exists v_1, \ldots v_r, \psi_1 \land \ldots \land \psi_l,$$

for atomic ψ_i .

Example: $(\mathbb{Q}; +, \cdot)$ has a pp interpretation in $(\mathbb{Z}; +, \cdot)$.

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $Clo(\mathfrak{A}) = Pol(\Gamma)$.

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $Clo(\mathfrak{A}) = Pol(\Gamma)$.

Proposition

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $Clo(\mathfrak{A}) = Pol(\Gamma)$.

Proposition

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

• Δ has a pp interpretation in Γ ;

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $Clo(\mathfrak{A}) = Pol(\Gamma)$.

Proposition

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ ;
- For every / any polymorphism algebra \mathfrak{A} of Γ there is an algebra $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A})$ such that $\mathsf{Clo}(\mathfrak{B}) \subseteq \mathsf{Pol}(\Delta)$.

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $Clo(\mathfrak{A}) = Pol(\Gamma)$.

Proposition

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ ;
- For every / any polymorphism algebra \mathfrak{A} of Γ there is an algebra $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A})$ such that $\mathsf{Clo}(\mathfrak{B}) \subseteq \mathsf{Pol}(\Delta)$.

Theorem (Bodirsky + Nešetřil)

Let Δ be ω -categorical.

A relation R has a pp definition in $\Delta \leftrightarrow$ R is preserved by all functions in Pol(Δ).

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $Clo(\mathfrak{A}) = Pol(\Gamma)$.

Proposition

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ ;
- For every / any polymorphism algebra \mathfrak{A} of Γ there is an algebra $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A})$ such that $\mathsf{Clo}(\mathfrak{B}) \subseteq \mathsf{Pol}(\Delta)$.

Theorem (Bodirsky + Nešetřil)

Let Δ be ω -categorical.

A relation R has a pp definition in $\Delta \leftrightarrow$ R is preserved by all functions in Pol(Δ).

Consequences:

 \blacksquare subalgebras of ${\mathfrak A}$ are pp definable subsets of the domain of $\Gamma.$

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $Clo(\mathfrak{A}) = Pol(\Gamma)$.

Proposition

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ ;
- For every / any polymorphism algebra \mathfrak{A} of Γ there is an algebra $\mathfrak{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A})$ such that $\mathsf{Clo}(\mathfrak{B}) \subseteq \mathsf{Pol}(\Delta)$.

Theorem (Bodirsky + Nešetřil)

Let Δ be ω -categorical.

A relation R has a pp definition in $\Delta \leftrightarrow$ R is preserved by all functions in Pol(Δ).

Consequences:

- subalgebras of A are pp definable subsets of the domain of Γ.
- \blacksquare congruences of ${\mathfrak A}$ are pp definable equivalence relations of $\Gamma.$

A reduct of a structure Δ' is a structure obtained from Δ' by dropping some of its relations or functions.

A reduct of a structure Δ' is a structure obtained from Δ' by dropping some of its relations or functions.

Theorem (Bodirsky + MP)

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

A reduct of a structure Δ' is a structure obtained from Δ' by dropping some of its relations or functions.

Theorem (Bodirsky + MP)

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

• Δ has a pp interpretation in Γ ;

A reduct of a structure Δ' is a structure obtained from Δ' by dropping some of its relations or functions.

Theorem (Bodirsky + MP)

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ ;
- Δ is the reduct of a finite or ω -categorical structure Δ' such that there exists a continuous homomorphism from $Pol(\Gamma)$ to $Pol(\Delta')$ whose image is dense in $Pol(\Delta')$.

The image of the continuous homomorphism $\xi : Pol(\Gamma) \rightarrow Pol(\Delta')$ might be dense in $Pol(\Delta')$ without being surjective.

The image of the continuous homomorphism $\xi : Pol(\Gamma) \rightarrow Pol(\Delta')$ might be dense in $Pol(\Delta')$ without being surjective. In particular, in this situation the image is not closed.

The image of the continuous homomorphism $\xi : \text{Pol}(\Gamma) \to \text{Pol}(\Delta')$ might be dense in $\text{Pol}(\Delta')$ without being surjective. In particular, in this situation the image is not closed. Example for $\text{Aut}(\Gamma)$, $\text{Aut}(\Delta')$ due to Macpherson.

The image of the continuous homomorphism $\xi : Pol(\Gamma) \rightarrow Pol(\Delta')$ might be dense in $Pol(\Delta')$ without being surjective. In particular, in this situation the image is not closed. Example for $Aut(\Gamma)$, $Aut(\Delta')$ due to Macpherson.

Let $S \subseteq \mathbb{Q}$ be so that both S and $\mathbb{Q} \setminus S$ are dense.

The image of the continuous homomorphism $\xi : Pol(\Gamma) \rightarrow Pol(\Delta')$ might be dense in $Pol(\Delta')$ without being surjective. In particular, in this situation the image is not closed. Example for $Aut(\Gamma)$, $Aut(\Delta')$ due to Macpherson.

Let $S \subseteq \mathbb{Q}$ be so that both S and $\mathbb{Q} \setminus S$ are dense. Let $\Gamma := (\mathbb{Q}; <, S);$

The image of the continuous homomorphism $\xi : Pol(\Gamma) \rightarrow Pol(\Delta')$ might be dense in $Pol(\Delta')$ without being surjective. In particular, in this situation the image is not closed. Example for $Aut(\Gamma)$, $Aut(\Delta')$ due to Macpherson.

Let $S \subseteq \mathbb{Q}$ be so that both S and $\mathbb{Q} \setminus S$ are dense. Let $\Gamma := (\mathbb{Q}; <, S); \qquad \Delta' := (S; <).$

The image of the continuous homomorphism $\xi : Pol(\Gamma) \rightarrow Pol(\Delta')$ might be dense in $Pol(\Delta')$ without being surjective. In particular, in this situation the image is not closed. Example for $Aut(\Gamma)$, $Aut(\Delta')$ due to Macpherson.

Let $S \subseteq \mathbb{Q}$ be so that both S and $\mathbb{Q} \setminus S$ are dense. Let $\Gamma := (\mathbb{Q}; <, S);$ $\Delta' := (S; <).$ $\xi \colon \operatorname{Aut}(\Gamma) \to \operatorname{Aut}(\Delta')$ defined by $f \mapsto f \upharpoonright_S$.

Two structures Δ and Γ are mutually pp interpretable iff Γ has a pp interpretation in Δ and vice versa.

Two structures Δ and Γ are mutually pp interpretable iff Γ has a pp interpretation in Δ and vice versa.

Stronger notion:

Two structures Δ and Γ are mutually pp interpretable iff Γ has a pp interpretation in Δ and vice versa.

Stronger notion: \triangle and Γ are pp bi-interpretable iff the coordinate maps h_1 and h_2 of the pp interpretations are so that

$$\begin{aligned} x &= h_1(h_2(y_{1,1},\ldots,y_{1,d_2}),\ldots,h_2(y_{d_1,1},\ldots,y_{d_1,d_2})) \\ x &= h_2(h_1(y_{1,1},\ldots,y_{d_1,1}),\ldots,h_1(y_{1,d_2},\ldots,y_{d_1,d_2})) \end{aligned}$$

are pp definable in Δ and Γ , respectively.

Bi-interpretability and topological clones

Bi-interpretability and topological clones

Theorem (Bodirsky + MP)

Let Δ and Γ be ω -categorical. Tfae:

Bi-interpretability and topological clones

Theorem (Bodirsky + MP)

Let Δ and Γ be ω -categorical. Tfae:

• Δ and Γ are pp bi-interpretable;
Theorem (Bodirsky + MP)

Let Δ and Γ be ω -categorical. Tfae:

 $\blacksquare \Delta$ and Γ are pp bi-interpretable;

■ $Pol(\Delta)$ and $Pol(\Gamma)$ are isomorphic as topological clones.

Theorem (Bodirsky + MP)

Let Δ and Γ be ω -categorical. Tfae:

 $\blacksquare \Delta$ and Γ are pp bi-interpretable;

■ $Pol(\Delta)$ and $Pol(\Gamma)$ are isomorphic as topological clones.

Theorem (Ahlbrandt + Ziegler)

Let Δ and Γ be ω -categorical. Tfae:

Theorem (Bodirsky + MP)

Let Δ and Γ be ω -categorical. Tfae:

 $\blacksquare \Delta$ and Γ are pp bi-interpretable;

■ $Pol(\Delta)$ and $Pol(\Gamma)$ are isomorphic as topological clones.

Theorem (Ahlbrandt + Ziegler)

Let Δ and Γ be ω -categorical. Tfae:

 $\blacksquare \Delta$ and Γ are first-order bi-interpretable;

Theorem (Bodirsky + MP)

Let Δ and Γ be ω -categorical. Tfae:

• Δ and Γ are pp bi-interpretable;

■ $Pol(\Delta)$ and $Pol(\Gamma)$ are isomorphic as topological clones.

Theorem (Ahlbrandt + Ziegler)

Let Δ and Γ be ω -categorical. Tfae:

 $\blacksquare \Delta$ and Γ are first-order bi-interpretable;

• Aut(Δ) and Aut(Γ) are isomorphic as topological groups.

Part III: Constraint Satisfaction Problems

Let Δ be a structure with a *finite* relational signature τ .

Let Δ be a structure with a *finite* relational signature τ .

Definition (Constraint Satisfaction Problem)

 $CSP(\Delta)$ is the computational problem to decide whether a given primitive positive τ -sentence holds in Δ .

Let Δ be a structure with a *finite* relational signature τ .

Definition (Constraint Satisfaction Problem)

 $CSP(\Delta)$ is the computational problem to decide whether a given primitive positive τ -sentence holds in Δ .

Example. $CSP(\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\})$ is the problem called positive 1-in-3-3SAT. It is NP-complete.

Let Δ be a structure with a *finite* relational signature τ .

Definition (Constraint Satisfaction Problem)

 $CSP(\Delta)$ is the computational problem to decide whether a given primitive positive τ -sentence holds in Δ .

Example. $CSP(\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\})$ is the problem called positive 1-in-3-3SAT. It is NP-complete.

Example. CSPs of reducts of homogeneous structures.

Let Δ be a structure with a *finite* relational signature τ .

Definition (Constraint Satisfaction Problem)

 $CSP(\Delta)$ is the computational problem to decide whether a given primitive positive τ -sentence holds in Δ .

Example. $CSP(\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\})$ is the problem called positive 1-in-3-3SAT. It is NP-complete.

Example. CSPs of reducts of homogeneous structures.

Fact: When there is a pp interpretation of Δ in Γ , then there is a polynomial-time reduction from $CSP(\Delta)$ to $CSP(\Gamma)$.

Let Δ be a structure with a *finite* relational signature τ .

Definition (Constraint Satisfaction Problem)

 $CSP(\Delta)$ is the computational problem to decide whether a given primitive positive τ -sentence holds in Δ .

Example. $CSP(\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\})$ is the problem called positive 1-in-3-3SAT. It is NP-complete.

Example. CSPs of reducts of homogeneous structures.

Fact: When there is a pp interpretation of Δ in Γ , then there is a polynomial-time reduction from $CSP(\Delta)$ to $CSP(\Gamma)$.

Theorem (Bodirsky + MP)

For ω -categorical Δ , the complexity of CSP(Δ) only depends on the topological polymorphism clone of Δ .

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions.

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection.

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) equals **1**.

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) equals **1**.

Example: $\Delta := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) equals **1**.

Example: $\Delta := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Δ) is called *Betweenness problem*.

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Example: $Pol(\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\})$ equals 1.

Example: $\Delta := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Δ) is called *Betweenness problem*.

 $\mathsf{CSP}(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi:\mathsf{Pol}(\Delta)\to\mathbf{1}$:

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Example: $Pol(\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\})$ equals 1.

Example: $\Delta := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Δ) is called *Betweenness problem*.

 $CSP(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi : Pol(\Delta) \rightarrow 1$:

For any $f \in Pol(\Delta)$ of arity k, one of the following holds:

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) equals **1**.

Example: $\Delta := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Δ) is called *Betweenness problem*.

 $CSP(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi : Pol(\Delta) \rightarrow 1$:

For any $f \in Pol(\Delta)$ of arity k, one of the following holds:

(1) $\exists i \in \{1, \ldots, k\} \ \forall x, y \in \Delta^k : (\neq (x, y) \land (x_i < y_i) \Rightarrow f(x) < f(y))$ (2) $\exists i \in \{1, \ldots, k\} \ \forall x, y \in \Delta^k : (\neq (x, y) \land (x_i < y_i) \Rightarrow f(x) > f(y))$

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) equals **1**.

Example: $\Delta := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Δ) is called *Betweenness problem*.

 $\mathsf{CSP}(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi : \mathsf{Pol}(\Delta) \to \mathbf{1}$:

For any $f \in Pol(\Delta)$ of arity k, one of the following holds:

(1) $\exists i \in \{1, \ldots, k\} \ \forall x, y \in \Delta^k : (\neq (x, y) \land (x_i < y_i) \Rightarrow f(x) < f(y))$ (2) $\exists i \in \{1, \ldots, k\} \ \forall x, y \in \Delta^k : (\neq (x, y) \land (x_i < y_i) \Rightarrow f(x) > f(y))$ *i* is unique for each *f*. Set $\xi(f) := \pi_i^k$.

Let **1** be the clone of the algebra on $\{0, 1\}$ without functions. **1** consists of projections; write π_i^k , $1 \le i \le k$, for *i*-th *k*-ary projection. Topology of **1** is discrete.

Example: $Pol(\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\})$ equals 1.

Example: $\Delta := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Δ) is called *Betweenness problem*.

 $CSP(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi : Pol(\Delta) \rightarrow 1$:

For any $f \in Pol(\Delta)$ of arity k, one of the following holds:

(1) $\exists i \in \{1, \dots, k\} \ \forall x, y \in \Delta^k : (\neq (x, y) \land (x_i < y_i) \Rightarrow f(x) < f(y))$ (2) $\exists i \in \{1, \dots, k\} \ \forall x, y \in \Delta^k : (\neq (x, y) \land (x_i < y_i) \Rightarrow f(x) > f(y))$

i is unique for each *f*. Set $\xi(f) := \pi_i^k$. Straightforward: ξ is continuous homomorphism.

In which situations does the algebraic structure of the clone $Pol(\Delta)$ determine its topological structure? Always?

In which situations does the algebraic structure of the clone $Pol(\Delta)$ determine its topological structure? Always?

For $Aut(\Delta)$, this question has been studied.

In which situations does the algebraic structure of the clone $Pol(\Delta)$ determine its topological structure? Always?

For $Aut(\Delta)$, this question has been studied.

Definition

 Δ has the *small index property* iff every subgroup of Aut(Δ) of index less than 2^{\aleph_0} is open.

In which situations does the algebraic structure of the clone $Pol(\Delta)$ determine its topological structure? Always?

For $Aut(\Delta)$, this question has been studied.

Definition

 Δ has the *small index property* iff every subgroup of Aut(Δ) of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Delta)$ to $Sym(\mathbb{N})$ is continuous.

In which situations does the algebraic structure of the clone $Pol(\Delta)$ determine its topological structure? Always?

For $Aut(\Delta)$, this question has been studied.

Definition

 Δ has the *small index property* iff every subgroup of Aut(Δ) of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Delta)$ to $Sym(\mathbb{N})$ is continuous.

Small index property has been verified for

• $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)

In which situations does the algebraic structure of the clone $Pol(\Delta)$ determine its topological structure? Always?

For $Aut(\Delta)$, this question has been studied.

Definition

 Δ has the *small index property* iff every subgroup of Aut(Δ) of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Delta)$ to $Sym(\mathbb{N})$ is continuous.

Small index property has been verified for

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)

In which situations does the algebraic structure of the clone $Pol(\Delta)$ determine its topological structure? Always?

For $Aut(\Delta)$, this question has been studied.

Definition

 Δ has the *small index property* iff every subgroup of Aut(Δ) of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Delta)$ to $Sym(\mathbb{N})$ is continuous.

Small index property has been verified for

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)

In which situations does the algebraic structure of the clone $Pol(\Delta)$ determine its topological structure? Always?

For $Aut(\Delta)$, this question has been studied.

Definition

 Δ has the *small index property* iff every subgroup of Aut(Δ) of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Delta)$ to $Sym(\mathbb{N})$ is continuous.

Small index property has been verified for

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)
- and the Henson graphs (Herwig'98).

Automatic continuity

Automatic continuity

Non-reconstruction:

There are two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90).

Non-reconstruction:

There are two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90). (Assumes AC)

Non-reconstruction:

There are two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90). (Assumes AC)

Automatic continuity:

 Every Baire measurable homomorphism between Polish groups is continuous.
Non-reconstruction:

There are two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90). (Assumes AC)

Automatic continuity:

- Every Baire measurable homomorphism between Polish groups is continuous.
- There exists a model of ZF+DC where every set is Baire measurable (Shelah'84).

Open problems

 Do there exist ω-categorical Γ, Δ such that Pol(Γ), Pol(Δ) are isomorphic algebraically but not topologically? (Analogue of Evans+Hewitt).

- Do there exist ω-categorical Γ, Δ such that Pol(Γ), Pol(Δ) are isomorphic algebraically but not topologically? (Analogue of Evans+Hewitt).
- When does the algebraic structure of Pol(∆) determine the topological one? (e.g., "Small index property")

- Do there exist ω-categorical Γ, Δ such that Pol(Γ), Pol(Δ) are isomorphic algebraically but not topologically? (Analogue of Evans+Hewitt).
- When does the algebraic structure of Pol(∆) determine the topological one? (e.g., "Small index property")
- In negative cases: does the complexity of CSP(Δ) only depend on the algebraic structure of Pol(Δ)? (Automatic continuity).

Topological Birkhoff Manuel Bodirsky and Michael Pinsker arXiv, 2012

