TBA

Michael Pinsker

2nd Workshop on Homogeneous Structures

Prague 2012

Topological Birkhoff \& Applications

Michael Pinsker

2nd Workshop on Homogeneous Structures
Prague 2012

Outline

Outline

Topological Birkhoff
by Manuel Bodirsky and Michael Pinsker on arXiv since March 2012.

Outline

Topological Birkhoff
by Manuel Bodirsky and Michael Pinsker on arXiv since March 2012.

■ Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras

Outline

Topological Birkhoff
by Manuel Bodirsky and Michael Pinsker on arXiv since March 2012.

■ Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras
■ Thus: Universal algebra meets model theory

Outline

Topological Birkhoff
by Manuel Bodirsky and Michael Pinsker on arXiv since March 2012.

■ Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras
■ Thus: Universal algebra meets model theory

- Corollary in the purely model theoretic language: Primitive positive interpretations

Outline

Topological Birkhoff
by Manuel Bodirsky and Michael Pinsker
on arXiv since March 2012.

■ Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras
■ Thus: Universal algebra meets model theory
■ Corollary in the purely model theoretic language: Primitive positive interpretations

- Applications to Constraint Satisfaction Problems with homogeneous templates

Outline

Topological Birkhoff
by Manuel Bodirsky and Michael Pinsker
on arXiv since March 2012.

■ Generalization of fundamental theorem of universal algebra from finite to oligomorphic algebras
■ Thus: Universal algebra meets model theory
■ Corollary in the purely model theoretic language: Primitive positive interpretations

- Applications to Constraint Satisfaction Problems with homogeneous templates

Implication chain: \downarrow
Motivation chain: \uparrow

Part I: Birkhoff's theorem

Varieties and pseudovarieties

Varieties and pseudovarieties

An algebra is a structure with purely functional signature.

Varieties and pseudovarieties

An algebra is a structure with purely functional signature.
Let \mathcal{C} be a class of algebras of the same signature τ.

Varieties and pseudovarieties

An algebra is a structure with purely functional signature.
Let \mathcal{C} be a class of algebras of the same signature τ.
$■ P(\mathcal{C}) \ldots$ class of all products of algebras in \mathcal{C}.
■ $\mathrm{S}(\mathrm{C}) \ldots$ class of all subalgeras of algebras in \mathcal{C}.
■ $\mathrm{H}(\mathrm{C}) \ldots$ class of all homomorphic images of algebras in \mathcal{C}.

Varieties and pseudovarieties

An algebra is a structure with purely functional signature.
Let \mathcal{C} be a class of algebras of the same signature τ.
$■ P(\mathcal{C}) \ldots$ class of all products of algebras in \mathcal{C}.
$■ S(\mathcal{C}) \ldots$ class of all subalgeras of algebras in \mathcal{C}.
■ $\mathrm{H}(\mathrm{C}) \ldots$ class of all homomorphic images of algebras in C .
Variety. . . class of τ-algebras closed under $\mathrm{P}, \mathrm{S}, \mathrm{H}$.

Varieties and pseudovarieties

An algebra is a structure with purely functional signature.
Let \mathcal{C} be a class of algebras of the same signature τ.
■ $\mathrm{P}(\mathcal{C}) \ldots$ class of all products of algebras in \mathcal{C}.
$\square S(\mathcal{C}) \ldots$ class of all subalgeras of algebras in \mathcal{C}.
■ $\mathrm{H}(\mathrm{C}) \ldots$ class of all homomorphic images of algebras in C .
Variety. . . class of τ-algebras closed under $\mathrm{P}, \mathrm{S}, \mathrm{H}$.
■ $\mathrm{P}^{\text {fin }}(\mathcal{C}) \ldots$ class of all finite powers of algebras in \mathcal{C}.

Varieties and pseudovarieties

An algebra is a structure with purely functional signature.
Let \mathcal{C} be a class of algebras of the same signature τ.
$■ P(\mathcal{C}) \ldots$ class of all products of algebras in \mathcal{C}.
$■ S(\mathcal{C}) \ldots$ class of all subalgeras of algebras in \mathcal{C}.
■ $\mathrm{H}(\mathrm{C}) \ldots$ class of all homomorphic images of algebras in C .
Variety. . . class of τ-algebras closed under $\mathrm{P}, \mathrm{S}, \mathrm{H}$.
■ $\mathrm{P}^{\text {fin }}(\mathcal{C}) \ldots$ class of all finite powers of algebras in \mathcal{C}.
Pseudovariety... class of τ-algebras closed under $\mathrm{P}^{\text {fin }}, \mathrm{S}, \mathrm{H}$.

Varieties and pseudovarieties

An algebra is a structure with purely functional signature.
Let \mathcal{C} be a class of algebras of the same signature τ.
$■ P(\mathcal{C}) \ldots$ class of all products of algebras in \mathcal{C}.
$■ S(\mathcal{C}) \ldots$ class of all subalgeras of algebras in \mathcal{C}.
■ $\mathrm{H}(\mathrm{C}) \ldots$ class of all homomorphic images of algebras in C .
Variety. . . class of τ-algebras closed under $\mathrm{P}, \mathrm{S}, \mathrm{H}$.
■ $\mathrm{P}^{\text {fin }}(\mathcal{C}) \ldots$ class of all finite powers of algebras in \mathcal{C}.
Pseudovariety... class of τ-algebras closed under $\mathrm{P}^{\text {fin }}, \mathrm{S}, \mathrm{H}$.
Problem. Given an algebra \mathfrak{A}.
What is the variety / pseudovariety generated by \mathfrak{A} ?

Varieties and pseudovarieties

An algebra is a structure with purely functional signature.
Let \mathcal{C} be a class of algebras of the same signature τ.

- $\mathrm{P}(\mathrm{C}) \ldots$ class of all products of algebras in C .
- $S(\mathcal{C}) \ldots$ class of all subalgeras of algebras in \mathcal{C}.
- $\mathrm{H}(\mathrm{C}) \ldots$ class of all homomorphic images of algebras in \mathcal{C}.

Variety. .. class of τ-algebras closed under $\mathrm{P}, \mathrm{S}, \mathrm{H}$.

- $\mathrm{P}^{\text {fin }}(\mathrm{C})$. . class of all finite powers of algebras in C .

Pseudovariety... class of τ-algebras closed under $\mathrm{P}^{\text {fin }}, \mathrm{S}, \mathrm{H}$.
Problem. Given an algebra \mathfrak{A}.
What is the variety / pseudovariety generated by \mathfrak{A} ?

Fact (Birkhoff)

- The variety generated by \mathfrak{A} equals $\operatorname{HSP}(\mathfrak{A})$.
- The pseudovariety generated by \mathfrak{A} equals $\operatorname{HSP}^{\text {fin }}(\mathfrak{A})$.

Terms

Terms

Let \mathfrak{A} be a τ-algebra.

Terms

Let \mathfrak{A} be a τ-algebra.
Given τ-algebra \mathfrak{B} :
Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?

Terms

Let \mathfrak{A} be a τ-algebra.
Given τ-algebra \mathfrak{B} :
Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?
Every abstract τ-term t induces a function $t^{\mathfrak{2}}$ on \mathfrak{A}.

Terms

Let \mathfrak{A} be a τ-algebra.
Given τ-algebra \mathfrak{B} :
Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?
Every abstract τ-term t induces a function $t^{\mathfrak{2}}$ on \mathfrak{A}.

$$
\operatorname{Clo}(\mathfrak{A}):=\left\{t^{\mathfrak{A}}: t \text { is an abstract } \tau \text {-term }\right\}
$$

Terms

Let \mathfrak{A} be a τ-algebra.
Given τ-algebra \mathfrak{B} :
Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?
Every abstract τ-term t induces a function $t^{\mathfrak{2}}$ on \mathfrak{A}.

$$
\mathrm{Clo}(\mathfrak{A}):=\left\{t^{\mathfrak{A}}: t \text { is an abstract } \tau \text {-term }\right\}
$$

$\operatorname{Clo}(\mathfrak{A})$ is a clone, i.e., a set of finitary operations which

- closed under composition and
- contains all projections.

Terms

Let \mathfrak{A} be a τ-algebra.
Given τ-algebra \mathfrak{B} :
Is \mathfrak{B} contained in the (pseudo-)variety generated by \mathfrak{A} ?
Every abstract τ-term t induces a function $t^{\mathfrak{2}}$ on \mathfrak{A}.

$$
\mathrm{Clo}(\mathfrak{A}):=\left\{t^{\mathfrak{A}}: t \text { is an abstract } \tau \text {-term }\right\}
$$

$\operatorname{Clo}(\mathfrak{A})$ is a clone, i.e., a set of finitary operations which

- closed under composition and
- contains all projections.

Different abstract τ-terms s, t might induce the same function:

$$
s^{\mathfrak{A}}=t^{\mathfrak{A}}
$$

Those are the equations that hold in \mathfrak{A}.

Birkhoff's theorems

Birkhoff's theorems

```
Theorem 1 (Birkhoff)
B}\in\operatorname{HSP}(\mathfrak{A})
all equations of }\mathfrak{A}\mathrm{ also hold in }\mathfrak{B}\mathrm{ .
```


Birkhoff's theorems

```
Theorem 1 (Birkhoff)
B}\in\operatorname{HSP}(\mathfrak{A})
all equations of }\mathfrak{A}\mathrm{ also hold in }\mathfrak{B}\mathrm{ .
```

Theorem 2 (Birkhoff)
Let $\mathfrak{A}, \mathfrak{B}$ be finite.
$\mathfrak{B} \in \operatorname{HSP}^{\mathrm{fin}}(\mathfrak{A}) \leftrightarrow$
all equations in \mathfrak{A} also hold in \mathfrak{B}.

Birkhoff's theorems

```
Theorem 1 (Birkhoff)
B}\in\operatorname{HSP}(\mathfrak{A})
all equations of }\mathfrak{A}\mathrm{ also hold in }\mathfrak{B}\mathrm{ .
```

Theorem 2 (Birkhoff)
Let $\mathfrak{A}, \mathfrak{B}$ be finite.
$\mathfrak{B} \in \operatorname{HSP}^{\mathrm{fin}}(\mathfrak{A}) \leftrightarrow$
all equations in \mathfrak{A} also hold in \mathfrak{B}.

Observations.

Birkhoff's theorems

```
Theorem 1 (Birkhoff)
\mathfrak{B}\in\operatorname{HSP}(\mathfrak{A})\leftrightarrow
all equations of }\mathfrak{A}\mathrm{ also hold in }\mathfrak{B}\mathrm{ .
```

Theorem 2 (Birkhoff)

Let $\mathfrak{A}, \mathfrak{B}$ be finite.
$\mathfrak{B} \in \operatorname{HSP}^{\text {fin }}(\mathfrak{A}) \leftrightarrow$
all equations in \mathfrak{A} also hold in \mathfrak{B}.

Observations.

■ In Theorem 2, \rightarrow follows from Theorem 1, while \leftarrow does not.

Birkhoff's theorems

```
Theorem 1 (Birkhoff)
\mathfrak{B}\in\operatorname{HSP}(\mathfrak{A})\leftrightarrow
all equations of }\mathfrak{A}\mathrm{ also hold in }\mathfrak{B}\mathrm{ .
```

Theorem 2 (Birkhoff)
Let $\mathfrak{A}, \mathfrak{B}$ be finite.
$\mathfrak{B} \in \operatorname{HSP}^{\mathrm{fin}}(\mathfrak{A}) \leftrightarrow$
all equations in \mathfrak{A} also hold in \mathfrak{B}.

Observations.

■ In Theorem 2, \rightarrow follows from Theorem 1, while \leftarrow does not.

- When \mathfrak{A} is infinite and \mathfrak{B} is finite, then Theorem 2 does not necessarily hold.

Birkhoff's theorems

```
Theorem 1 (Birkhoff)
\mathfrak{B}\in\operatorname{HSP}(\mathfrak{A})\leftrightarrow
all equations of }\mathfrak{A}\mathrm{ also hold in }\mathfrak{B}\mathrm{ .
```


Theorem 2 (Birkhoff)

Let $\mathfrak{A}, \mathfrak{B}$ be finite.
$\mathfrak{B} \in \operatorname{HSP}^{\mathrm{fin}}(\mathfrak{A}) \leftrightarrow$
all equations in \mathfrak{A} also hold in \mathfrak{B}.

Observations.

■ In Theorem 2, \rightarrow follows from Theorem 1, while \leftarrow does not.

- When \mathfrak{A} is infinite and \mathfrak{B} is finite, then Theorem 2 does not necessarily hold.

Bad for aesthetic and computational reasons.

Troubling

Reformulating Birkhoff: clone homomorphisms

Reformulating Birkhoff: clone homomorphisms

When all equations of \mathfrak{A} also hold in \mathfrak{B}, then the map

$$
\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}
$$

is a well-defined function from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.

Reformulating Birkhoff: clone homomorphisms

When all equations of \mathfrak{A} also hold in \mathfrak{B}, then the map

$$
\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}
$$

is a well-defined function from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.
ξ is called the natural homomorphism from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.

Reformulating Birkhoff: clone homomorphisms

When all equations of \mathfrak{A} also hold in \mathfrak{B}, then the map

$$
\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}
$$

is a well-defined function from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.
ξ is called the natural homomorphism from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.

$$
\xi\left(f^{\mathfrak{A}}\left(g_{1}^{\mathfrak{A}}, \ldots, g_{n}^{\mathfrak{A} \mathfrak{l}}\right)\right)=\xi\left(f^{\mathfrak{A}}\right)\left(\xi\left(g_{1}^{\mathfrak{A}}\right), \ldots, \xi\left(g_{n}^{\mathfrak{A}}\right)\right)
$$

Reformulating Birkhoff: clone homomorphisms

When all equations of \mathfrak{A} also hold in \mathfrak{B}, then the map

$$
\xi: t^{\mathfrak{A}} \mapsto t^{\mathfrak{B}}
$$

is a well-defined function from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.
ξ is called the natural homomorphism from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.

$$
\xi\left(f^{\mathfrak{A}}\left(g_{1}^{\mathfrak{A}}, \ldots, g_{n}^{\mathfrak{A}}\right)\right)=\xi\left(f^{\mathfrak{A} \mathfrak{l}}\right)\left(\xi\left(g_{1}^{\mathfrak{A}}\right), \ldots, \xi\left(g_{n}^{\mathfrak{A}}\right)\right)
$$

ξ preserves the algebraic structure of $\operatorname{Clo}(\mathfrak{A})$.

Reformulating Birkhoff: clone homomorphisms

When all equations of \mathfrak{A} also hold in \mathfrak{B}, then the map

$$
\xi: t^{\mathfrak{2}} \mapsto t^{\mathfrak{B}}
$$

is a well-defined function from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.
ξ is called the natural homomorphism from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$.

$$
\xi\left(f^{\mathfrak{a l}^{\mathfrak{l}}}\left(g_{1}^{\mathfrak{a}}, \ldots, g_{n}^{\mathfrak{a} \mathfrak{l}}\right)\right)=\xi\left(f^{\mathfrak{a} l}\right)\left(\xi\left(g_{1}^{\mathfrak{a}}\right), \ldots, \xi\left(g_{n}^{\mathfrak{a}}\right)\right)
$$

ξ preserves the algebraic structure of $\operatorname{Clo}(\mathfrak{A})$.

Theorem 2 (Birkhoff)

Let $\mathfrak{A}, \mathfrak{B}$ be finite.
$\mathfrak{B} \in \operatorname{HSP}^{\text {fin }}(\mathfrak{A}) \leftrightarrow$
the natural homomorphism from $\operatorname{Clo}(\mathfrak{A})$ to $\mathrm{Clo}(\mathfrak{B})$ exists.

Topology and oligomorphic clones

Some excitement:

Topology and oligomorphic clones

Some excitement:

■ Generalize to which class of infinite algebras?

Topology and oligomorphic clones

Some excitement:

■ Generalize to which class of infinite algebras?
■ Same statement?

Topology and oligomorphic clones

Some excitement:

■ Generalize to which class of infinite algebras?
■ Same statement?
Clo(\mathfrak{A}) carries also topological structure: subset of $\bigcup_{n \geq 1} \mathfrak{A}^{\mathfrak{A}^{n}}$. Each $\mathfrak{A}^{\mathfrak{A}^{n}}$ has product topology, where \mathfrak{A} is taken to be discrete.

Topology and oligomorphic clones

Some excitement:

■ Generalize to which class of infinite algebras?
■ Same statement?
Clo(\mathfrak{A}) carries also topological structure: subset of $\bigcup_{n \geq 1} \mathfrak{A}^{\mathfrak{A}^{n}}$. Each $\mathfrak{A}^{\mathfrak{A}^{n}}$ has product topology, where \mathfrak{A} is taken to be discrete.

Remark. Topological structure of $\operatorname{Clo}(\mathfrak{A})$ trivial when \mathfrak{A} finite.

Topology and oligomorphic clones

Some excitement:

■ Generalize to which class of infinite algebras?
■ Same statement?
Clo(\mathfrak{A}) carries also topological structure: subset of $\bigcup_{n \geq 1} \mathfrak{A}^{\mathfrak{A}^{n}}$. Each $\mathfrak{A}^{\mathfrak{A}^{n}}$ has product topology, where \mathfrak{A} is taken to be discrete.

Remark. Topological structure of $\operatorname{Clo}(\mathfrak{A})$ trivial when \mathfrak{A} finite.
A permutation group acting on a set X is called oligomorphic iff its componentwise action on X^{n} has finitely many orbits, for all $n \geq 1$.

Topology and oligomorphic clones

Some excitement:

- Generalize to which class of infinite algebras?
- Same statement?
$\mathrm{Clo}(\mathfrak{A})$ carries also topological structure: subset of $\bigcup_{n \geq 1} \mathfrak{A}^{\mathfrak{A}^{n}}$. Each $\mathfrak{A}^{\mathfrak{A}^{n}}$ has product topology, where \mathfrak{A} is taken to be discrete.

Remark. Topological structure of $\operatorname{Clo(} \mathfrak{A})$ trivial when \mathfrak{A} finite.
A permutation group acting on a set X is called oligomorphic iff its componentwise action on X^{n} has finitely many orbits, for all $n \geq 1$.

Definition

- A clone is locally oligomorphic \leftrightarrow its topological closure contains an oligomorphic permutation group.

Topology and oligomorphic clones

Some excitement:

- Generalize to which class of infinite algebras?
- Same statement?
$\mathrm{Clo}(\mathfrak{A})$ carries also topological structure: subset of $\bigcup_{n \geq 1} \mathfrak{A}^{\mathfrak{A}^{n}}$. Each $\mathfrak{A}^{\mathfrak{A}^{n}}$ has product topology, where \mathfrak{A} is taken to be discrete.

Remark. Topological structure of $\operatorname{Clo}(\mathfrak{A})$ trivial when \mathfrak{A} finite.
A permutation group acting on a set X is called oligomorphic iff its componentwise action on X^{n} has finitely many orbits, for all $n \geq 1$.

Definition

- A clone is locally oligomorphic \leftrightarrow its topological closure contains an oligomorphic permutation group.
- An algebra \mathfrak{A} is locally oligomorphic \leftrightarrow
$\mathrm{Clo}(\mathfrak{A})$ is locally oligomorphic.

Oligomorphic clones: motivation + existence

Oligomorphic clones: motivation + existence

■ Clone generalizes transformation monoid generalizes permutation group.

Oligomorphic clones: motivation + existence

- Clone generalizes transformation monoid generalizes permutation group.

■ Oligomorphic clone generalizes oligomorphic permutation group.

Oligomorphic clones: motivation + existence

- Clone generalizes transformation monoid generalizes permutation group.

■ Oligomorphic clone generalizes oligomorphic permutation group.

- A closed permutation group is oligomorphic \leftrightarrow it is of the form $\operatorname{Aut}(\Delta)$, where Δ is an ω-categorical structure.

Oligomorphic clones: motivation + existence

- Clone generalizes transformation monoid generalizes permutation group.

■ Oligomorphic clone generalizes oligomorphic permutation group.

- A closed permutation group is oligomorphic \leftrightarrow it is of the form $\operatorname{Aut}(\Delta)$, where Δ is an ω-categorical structure.
- A closed clone is oligomorphic \leftrightarrow it is of the form $\operatorname{Pol}(\Delta)$, where Δ is an ω-categorical structure.

Oligomorphic clones: motivation + existence

- Clone generalizes transformation monoid generalizes permutation group.

■ Oligomorphic clone generalizes oligomorphic permutation group.

- A closed permutation group is oligomorphic \leftrightarrow it is of the form $\operatorname{Aut}(\Delta)$, where Δ is an ω-categorical structure.
- A closed clone is oligomorphic \leftrightarrow it is of the form $\operatorname{Pol}(\Delta)$, where Δ is an ω-categorical structure.
$\operatorname{Pol}(\Delta) \ldots$ the clone of all finitary functions preserving Δ.

Oligomorphic clones: motivation + existence

- Clone generalizes transformation monoid generalizes permutation group.

■ Oligomorphic clone generalizes oligomorphic permutation group.

- A closed permutation group is oligomorphic \leftrightarrow it is of the form $\operatorname{Aut}(\Delta)$, where Δ is an ω-categorical structure.
- A closed clone is oligomorphic \leftrightarrow it is of the form $\operatorname{Pol}(\Delta)$, where Δ is an ω-categorical structure.
$\operatorname{Pol}(\Delta) \ldots$ the clone of all finitary functions preserving Δ.
$=$ set of all homomorphisms from some Δ^{n} to Δ.

Topological Birkhoff

Topological Birkhoff

Theorem 2 (Birkhoff)
Let $\mathfrak{A}, \mathfrak{B}$ be finite.
\mathfrak{B} is in $\operatorname{HSP}^{\text {fin }}(\mathfrak{A}) \leftrightarrow$ the natural homomorphism from $\operatorname{Clo}(\mathfrak{A})$ to $\mathrm{Clo}(\mathfrak{B})$ exists.

Topological Birkhoff

Theorem 2 (Birkhoff)
Let $\mathfrak{A}, \mathfrak{B}$ be finite.
\mathfrak{B} is in $\operatorname{HSP}^{\text {fin }}(\mathfrak{A}) \leftrightarrow$
the natural homomorphism from $\operatorname{Clo}(\mathfrak{A})$ to $\mathrm{Clo}(\mathfrak{B})$ exists.

Theorem"Topological Birkhoff" (Bodirsky + MP)
Let $\mathfrak{A}, \mathfrak{B}$ be locally oligomorphic or finite.
\mathfrak{B} is in $\operatorname{HSP}^{\text {fin }}(\mathfrak{A}) \leftrightarrow$
the natural homomorphism from $\operatorname{Clo}(\mathfrak{A})$ to $\operatorname{Clo}(\mathfrak{B})$ exists and is continuous.

Example

Example

There are algebras $\mathfrak{A}, \mathfrak{B}$ with common signature such that
$\square \mathfrak{A}$ is locally oligomorphic;
■ \mathfrak{B} is finite;

- $\mathfrak{B} \in \operatorname{HSP}(\mathfrak{A})$;

■ $\mathfrak{B} \notin \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$.

Example

There are algebras $\mathfrak{A}, \mathfrak{B}$ with common signature such that
$\square \mathfrak{A}$ is locally oligomorphic;

- \mathfrak{B} is finite;
- $\mathfrak{B} \in \operatorname{HSP}(\mathfrak{A})$;

■ $\mathfrak{B} \notin \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$.
Thus: $\xi: \operatorname{Clo}(\mathfrak{A}) \rightarrow \operatorname{Clo}(\mathfrak{B})$ exists but is not continuous.

Example

There are algebras $\mathfrak{A}, \mathfrak{B}$ with common signature such that
$\square \mathfrak{A}$ is locally oligomorphic;
■ \mathfrak{B} is finite;

- $\mathfrak{B} \in \operatorname{HSP}(\mathfrak{A})$;

■ $\mathfrak{B} \notin \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$.
Thus: $\xi: \operatorname{Clo}(\mathfrak{A}) \rightarrow \mathrm{Clo}(\mathfrak{B})$ exists but is not continuous.
Set $\tau:=\left\{f_{i}\right\}_{i \in \omega} \cup\left\{g_{i}\right\}_{i \in \omega}$, all function symbols unary.

Example

There are algebras $\mathfrak{A}, \mathfrak{B}$ with common signature such that
$\square \mathfrak{A}$ is locally oligomorphic;

- \mathfrak{B} is finite;
- $\mathfrak{B} \in \operatorname{HSP}(\mathfrak{A})$;

■ $\mathfrak{B} \notin \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$.
Thus: $\xi: \operatorname{Clo}(\mathfrak{A}) \rightarrow \mathrm{Clo}(\mathfrak{B})$ exists but is not continuous.

Set $\tau:=\left\{f_{i}\right\}_{i \in \omega} \cup\left\{g_{i}\right\}_{i \in \omega}$, all function symbols unary.
Let \mathfrak{A} be any τ-algebra on ω such that
■ the functions $f_{i}^{\mathfrak{A}}$ form a locally oligomorphic permutation group;

- no $g_{i}^{\mathfrak{A}}$ is injective;
- $f_{0}^{\mathfrak{2} t}$ is contained in the topological closure of $\left\{g_{i}^{\mathfrak{A}}\right\}_{i \in \omega}$.

Example

There are algebras $\mathfrak{A}, \mathfrak{B}$ with common signature such that
$\square \mathfrak{A}$ is locally oligomorphic;
■ \mathfrak{B} is finite;

- $\mathfrak{B} \in \operatorname{HSP}(\mathfrak{A})$;

■ $\mathfrak{B} \notin \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$.
Thus: $\xi: \operatorname{Clo}(\mathfrak{A}) \rightarrow \mathrm{Clo}(\mathfrak{B})$ exists but is not continuous.
Set $\tau:=\left\{f_{i}\right\}_{i \in \omega} \cup\left\{g_{i}\right\}_{i \in \omega}$, all function symbols unary.
Let \mathfrak{A} be any τ-algebra on ω such that
■ the functions $f_{i}^{\mathfrak{2}}$ form a locally oligomorphic permutation group;

- no $g_{i}^{\mathfrak{A}}$ is injective;

■ $f_{0}^{\mathfrak{2} l}$ is contained in the topological closure of $\left\{g_{i}^{\mathfrak{A}}\right\}_{i \in \omega}$.
Let \mathfrak{B} be the τ-algebra on $\{0,1\}$ such that

- $f_{i}^{\mathfrak{B}}$ is the identity function for all $i \in \omega$;
- $g_{i}^{\mathfrak{B}}$ is the constant function with value 0 .

Links to model theory

Links to model theory

\square A structure Δ is ω-categorical $\leftrightarrow \operatorname{Pol}(\Delta)$ is oligomorphic.

Links to model theory

■ A structure Δ is ω-categorical $\leftrightarrow \operatorname{Pol}(\Delta)$ is oligomorphic.
■ Can view $\operatorname{Pol}(\Delta)$ as the clone of an oligomorphic algebra (polymorphism algebra of Δ).

Links to model theory

■ A structure Δ is ω-categorical $\leftrightarrow \operatorname{Pol}(\Delta)$ is oligomorphic.
■ Can view $\operatorname{Pol}(\Delta)$ as the clone of an oligomorphic algebra (polymorphism algebra of Δ).

■ HSP ${ }^{\text {fin }}$ reminds us of ...

Links to model theory

■ A structure Δ is ω-categorical $\leftrightarrow \operatorname{Pol}(\Delta)$ is oligomorphic.
■ Can view $\operatorname{Pol}(\Delta)$ as the clone of an oligomorphic algebra (polymorphism algebra of Δ).

■ HSP ${ }^{\text {fin }}$ reminds us of ...

Interpretations!

Part II: Topological clones and interpretations

Interpretations

Interpretations

A σ-structure Δ as an interpretation in a τ-structure Γ iff

Interpretations

A σ-structure Δ as an interpretation in a τ-structure Γ iff there exist ■ $d \geq 1$ (the dimension),

Interpretations

A σ-structure Δ as an interpretation in a τ-structure Γ iff there exist

- $d \geq 1$ (the dimension),

■ a τ-formula $\delta\left(x_{1}, \ldots, x_{d}\right)$ (the domain formula),

Interpretations

A σ-structure Δ as an interpretation in a τ-structure Γ iff there exist

- $d \geq 1$ (the dimension),

■ a τ-formula $\delta\left(x_{1}, \ldots, x_{d}\right)$ (the domain formula),
■ for every atomic σ-formula $\phi\left(y_{1}, \ldots, y_{k}\right)$ a τ-formula $\phi^{\prime}\left(\bar{u}_{1}, \ldots, \bar{u}_{k}\right)$,

Interpretations

A σ-structure Δ as an interpretation in a τ-structure Γ iff there exist

- $d \geq 1$ (the dimension),

■ a τ-formula $\delta\left(x_{1}, \ldots, x_{d}\right)$ (the domain formula),
■ for every atomic σ-formula $\phi\left(y_{1}, \ldots, y_{k}\right)$ a τ-formula $\phi^{\prime}\left(\bar{u}_{1}, \ldots, \bar{u}_{k}\right)$,
■ a surjective map $h: \delta\left(\Gamma^{d}\right) \rightarrow \Delta$, such that

Interpretations

A σ-structure Δ as an interpretation in a τ-structure Γ iff there exist

- $d \geq 1$ (the dimension),

■ a τ-formula $\delta\left(x_{1}, \ldots, x_{d}\right)$ (the domain formula),
■ for every atomic σ-formula $\phi\left(y_{1}, \ldots, y_{k}\right)$ a τ-formula $\phi^{\prime}\left(\bar{u}_{1}, \ldots, \bar{u}_{k}\right)$,

- a surjective map $h: \delta\left(\Gamma^{d}\right) \rightarrow \Delta$, such that for all atomic σ-formulas $\phi\left(y_{1}, \ldots, y_{k}\right)$ and all $\bar{a}_{1}, \ldots, \bar{a}_{k} \in \delta\left(\Gamma^{d}\right)$

$$
\Delta \models \phi\left(h\left(\bar{a}_{1}\right), \ldots, h\left(\bar{a}_{k}\right)\right) \leftrightarrow \Gamma \models \phi^{\prime}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)
$$

Interpretations

A σ-structure Δ as an interpretation in a τ-structure Γ iff there exist

- $d \geq 1$ (the dimension),

■ a τ-formula $\delta\left(x_{1}, \ldots, x_{d}\right)$ (the domain formula),
■ for every atomic σ-formula $\phi\left(y_{1}, \ldots, y_{k}\right)$ a τ-formula $\phi^{\prime}\left(\bar{u}_{1}, \ldots, \bar{u}_{k}\right)$,

- a surjective map $h: \delta\left(\Gamma^{d}\right) \rightarrow \Delta$, such that
for all atomic σ-formulas $\phi\left(y_{1}, \ldots, y_{k}\right)$ and all $\bar{a}_{1}, \ldots, \bar{a}_{k} \in \delta\left(\Gamma^{d}\right)$

$$
\Delta \models \phi\left(h\left(\bar{a}_{1}\right), \ldots, h\left(\bar{a}_{k}\right)\right) \leftrightarrow \Gamma \models \phi^{\prime}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)
$$

The interpretation is called primitive positive (pp) iff all involved formulas are primitive positive, i.e., of the form

$$
\exists v_{1}, \ldots v_{r} \cdot \psi_{1} \wedge \ldots \wedge \psi_{l}
$$

for atomic ψ_{i}.

Interpretations

A σ-structure Δ as an interpretation in a τ-structure Γ iff there exist

- $d \geq 1$ (the dimension),

■ a τ-formula $\delta\left(x_{1}, \ldots, x_{d}\right)$ (the domain formula),
■ for every atomic σ-formula $\phi\left(y_{1}, \ldots, y_{k}\right)$ a τ-formula $\phi^{\prime}\left(\bar{u}_{1}, \ldots, \bar{u}_{k}\right)$,
■ a surjective map $h: \delta\left(\Gamma^{d}\right) \rightarrow \Delta$, such that
for all atomic σ-formulas $\phi\left(y_{1}, \ldots, y_{k}\right)$ and all $\bar{a}_{1}, \ldots, \bar{a}_{k} \in \delta\left(\Gamma^{d}\right)$

$$
\Delta \models \phi\left(h\left(\bar{a}_{1}\right), \ldots, h\left(\bar{a}_{k}\right)\right) \leftrightarrow \Gamma \models \phi^{\prime}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)
$$

The interpretation is called primitive positive (pp) iff all involved formulas are primitive positive, i.e., of the form

$$
\exists v_{1}, \ldots v_{r} \cdot \psi_{1} \wedge \ldots \wedge \psi_{l}
$$

for atomic ψ_{i}.
Example: $(\mathbb{Q} ;+, \cdot)$ has a pp interpretation in $(\mathbb{Z} ;+, \cdot)$.

pp interpretations and HSP fin

pp interpretations and HSPfin

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $\operatorname{Clo}(\mathfrak{A})=\operatorname{Pol}(\Gamma)$.

pp interpretations and HSP fin

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $\operatorname{Clo}(\mathfrak{A})=\operatorname{Pol}(\Gamma)$.

Proposition

Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:

pp interpretations and HSP fin

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $\operatorname{Clo}(\mathfrak{A})=\operatorname{Pol}(\Gamma)$.

Proposition

Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ;

pp interpretations and HSP fin

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $\operatorname{Clo}(\mathfrak{A})=\operatorname{Pol}(\Gamma)$.

Proposition

Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ;
- For every / any polymorphism algebra \mathfrak{A} of Γ there is an algebra $\mathfrak{B} \in \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$ such that $\operatorname{Clo}(\mathfrak{B}) \subseteq \operatorname{Pol}(\Delta)$.

pp interpretations and HSP fin

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $\operatorname{Clo}(\mathfrak{A})=\operatorname{Pol}(\Gamma)$.

Proposition

Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ;
- For every / any polymorphism algebra \mathfrak{A} of Γ there is an algebra $\mathfrak{B} \in \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$ such that $\operatorname{Clo}(\mathfrak{B}) \subseteq \operatorname{Pol}(\Delta)$.

> Theorem (Bodirsky + Nešetřil)
> Let Δ be ω-categorical.
> A relation R has a pp definition in $\Delta \leftrightarrow$
> R is preserved by all functions in $\operatorname{Pol}(\Delta)$.

pp interpretations and HSP fin

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $\operatorname{Clo}(\mathfrak{A})=\operatorname{Pol}(\Gamma)$.

Proposition

Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ;
- For every / any polymorphism algebra \mathfrak{A} of Γ there is an algebra $\mathfrak{B} \in \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$ such that $\operatorname{Clo}(\mathfrak{B}) \subseteq \operatorname{Pol}(\Delta)$.

Theorem (Bodirsky + Nešetřil)

Let Δ be ω-categorical.
A relation R has a pp definition in $\Delta \leftrightarrow$
R is preserved by all functions in $\operatorname{Pol}(\Delta)$.

Consequences:

■ subalgebras of \mathfrak{A} are pp definable subsets of the domain of Γ.

pp interpretations and HSP fin

An algebra \mathfrak{A} is called a polymorphism algebra of Γ iff $\operatorname{Clo}(\mathfrak{A})=\operatorname{Pol}(\Gamma)$.

Proposition

Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ;
- For every / any polymorphism algebra \mathfrak{A} of Γ there is an algebra $\mathfrak{B} \in \operatorname{HSP}^{\text {fin }}(\mathfrak{A})$ such that $\operatorname{Clo}(\mathfrak{B}) \subseteq \operatorname{Pol}(\Delta)$.

Theorem (Bodirsky + Nešetřil)

Let Δ be ω-categorical.
A relation R has a pp definition in $\Delta \leftrightarrow$
R is preserved by all functions in $\operatorname{Pol}(\Delta)$.

Consequences:

■ subalgebras of \mathfrak{A} are pp definable subsets of the domain of Γ.

- congruences of \mathfrak{A} are pp definable equivalence relations of Γ.

pp Interpretations and Topological clones

pp Interpretations and Topological clones

A reduct of a structure Δ^{\prime} is a structure obtained from Δ^{\prime} by dropping some of its relations or functions.

pp Interpretations and Topological clones

A reduct of a structure Δ^{\prime} is a structure obtained from Δ^{\prime} by dropping some of its relations or functions.

Theorem (Bodirsky + MP)
Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:

pp Interpretations and Topological clones

A reduct of a structure Δ^{\prime} is a structure obtained from Δ^{\prime} by dropping some of its relations or functions.

Theorem (Bodirsky + MP)
Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:
■ Δ has a pp interpretation in Γ;

pp Interpretations and Topological clones

A reduct of a structure Δ^{\prime} is a structure obtained from Δ^{\prime} by dropping some of its relations or functions.

Theorem (Bodirsky + MP)
Let Γ be finite or ω-categorical, and let Δ be arbitrary. Tfae:

- Δ has a pp interpretation in Γ;

■ Δ is the reduct of a finite or ω-categorical structure Δ^{\prime} such that there exists a continuous homomorphism from $\operatorname{Pol}(\Gamma)$ to $\operatorname{Pol}\left(\Delta^{\prime}\right)$ whose image is dense in $\operatorname{Pol}\left(\Delta^{\prime}\right)$.

Example

Example

The image of the continuous homomorphism $\xi: \operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}\left(\Delta^{\prime}\right)$ might be dense in $\operatorname{Pol}\left(\Delta^{\prime}\right)$ without being surjective.

Example

The image of the continuous homomorphism $\xi: \operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}\left(\Delta^{\prime}\right)$ might be dense in $\operatorname{Pol}\left(\Delta^{\prime}\right)$ without being surjective. In particular, in this situation the image is not closed.

Example

The image of the continuous homomorphism $\xi: \operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}\left(\Delta^{\prime}\right)$ might be dense in $\operatorname{Pol}\left(\Delta^{\prime}\right)$ without being surjective. In particular, in this situation the image is not closed. Example for Aut(Г), Aut($\left.\Delta^{\prime}\right)$ due to Macpherson.

Example

The image of the continuous homomorphism $\xi: \operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}\left(\Delta^{\prime}\right)$ might be dense in $\operatorname{Pol}\left(\Delta^{\prime}\right)$ without being surjective. In particular, in this situation the image is not closed.
Example for $\operatorname{Aut}(\Gamma), \operatorname{Aut}\left(\Delta^{\prime}\right)$ due to Macpherson.
Let $S \subseteq \mathbb{Q}$ be so that both S and $\mathbb{Q} \backslash S$ are dense.

Example

The image of the continuous homomorphism $\xi: \operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}\left(\Delta^{\prime}\right)$ might be dense in $\operatorname{Pol}\left(\Delta^{\prime}\right)$ without being surjective. In particular, in this situation the image is not closed.
Example for $\operatorname{Aut}(\Gamma), \operatorname{Aut}\left(\Delta^{\prime}\right)$ due to Macpherson.
Let $S \subseteq \mathbb{Q}$ be so that both S and $\mathbb{Q} \backslash S$ are dense.
Let $\Gamma:=(\mathbb{Q} ;<, S)$;

Example

The image of the continuous homomorphism $\xi: \operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}\left(\Delta^{\prime}\right)$ might be dense in $\operatorname{Pol}\left(\Delta^{\prime}\right)$ without being surjective. In particular, in this situation the image is not closed.
Example for $\operatorname{Aut}(\Gamma)$, $\operatorname{Aut}\left(\Delta^{\prime}\right)$ due to Macpherson.
Let $S \subseteq \mathbb{Q}$ be so that both S and $\mathbb{Q} \backslash S$ are dense.
Let $\Gamma:=(\mathbb{Q} ;<, S) ; \quad \Delta^{\prime}:=(S ;<)$.

Example

The image of the continuous homomorphism $\xi: \operatorname{Pol}(\Gamma) \rightarrow \operatorname{Pol}\left(\Delta^{\prime}\right)$ might be dense in $\operatorname{Pol}\left(\Delta^{\prime}\right)$ without being surjective. In particular, in this situation the image is not closed.
Example for $\operatorname{Aut}(\Gamma)$, $\operatorname{Aut}\left(\Delta^{\prime}\right)$ due to Macpherson.
Let $S \subseteq \mathbb{Q}$ be so that both S and $\mathbb{Q} \backslash S$ are dense.
Let $\Gamma:=(\mathbb{Q} ;<, S) ; \quad \Delta^{\prime}:=(S ;<)$.
$\xi: \operatorname{Aut}(\Gamma) \rightarrow \operatorname{Aut}\left(\Delta^{\prime}\right)$ defined by $f \mapsto f \upharpoonright s$.

Bi-interpretability

Bi-interpretability

Two structures Δ and Γ are mutually pp interpretable iff Γ has a pp interpretation in Δ and vice versa.

Bi-interpretability

Two structures Δ and 「 are mutually pp interpretable iff Γ has a pp interpretation in Δ and vice versa.

Stronger notion:

Bi-interpretability

Two structures Δ and Γ are mutually pp interpretable iff Γ has a pp interpretation in Δ and vice versa.

Stronger notion: Δ and Γ are pp bi-interpretable iff the coordinate maps h_{1} and h_{2} of the pp interpretations are so that

$$
\begin{aligned}
& x=h_{1}\left(h_{2}\left(y_{1,1}, \ldots, y_{1, d_{2}}\right), \ldots, h_{2}\left(y_{d_{1}, 1}, \ldots, y_{d_{1}, d_{2}}\right)\right) \\
& x=h_{2}\left(h_{1}\left(y_{1,1}, \ldots, y_{d_{1}, 1}\right), \ldots, h_{1}\left(y_{1, d_{2}}, \ldots, y_{d_{1}, d_{2}}\right)\right)
\end{aligned}
$$

are pp definable in Δ and Γ, respectively.

Bi-interpretability and topological clones

Bi-interpretability and topological clones

Theorem (Bodirsky + MP)
Let Δ and Γ be ω-categorical. Tfae:

Bi-interpretability and topological clones

Theorem (Bodirsky + MP)
Let Δ and Γ be ω-categorical. Tfae:
■ Δ and Γ are pp bi-interpretable;

Bi-interpretability and topological clones

Theorem (Bodirsky + MP)
Let Δ and Γ be ω-categorical. Tfae:

- Δ and Γ are pp bi-interpretable;

■ $\operatorname{Pol}(\Delta)$ and $\operatorname{Pol}(\Gamma)$ are isomorphic as topological clones.

Bi-interpretability and topological clones

Theorem (Bodirsky + MP)
Let Δ and Γ be ω-categorical. Tfae:

- Δ and Γ are pp bi-interpretable;
$■ \operatorname{Pol}(\Delta)$ and $\operatorname{Pol}(\Gamma)$ are isomorphic as topological clones.

Theorem (Ahlbrandt + Ziegler)
Let Δ and Γ be ω-categorical. Tfae:

Bi-interpretability and topological clones

Theorem (Bodirsky + MP)
Let Δ and Γ be ω-categorical. Tfae:

- Δ and Γ are pp bi-interpretable;
$■ \operatorname{Pol}(\Delta)$ and $\operatorname{Pol}(\Gamma)$ are isomorphic as topological clones.

Theorem (Ahlbrandt + Ziegler)
Let Δ and Γ be ω-categorical. Tfae:
$\square \Delta$ and Γ are first-order bi-interpretable;

Bi-interpretability and topological clones

Theorem (Bodirsky + MP)
Let Δ and Γ be ω-categorical. Tfae:

- Δ and Γ are pp bi-interpretable;
$■ \operatorname{Pol}(\Delta)$ and $\operatorname{Pol}(\Gamma)$ are isomorphic as topological clones.

Theorem (Ahlbrandt + Ziegler)
Let Δ and Γ be ω-categorical. Tfae:
$\square \Delta$ and Γ are first-order bi-interpretable;
■ $\operatorname{Aut}(\Delta)$ and $\operatorname{Aut}(\Gamma)$ are isomorphic as topological groups.

Part III: Constraint Satisfaction Problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Let Δ be a structure with a finite relational signature τ.

Constraint Satisfaction Problems

Let Δ be a structure with a finite relational signature τ.
Definition (Constraint Satisfaction Problem)
$\operatorname{CSP}(\Delta)$ is the computational problem to decide whether a given primitive positive τ-sentence holds in Δ.

Constraint Satisfaction Problems

Let Δ be a structure with a finite relational signature τ.
Definition (Constraint Satisfaction Problem)
$\operatorname{CSP}(\Delta)$ is the computational problem to decide whether a given primitive positive τ-sentence holds in Δ.

Example. $\operatorname{CSP}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ is the problem called positive 1 -in-3-3SAT. It is NP-complete.

Constraint Satisfaction Problems

Let Δ be a structure with a finite relational signature τ.
Definition (Constraint Satisfaction Problem)
$\operatorname{CSP}(\Delta)$ is the computational problem to decide whether a given primitive positive τ-sentence holds in Δ.

Example. $\operatorname{CSP}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ is the problem called positive 1 -in-3-3SAT. It is NP-complete.
Example. CSPs of reducts of homogeneous structures.

Constraint Satisfaction Problems

Let Δ be a structure with a finite relational signature τ.

Definition (Constraint Satisfaction Problem)

$\operatorname{CSP}(\Delta)$ is the computational problem to decide whether a given primitive positive τ-sentence holds in Δ.

Example. $\operatorname{CSP}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ is the problem called positive 1 -in-3-3SAT. It is NP-complete.
Example. CSPs of reducts of homogeneous structures.
Fact: When there is a pp interpretation of Δ in Γ, then there is a polynomial-time reduction from $\operatorname{CSP}(\Delta)$ to $\operatorname{CSP}(\Gamma)$.

Constraint Satisfaction Problems

Let Δ be a structure with a finite relational signature τ.

Definition (Constraint Satisfaction Problem)

$\operatorname{CSP}(\Delta)$ is the computational problem to decide whether a given primitive positive τ-sentence holds in Δ.

Example. $\operatorname{CSP}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ is the problem called positive 1 -in-3-3SAT. It is NP-complete.
Example. CSPs of reducts of homogeneous structures.
Fact: When there is a pp interpretation of Δ in Γ, then there is a polynomial-time reduction from $\operatorname{CSP}(\Delta)$ to $\operatorname{CSP}(\Gamma)$.

Theorem (Bodirsky + MP)

For ω-categorical Δ, the complexity of $\operatorname{CSP}(\Delta)$ only depends on the topological polymorphism clone of Δ.

Computer Science-free hardness proofs

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection.

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection. Topology of 1 is discrete.

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection. Topology of $\mathbf{1}$ is discrete.

Example: $\operatorname{Pol}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ equals 1 .

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection. Topology of 1 is discrete.

Example: $\operatorname{Pol}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ equals 1.
Example: $\Delta:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)$

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection. Topology of 1 is discrete.

Example: $\operatorname{Pol}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ equals 1.
Example: $\Delta:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)$ $\operatorname{CSP}(\Delta)$ is called Betweenness problem.

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection.
Topology of 1 is discrete.
Example: $\operatorname{Pol}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ equals 1.
Example: $\Delta:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)$ $\operatorname{CSP}(\Delta)$ is called Betweenness problem.
$\operatorname{CSP}(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi: \operatorname{Pol}(\Delta) \rightarrow \mathbf{1}:$

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection.
Topology of 1 is discrete.
Example: $\operatorname{Pol}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ equals 1.
Example: $\Delta:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)$
$\operatorname{CSP}(\Delta)$ is called Betweenness problem.
$\operatorname{CSP}(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi: \operatorname{Pol}(\Delta) \rightarrow \mathbf{1}$:
For any $f \in \operatorname{Pol}(\Delta)$ of arity k, one of the following holds:

Computer Science-free hardness proofs

Let $\mathbf{1}$ be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection.
Topology of $\mathbf{1}$ is discrete.
Example: $\operatorname{Pol}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ equals 1.
Example: $\Delta:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)$
$\operatorname{CSP}(\Delta)$ is called Betweenness problem.
$\operatorname{CSP}(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi: \operatorname{Pol}(\Delta) \rightarrow \mathbf{1}$:
For any $f \in \operatorname{Pol}(\Delta)$ of arity k, one of the following holds:
(1) $\exists i \in\{1, \ldots, k\} \forall x, y \in \Delta^{k}:\left(\neq(x, y) \wedge\left(x_{i}<y_{i}\right) \Rightarrow f(x)<f(y)\right)$
(2) $\exists i \in\{1, \ldots, k\} \forall x, y \in \Delta^{k}:\left(\neq(x, y) \wedge\left(x_{i}<y_{i}\right) \Rightarrow f(x)>f(y)\right)$

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection.
Topology of $\mathbf{1}$ is discrete.
Example: $\operatorname{Pol}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ equals 1.
Example: $\Delta:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)$
$\operatorname{CSP}(\Delta)$ is called Betweenness problem.
$\operatorname{CSP}(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi: \operatorname{Pol}(\Delta) \rightarrow \mathbf{1}$:
For any $f \in \operatorname{Pol}(\Delta)$ of arity k, one of the following holds:
(1) $\exists i \in\{1, \ldots, k\} \forall x, y \in \Delta^{k}:\left(\neq(x, y) \wedge\left(x_{i}<y_{i}\right) \Rightarrow f(x)<f(y)\right)$
(2) $\exists i \in\{1, \ldots, k\} \forall x, y \in \Delta^{k}:\left(\neq(x, y) \wedge\left(x_{i}<y_{i}\right) \Rightarrow f(x)>f(y)\right)$
i is unique for each f. Set $\xi(f):=\pi_{i}^{k}$.

Computer Science-free hardness proofs

Let 1 be the clone of the algebra on $\{0,1\}$ without functions.
1 consists of projections; write $\pi_{i}^{k}, 1 \leq i \leq k$, for i-th k-ary projection.
Topology of 1 is discrete.
Example: $\operatorname{Pol}(\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\})$ equals 1.
Example: $\Delta:=\left(\mathbb{Q} ;\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x<y<z \vee z<y<x\right\}\right)$
$\operatorname{CSP}(\Delta)$ is called Betweenness problem.
$\operatorname{CSP}(\Delta)$ is NP-hard since there is a continuous homomorphism $\xi: \operatorname{Pol}(\Delta) \rightarrow \mathbf{1}$:
For any $f \in \operatorname{Pol}(\Delta)$ of arity k, one of the following holds:
(1) $\exists i \in\{1, \ldots, k\} \forall x, y \in \Delta^{k}:\left(\neq(x, y) \wedge\left(x_{i}<y_{i}\right) \Rightarrow f(x)<f(y)\right)$
(2) $\exists i \in\{1, \ldots, k\} \forall x, y \in \Delta^{k}:\left(\neq(x, y) \wedge\left(x_{i}<y_{i}\right) \Rightarrow f(x)>f(y)\right)$
i is unique for each f. Set $\xi(f):=\pi_{i}^{k}$.
Straightforward: ξ is continuous homomorphism.

Reconstruction

In which situations does the algebraic structure of the clone $\operatorname{Pol}(\Delta)$ determine its topological structure? Always?

Reconstruction

In which situations does the algebraic structure of the clone $\operatorname{Pol}(\Delta)$ determine its topological structure? Always?

For Aut(Δ), this question has been studied.

Reconstruction

In which situations does the algebraic structure of the clone $\operatorname{Pol}(\Delta)$ determine its topological structure? Always?

For Aut(Δ), this question has been studied.

Definition

Δ has the small index property iff every subgroup of $\operatorname{Aut}(\Delta)$ of index less than $2^{\aleph_{0}}$ is open.

Reconstruction

In which situations does the algebraic structure of the clone $\operatorname{Pol}(\Delta)$ determine its topological structure? Always?

For Aut(Δ), this question has been studied.

Definition

Δ has the small index property iff every subgroup of $\operatorname{Aut}(\Delta)$ of index less than $2^{\aleph_{0}}$ is open.

Equivalent: every homomorphism from $\operatorname{Aut}(\Delta)$ to $\operatorname{Sym}(\mathbb{N})$ is continuous.

Reconstruction

In which situations does the algebraic structure of the clone $\operatorname{Pol}(\Delta)$ determine its topological structure? Always?

For Aut(Δ), this question has been studied.

Definition

Δ has the small index property iff every subgroup of $\operatorname{Aut}(\Delta)$ of index less than $2^{\aleph_{0}}$ is open.

Equivalent: every homomorphism from $\operatorname{Aut}(\Delta)$ to $\operatorname{Sym}(\mathbb{N})$ is continuous.

Small index property has been verified for

- ($\mathbb{N} ;=)($ Dixon+Neumann+Thomas'86)

Reconstruction

In which situations does the algebraic structure of the clone $\operatorname{Pol}(\Delta)$ determine its topological structure? Always?

For Aut(Δ), this question has been studied.

Definition

Δ has the small index property iff every subgroup of $\operatorname{Aut}(\Delta)$ of index less than $2^{\aleph_{0}}$ is open.

Equivalent: every homomorphism from $\operatorname{Aut}(\Delta)$ to $\operatorname{Sym}(\mathbb{N})$ is continuous.

Small index property has been verified for

- ($\mathbb{N} ;=$) (Dixon+Neumann+Thomas'86)
- ($\mathbb{Q} ;<$) and the atomless Boolean algebra (Truss'89)

Reconstruction

In which situations does the algebraic structure of the clone $\operatorname{Pol}(\Delta)$ determine its topological structure? Always?
For Aut(Δ), this question has been studied.

Definition

Δ has the small index property iff every subgroup of $\operatorname{Aut}(\Delta)$ of index less than $2^{\aleph_{0}}$ is open.

Equivalent: every homomorphism from $\operatorname{Aut}(\Delta)$ to $\operatorname{Sym}(\mathbb{N})$ is continuous.

Small index property has been verified for

- ($\mathbb{N} ;=)$ (Dixon+Neumann+Thomas'86)
- ($\mathbb{Q} ;<$) and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)

Reconstruction

In which situations does the algebraic structure of the clone $\operatorname{Pol}(\Delta)$ determine its topological structure? Always?
For Aut(Δ), this question has been studied.

Definition

Δ has the small index property iff every subgroup of $\operatorname{Aut}(\Delta)$ of index less than $2^{\kappa_{0}}$ is open.

Equivalent: every homomorphism from $\operatorname{Aut}(\Delta)$ to $\operatorname{Sym}(\mathbb{N})$ is continuous.

Small index property has been verified for

- ($\mathbb{N} ;=)$ (Dixon+Neumann+Thomas'86)
- ($\mathbb{Q} ;<$) and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)
- and the Henson graphs (Herwig'98).

Automatic continuity

Automatic continuity

Non-reconstruction:

There are two ω-categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90).

Automatic continuity

Non-reconstruction:

There are two ω-categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90). (Assumes AC)

Automatic continuity

Non-reconstruction:

There are two ω-categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90). (Assumes AC)

Automatic continuity:

■ Every Baire measurable homomorphism between Polish groups is continuous.

Automatic continuity

Non-reconstruction:

There are two ω-categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90). (Assumes AC)

Automatic continuity:

■ Every Baire measurable homomorphism between Polish groups is continuous.
■ There exists a model of ZF+DC where every set is Baire measurable (Shelah'84).

Open problems

Open problems

■ Do there exist ω-categorical Γ, Δ such that $\operatorname{Pol}(\Gamma), \operatorname{Pol}(\Delta)$ are isomorphic algebraically but not topologically? (Analogue of Evans+Hewitt).

Open problems

■ Do there exist ω-categorical Γ, Δ such that $\operatorname{Pol}(\Gamma), \operatorname{Pol}(\Delta)$ are isomorphic algebraically but not topologically?
(Analogue of Evans+Hewitt).
■ When does the algebraic structure of $\operatorname{Pol}(\Delta)$ determine the topological one? (e.g., "Small index property")

Open problems

■ Do there exist ω-categorical Γ, Δ such that $\operatorname{Pol}(\Gamma), \operatorname{Pol}(\Delta)$ are isomorphic algebraically but not topologically?
(Analogue of Evans+Hewitt).
■ When does the algebraic structure of $\operatorname{Pol}(\Delta)$ determine the topological one? (e.g., "Small index property")

■ In negative cases: does the complexity of $\operatorname{CSP}(\Delta)$ only depend on the algebraic structure of $\operatorname{Pol}(\Delta)$? (Automatic continuity).

Reference

Topological Birkhoff
 Manuel Bodirsky and Michael Pinsker arXiv, 2012

