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by Manuel Bodirsky and Michael Pinsker
on arXiv since March 2012.

Generalization of fundamental theorem of universal algebra
from finite to oligomorphic algebras

Thus: Universal algebra meets model theory

Corollary in the purely model theoretic language:
Primitive positive interpretations

Applications to Constraint Satisfaction Problems with
homogeneous templates

Implication chain: ↓
Motivation chain: ↑
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Part I: Birkhoff’s theorem
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Varieties and pseudovarieties

An algebra is a structure with purely functional signature.
Let C be a class of algebras of the same signature τ .

P(C) . . . class of all products of algebras in C.
S(C) . . . class of all subalgeras of algebras in C.
H(C) . . . class of all homomorphic images of algebras in C.

Variety. . . class of τ -algebras closed under P,S,H.

Pfin(C) . . . class of all finite powers of algebras in C.

Pseudovariety. . . class of τ -algebras closed under Pfin,S,H.

Problem. Given an algebra A.
What is the variety / pseudovariety generated by A?

Fact (Birkhoff)

The variety generated by A equals HSP(A).
The pseudovariety generated by A equals HSPfin(A).
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Terms

Let A be a τ -algebra.

Given τ -algebra B:
Is B contained in the (pseudo-)variety generated by A?

Every abstract τ -term t induces a function tA on A.

Clo(A) := {tA : t is an abstract τ -term}

Clo(A) is a clone, i.e., a set of finitary operations which
closed under composition and
contains all projections.

Different abstract τ -terms s, t might induce the same function:

sA = tA

Those are the equations that hold in A.
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Birkhoff’s theorems

Theorem 1 (Birkhoff)

B ∈ HSP(A)↔
all equations of A also hold in B.

Theorem 2 (Birkhoff)
Let A, B be finite.

B ∈ HSPfin(A)↔
all equations in A also hold in B.

Observations.
In Theorem 2,→ follows from Theorem 1, while← does not.
When A is infinite and B is finite,
then Theorem 2 does not necessarily hold.

Bad for aesthetic and computational reasons.
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Troubling

TBA Michael Pinsker (Paris 7)



Troubling

TBA Michael Pinsker (Paris 7)



Reformulating Birkhoff: clone homomorphisms

When all equations of A also hold in B, then the map

ξ : tA 7→ tB

is a well-defined function from Clo(A) to Clo(B).

ξ is called the natural homomorphism from Clo(A) to Clo(B).

ξ(fA(gA
1 , . . . ,g

A
n )) = ξ(fA)(ξ(gA

1 ), . . . , ξ(gA
n ))

ξ preserves the algebraic structure of Clo(A).

Theorem 2 (Birkhoff)
Let A, B be finite.

B ∈ HSPfin(A)↔
the natural homomorphism from Clo(A) to Clo(B) exists.
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Topology and oligomorphic clones

Some excitement:

Generalize to which class of infinite algebras?
Same statement?

Clo(A) carries also topological structure: subset of
⋃

n≥1 A
An

.
Each AAn

has product topology, where A is taken to be discrete.

Remark. Topological structure of Clo(A) trivial when A finite.

A permutation group acting on a set X is called oligomorphic iff
its componentwise action on X n has finitely many orbits, for all n ≥ 1.

Definition
A clone is locally oligomorphic↔ its topological closure
contains an oligomorphic permutation group.
An algebra A is locally oligomorphic↔
Clo(A) is locally oligomorphic.
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Oligomorphic clones: motivation + existence

Clone generalizes transformation monoid
generalizes permutation group.

Oligomorphic clone generalizes oligomorphic permutation group.

A closed permutation group is oligomorphic↔
it is of the form Aut(∆), where ∆ is an ω-categorical structure.

A closed clone is oligomorphic↔
it is of the form Pol(∆), where ∆ is an ω-categorical structure.

Pol(∆) . . . the clone of all finitary functions preserving ∆.
= set of all homomorphisms from some ∆n to ∆.
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Pol(∆) . . . the clone of all finitary functions preserving ∆.
= set of all homomorphisms from some ∆n to ∆.
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Topological Birkhoff

Theorem 2 (Birkhoff)
Let A, B be finite.

B is in HSPfin(A)↔
the natural homomorphism from Clo(A) to Clo(B) exists.

Theorem “Topological Birkhoff” (Bodirsky + MP)

Let A, B be locally oligomorphic or finite.

B is in HSPfin(A)↔
the natural homomorphism from Clo(A) to Clo(B) exists
and is continuous.
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Example

There are algebras A,B with common signature such that
A is locally oligomorphic;
B is finite;
B ∈ HSP(A);
B /∈ HSPfin(A).

Thus: ξ : Clo(A)→ Clo(B) exists but is not continuous.

Set τ := {fi}i∈ω ∪ {gi}i∈ω, all function symbols unary.
Let A be any τ -algebra on ω such that

the functions fAi form a locally oligomorphic permutation group;
no gA

i is injective;
fA0 is contained in the topological closure of {gA

i }i∈ω.

Let B be the τ -algebra on {0,1} such that
fBi is the identity function for all i ∈ ω;
gB

i is the constant function with value 0.
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Links to model theory

A structure ∆ is ω-categorical ↔ Pol(∆) is oligomorphic.

Can view Pol(∆) as the clone of an oligomorphic algebra
(polymorphism algebra of ∆).

HSPfin reminds us of . . .

Interpretations!

TBA Michael Pinsker (Paris 7)



Links to model theory

A structure ∆ is ω-categorical ↔ Pol(∆) is oligomorphic.

Can view Pol(∆) as the clone of an oligomorphic algebra
(polymorphism algebra of ∆).

HSPfin reminds us of . . .

Interpretations!

TBA Michael Pinsker (Paris 7)



Links to model theory

A structure ∆ is ω-categorical ↔ Pol(∆) is oligomorphic.

Can view Pol(∆) as the clone of an oligomorphic algebra
(polymorphism algebra of ∆).

HSPfin reminds us of . . .

Interpretations!

TBA Michael Pinsker (Paris 7)



Links to model theory

A structure ∆ is ω-categorical ↔ Pol(∆) is oligomorphic.

Can view Pol(∆) as the clone of an oligomorphic algebra
(polymorphism algebra of ∆).

HSPfin reminds us of . . .

Interpretations!

TBA Michael Pinsker (Paris 7)



Links to model theory

A structure ∆ is ω-categorical ↔ Pol(∆) is oligomorphic.

Can view Pol(∆) as the clone of an oligomorphic algebra
(polymorphism algebra of ∆).

HSPfin reminds us of . . .

Interpretations!

TBA Michael Pinsker (Paris 7)



Part II: Topological clones and interpretations
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Interpretations

A σ-structure ∆ as an interpretation in a τ -structure Γ iff there exist
d ≥ 1 (the dimension),
a τ -formula δ(x1, . . . , xd ) (the domain formula),
for every atomic σ-formula φ(y1, . . . , yk ) a τ -formula φ′(ū1, . . . , ūk ),
a surjective map h : δ(Γd )→ ∆, such that

for all atomic σ-formulas φ(y1, . . . , yk ) and all ā1, . . . , āk ∈ δ(Γd )

∆ |= φ(h(ā1), . . . ,h(āk ))↔ Γ |= φ′(ā1, . . . , āk )

The interpretation is called primitive positive (pp) iff
all involved formulas are primitive positive, i.e., of the form

∃ v1, . . . vr . ψ1 ∧ . . . ∧ ψl ,

for atomic ψi .

Example: (Q; +, ·) has a pp interpretation in (Z; +, ·).
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a surjective map h : δ(Γd )→ ∆, such that

for all atomic σ-formulas φ(y1, . . . , yk ) and all ā1, . . . , āk ∈ δ(Γd )
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The interpretation is called primitive positive (pp) iff
all involved formulas are primitive positive, i.e., of the form

∃ v1, . . . vr . ψ1 ∧ . . . ∧ ψl ,

for atomic ψi .

Example: (Q; +, ·) has a pp interpretation in (Z; +, ·).

TBA Michael Pinsker (Paris 7)



Interpretations

A σ-structure ∆ as an interpretation in a τ -structure Γ iff there exist
d ≥ 1 (the dimension),
a τ -formula δ(x1, . . . , xd ) (the domain formula),
for every atomic σ-formula φ(y1, . . . , yk ) a τ -formula φ′(ū1, . . . , ūk ),
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pp interpretations and HSPfin

An algebra A is called a polymorphism algebra of Γ iff Clo(A) = Pol(Γ).

Proposition
Let Γ be finite or ω-categorical, and let ∆ be arbitrary. Tfae:

∆ has a pp interpretation in Γ;
For every / any polymorphism algebra A of Γ there is an algebra
B ∈ HSPfin(A) such that Clo(B) ⊆ Pol(∆).

Theorem (Bodirsky + Nešetřil)
Let ∆ be ω-categorical.
A relation R has a pp definition in ∆↔
R is preserved by all functions in Pol(∆).

Consequences:
subalgebras of A are pp definable subsets of the domain of Γ.
congruences of A are pp definable equivalence relations of Γ.
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Let ∆ be ω-categorical.
A relation R has a pp definition in ∆↔
R is preserved by all functions in Pol(∆).

Consequences:
subalgebras of A are pp definable subsets of the domain of Γ.
congruences of A are pp definable equivalence relations of Γ.

TBA Michael Pinsker (Paris 7)



pp interpretations and HSPfin

An algebra A is called a polymorphism algebra of Γ iff Clo(A) = Pol(Γ).

Proposition
Let Γ be finite or ω-categorical, and let ∆ be arbitrary. Tfae:

∆ has a pp interpretation in Γ;
For every / any polymorphism algebra A of Γ there is an algebra
B ∈ HSPfin(A) such that Clo(B) ⊆ Pol(∆).

Theorem (Bodirsky + Nešetřil)
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pp Interpretations and Topological clones

A reduct of a structure ∆′ is a structure obtained from ∆′ by dropping
some of its relations or functions.

Theorem (Bodirsky + MP)
Let Γ be finite or ω-categorical, and let ∆ be arbitrary. Tfae:

∆ has a pp interpretation in Γ;
∆ is the reduct of a finite or ω-categorical structure ∆′ such that
there exists a continuous homomorphism from Pol(Γ) to Pol(∆′)
whose image is dense in Pol(∆′).

Pol(Γ)

Pol(Δ)

Pol(Δ')
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Example

Pol(Γ)

Pol(Δ)

Pol(Δ')

The image of the continuous homomorphism ξ : Pol(Γ)→ Pol(∆′)
might be dense in Pol(∆′) without being surjective.
In particular, in this situation the image is not closed.
Example for Aut(Γ), Aut(∆′) due to Macpherson.

Let S ⊆ Q be so that both S and Q \ S are dense.
Let Γ := (Q;<,S); ∆′ := (S;<).
ξ : Aut(Γ)→ Aut(∆′) defined by f 7→ f �S.
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Bi-interpretability

Two structures ∆ and Γ are mutually pp interpretable iff
Γ has a pp interpretation in ∆ and vice versa.

Pol(Γ)

Pol(Δ)

Pol(Δ')

Stronger notion: ∆ and Γ are pp bi-interpretable iff
the coordinate maps h1 and h2 of the pp interpretations are so that

x = h1(h2(y1,1, . . . , y1,d2), . . . ,h2(yd1,1, . . . , yd1,d2))

x = h2(h1(y1,1, . . . , yd1,1), . . . ,h1(y1,d2 , . . . , yd1,d2))

are pp definable in ∆ and Γ, respectively.
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Bi-interpretability and topological clones

Theorem (Bodirsky + MP)
Let ∆ and Γ be ω-categorical. Tfae:

∆ and Γ are pp bi-interpretable;
Pol(∆) and Pol(Γ) are isomorphic as topological clones.

Theorem (Ahlbrandt + Ziegler)

Let ∆ and Γ be ω-categorical. Tfae:

∆ and Γ are first-order bi-interpretable;
Aut(∆) and Aut(Γ) are isomorphic as topological groups.
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Part III: Constraint Satisfaction Problems
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Constraint Satisfaction Problems

Let ∆ be a structure with a finite relational signature τ .

Definition (Constraint Satisfaction Problem)

CSP(∆) is the computational problem to decide whether a given
primitive positive τ -sentence holds in ∆.

Example. CSP({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) is the problem
called positive 1-in-3-3SAT. It is NP-complete.

Example. CSPs of reducts of homogeneous structures.

Fact: When there is a pp interpretation of ∆ in Γ, then there is a
polynomial-time reduction from CSP(∆) to CSP(Γ).

Theorem (Bodirsky + MP)

For ω-categorical ∆, the complexity of CSP(∆) only depends on the
topological polymorphism clone of ∆.
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Computer Science-free hardness proofs

Let 1 be the clone of the algebra on {0,1} without functions.
1 consists of projections; write πk

i , 1 ≤ i ≤ k , for i-th k -ary projection.
Topology of 1 is discrete.

Example: Pol({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) equals 1.

Example: ∆ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(∆) is called Betweenness problem.

CSP(∆) is NP-hard since there is a continuous homomorphism
ξ : Pol(∆)→ 1:

For any f ∈ Pol(∆) of arity k , one of the following holds:
(1) ∃i ∈ {1, . . . , k} ∀x , y ∈ ∆k :

(
6=(x , y) ∧ (xi < yi)⇒ f (x) < f (y)

)
(2) ∃i ∈ {1, . . . , k} ∀x , y ∈ ∆k :

(
6=(x , y) ∧ (xi < yi)⇒ f (x) > f (y)

)
i is unique for each f . Set ξ(f ) := πk

i .
Straightforward: ξ is continuous homomorphism.
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CSP(∆) is NP-hard since there is a continuous homomorphism
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For any f ∈ Pol(∆) of arity k , one of the following holds:
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Reconstruction

In which situations does the algebraic structure of the clone Pol(∆)
determine its topological structure? Always?

For Aut(∆), this question has been studied.

Definition
∆ has the small index property iff
every subgroup of Aut(∆) of index less than 2ℵ0 is open.

Equivalent: every homomorphism from Aut(∆) to Sym(N) is
continuous.

Small index property has been verified for
(N; =) (Dixon+Neumann+Thomas’86)
(Q;<) and the atomless Boolean algebra (Truss’89)
the random graph (Hodges+Hodkinson+Lascar+Shelah’93)
and the Henson graphs (Herwig’98).
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Automatic continuity

Non-reconstruction:

There are two ω-categorical structures whose automorphism groups
are isomorphic as abstract groups but not as topological groups
(Evans+Hewitt’90). (Assumes AC)

Automatic continuity:

Every Baire measurable homomorphism between Polish groups is
continuous.
There exists a model of ZF+DC where every set is Baire
measurable (Shelah’84).
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Open problems

Do there exist ω-categorical Γ, ∆ such that Pol(Γ), Pol(∆) are
isomorphic algebraically but not topologically?
(Analogue of Evans+Hewitt).

When does the algebraic structure of Pol(∆) determine the
topological one? (e.g., “Small index property”)

In negative cases: does the complexity of CSP(∆) only depend on
the algebraic structure of Pol(∆)? (Automatic continuity).
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