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Polish spaces and groups

Definition
A Polish space is a topological space whose topology is induced by a
complete separable metric.
A Polish group is a topological group whose topology is Polish.

Example
The permutation group of the integers, denoted by S∞.
If σ, τ ∈ S∞, let d(σ, τ) = inf{2−n : σ|n = τ|n}.
This is a left-invariant separable (ultra)metric.
It is not complete; however the following metric is:

d ′(σ, τ) = d(σ, τ) + d(σ−1, τ−1).
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More examples of Polish groups

• Whenever M is a countable first-order structure with countable
universe, its automorphism group may naturally be identified with a
closed subgroup of S∞.

• Or particular interest to us: automorphism groups of Fräıssé limits,
notably Urysohn spaces whose distance takes values in {0, . . . , n}
(denoted Un), N (UN) or Q (UQ).

• The unitary group U(`2).

• The group Aut(µ) of measure-preserving bijections of a standard
atomless probability space (X , µ).

• The isometry group Iso(U) of the Urysohn space.
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notably Urysohn spaces whose distance takes values in {0, . . . , n}
(denoted Un), N (UN) or Q (UQ).

• The unitary group U(`2).

• The group Aut(µ) of measure-preserving bijections of a standard
atomless probability space (X , µ).

• The isometry group Iso(U) of the Urysohn space.

J. Melleray Actions of countable groups on homogeneous structures



More examples of Polish groups

• Whenever M is a countable first-order structure with countable
universe, its automorphism group may naturally be identified with a
closed subgroup of S∞.

• Or particular interest to us: automorphism groups of Fräıssé limits,
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The space of actions

Notation
Γ will always denote a countable discrete group, and G a Polish group.

Definition
The space of homomorphisms Hom(Γ,G ) is a closed subset of G Γ, hence
a Polish space.

Whenever G is the automorphism group of some structure M,
Hom(Γ,G ) may be thought of as the space of actions of Γ on M.

Question
What does a typical element of Hom(Γ,G ) look like? Which properties
are generic in Hom(Γ,G )?
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II. Conjugacy classes
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The conjugacy action

Definition
G naturally acts on Hom(Γ,G ) by conjugacy:

g · π(γ) = gπ(γ)g−1 .

Observation
In many cases (and all the examples we’ll see today), this action is
topologically transitive.

• There exist dense conjugacy classes in Hom(Γ,U(`2)) for any
countable Γ.

• Same situation for Aut(µ) (Glasner–Thouvenot–Weiss 2004).

• Same again for Iso(UQ) (Rosendal 2011); easily adapts to Iso(Un).

• This implies the analoguous result for Iso(U).
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Genericity

Observation

• In all our examples, any Baire-measurable, conjugacy invariant
subset of Hom(Γ,G ) must be either meager or comeager.

• Conjugacy classes should be expected to be meager when Γ is not
finitely generated; for instance, conjugacy classes in Hom(F∞,G )
are always meager (Kechris–Rosendal).

Definition
G is said to have ample generics if there exist comeager conjugacy
classes in Hom(Fn,G ) for all n. This property has very strong
consequences on the structure of G .
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Ample generics and the extension property.

Observation/Open problem
At the moment, all Polish groups which are known to have ample
generics are closed subgroups of S∞.

In many (but not all) examples, ample generics come from the extension
property.

Definition
Let K be a Fräıssé class. Say that K has the extension property if for any
A ∈ K there exists B ∈ K in which A embeds in such a way that all
partial automorphisms of A extend to global automorphisms of B.
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The extension property

Theorem (Herwig–Lascar 2000)
Let L be a finite relational language, T be a finite family of L-structures,
A be a finite T -free structure and P a set of partial automorphisms of A.
Assume that there exists a T -free structure M in which A embeds in
such a way that all elements of P extend to global automorphisms of M.
Then there exists a finite T -free structure B in which A embeds in such a
way that all elements of P extend to global automorphisms of B.

The algebraic heart of the proof is a theorem of Ribbes and Zaleskĭı
about free groups. This result was used by Solecki to show that many
“natural” Fräıssé classes of metric spaces have the extension property.
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Property (RZ)

Definition
Γ has the Ribbes–Zaleskĭı property if, whenever Γ1, . . . , Γn are finitely
generated subgroups of Γ, their product Γ1 · · · Γn is closed in the profinite
topology.

Finitely generated abelian groups are easily seen to have property (RZ);
the original result of Ribbes–Zaleskĭı is that free groups have property
(RZ). Coulbois proved that this property is stable under free products.

Theorem (Rosendal 2011)
Let Γ be a finitely generated group with property (RZ). Then there is a
generic element in Hom(Γ, Iso(UQ)).
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Contrasting situations in the discrete and continuous
settings

When G is the automorphism group of a “continuous” structure,
conjugacy classes in Hom(Γ,G ) tend to be meager as soon as Γ is infinite.

• Conjugacy classes in Hom(Γ,U(`2)) are meager for any infinite Γ
(Kerr–Li–Pichot 2008).

• Conjugacy classes in Hom(Γ,Aut(µ)) are meager for any infinite
amenable Γ (Glasner–Weiss 2005); open in general.

• Conjugacy classes in Hom(Γ, Iso(U)) are meager for any abelian Γ
containing an infinite cyclic subgroup (M.–Tsankov 2011); open in
general.
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III. The group generated by an action.
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Topological properties

For any π ∈ Hom(Γ,G ), one can consider the group π(Γ).

Observation
Whenever there exists a generic element in Hom(Γ,G ), understanding
the generic properties of π(Γ) reduces to understanding the properties of
the generic element; but this question makes sense even when conjugacy
classes are meager.

Question
For some fixed Γ and G , what are the generic topological properties of
π(Γ)? For instance, is it compact?

Observation
Whenever G ≤ S∞ and Γ is finitely generated, the set of π ∈ Hom(Γ,G )
such that π(Γ) is compact is Gδ. This is no longer true in the continuous
setting (even for Γ = Z).
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Generating compact subgroups in automorphism groups of
discrete structures

Observation (Herwig)
If G ≤ S∞ is the automorphism group of the Fräıssé limit of some class
K, the fact that a generic element in G n generates a relatively compact
subgroup for all n is equivalent to the extension property for K.

This implies that, in the automorphism groups of many familiar discrete
homogeneous structures, generic representations of finitely-generated free
groups will generate relatively compact groups.

Theorem (Rosendal 2011)
Fix n ∈ N. Then

{π ∈ Hom(Γ, Iso(Un))) : π(Γ) is compact}

is dense in Hom(Γ, Iso(Un)) if, and only if, any product of n finitely
generated subgroups of Γ is closed in the profinite topology.
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Extreme amenability is a Gδ condition

One can expect the situation to be very different in automorphism groups
of continuous structures: typically, a generic pair will generate a dense
subgroup, for instance.

Theorem (M.–Tsankov)
Let Γ be a countable group, and G be a Polish group. Then

{π ∈ Hom(Γ,G ) : π(Γ) is extremely amenable}

is Gδ in Hom(Γ,G ).

Theorem (M.–Tsankov)
Assume that Γ is a countable unbounded abelian group.

• A generic element of Hom(Γ,Aut(µ)) or Hom(Γ, Iso(U)) generates
an extremely amenable subgroup.

• A generic element of Hom(Γ,U(`2)) generates a closed subgroup
isomorphic to L0(T).
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The Kirchberg property

Definition
Let Γ = F∞ × F∞; G has the Kirchberg property if

{π ∈ Hom(Γ,G ) : π(Γ) is compact}

is dense in Hom(Γ,G ).

Theorem (Pestov–Uspenskij 2006)
Iso(U) has the Kirchberg property.

Theorem (Kirchberg 1993)
Connes’ embedding conjecture is true iff U(`2) has the Kirchberg
property.
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IV. Coherence properties
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Does the restriction map preserve category?

Question
Assume that ∆ ≤ Γ are countable groups, and G is a Polish group. How
do the generic properties in Hom(∆,G ) relate to the generic properties in
Hom(Γ,G )?

Definition
Let f : X → Y be a continuous map. Say that f is category-preserving if
f −1(O) is comeager in X whenever O is comeager in Y .

Question (revisited)
Assume that ∆ ≤ Γ are countable groups, and G is a Polish group.
When is the restriction map Res : Hom(Γ,G )→ Hom(∆,G )
category-preserving?

Note that the Kuratowski–Ulam theorem implies that the restriction map
is always category-preserving when ∆ = Fn ≤ Fm = Γ.
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Restrictions of measure-preserving actions I

Theorem (Ageev 2003)
Let Γ be a countable abelian group and ∆ be an infinite cyclic subgroup.
Then a generic measure-preserving ∆-action extends to a free Γ-action.

Corollary (equivalent reformulation of Ageev’s theorem)
Let Γ be a countable abelian group and ∆ be an infinite cyclic subgroup.
Then the restriction map Res : Hom(Γ,Aut(µ))→ Hom(∆,Aut(µ)) is
category-preserving.

Theorem (M.)
Let Γ be a countable abelian group and ∆ be a finitely generated
subgroup. Then the restriction map
Res : Hom(Γ,Aut(µ))→ Hom(∆,Aut(µ)) is category-preserving.
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Restrictions of measure-preserving actions II

Observation (M.)
There exist a polycyclic group Γ and an infinite cyclic subgroup ∆ ≤ Γ
such that a generic measure-preserving ∆ action does not extend to a
measure-preserving Γ-action.

Previous examples of this phenomenon (where Γ was more complicated)
were already known. The proof of the above observation depends on a
result of King stating that the generic π(Z) is maximal abelian in Aut(µ).

Question
Can one remove the assumption that ∆ is finitely generated in the
previous theorem?

O. Ageev has recently announced a negative answer; I do not know his
proof.
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Extensions of isometric actions

Question
What happens if one replaces Aut(µ) by Iso(U)?

Some partial results indicating that the two situations may be similar are
known; in the measure-preserving case, the major step towards proving
Ageev’s theorem is the particular case of nZ ≤ Z.

Theorem (King)
A generic element of Aut(µ) admits roots of all orders.

Question
Does a generic element of Iso(U) admit roots of all orders?
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