Classifying homomorphism-homogeneous structures

Dragan Mašulović

Department of Mathematics and Informatics University of Novi Sad, Serbia

> WHS 2012 Prague, 25 July 2012

Overview

1 Introduction

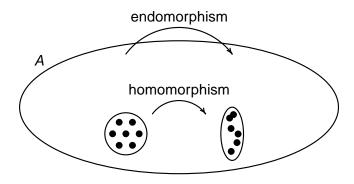
- 2 Relational structures
- 3 Algebras
- 4 Geometries and metric spaces
- 5 Various kinds of homogeneity
- 6 Classifiability v. nonclassifiability

Next ...

1 Introduction

- 2 Relational structures
- 3 Algebras
- 4 Geometries and metric spaces
- 5 Various kinds of homogeneity
- 6 Classifiability v. nonclassifiability

Homomorphism-homogeneity



Cameron, P. J., Nešetřil, J., *Homomorphism-homogeneous relational structures*, Combinatorics, Probability and Computing 15, 91–103 (2006)

Homomorphism-homogeneity

The General Classification Problem.

Classify homomorphism-homogeneous structures.

1 Introduction

2 Relational structures

3 Algebras

- 4 Geometries and metric spaces
- 5 Various kinds of homogeneity
- 6 Classifiability v. nonclassifiability

Graphs

Objects: finite graphs (X, \sim) , no loops Subobjects: iduced subgraphs Morphisms: $x \sim y \Rightarrow f(x) \sim f(y)$

Theorem. [Cameron, Nešetřil 2006]

A finite graph *G* is homomorphism-homogeneous if and only if $G \cong k \cdot K_m$ for some positive integers *k* and *m*.

Irreflexive structures

Objects: finite structures (X, ρ) where ρ is binary, irreflexive Subobjects: iduced substructures Morphisms: $x \rho y \Rightarrow f(x) \rho f(y)$

Theorem. [DM, Nenadov, Škorić 2010] A finite irreflexive binary relational structure (X, ρ) is homomorphism-homogeneous if and only if it is one of the following:

- 1 $k \cdot K_m$ for some positive integers k and m,
- 2 $k \cdot C_3$ for some positive integer k, where C_3 denotes the oriented 3-cycle.

Posets

Objects: posets Subobjects: subposets Morphisms: $x \leq y \Rightarrow f(x) \leq f(y)$

Theorem. [DM 2007]

A poset (X, \leq) is homomorphism-homogeneous if and only if it is one of the following:

- 1 every connected component of X is a chain,
- 2 X is a tree or a dual tree,
- 3 X splits into a tree and a dual tree,
- 4 X is locally bounded and dense in the following sense: whenever a, b, c, d ∈ X satisfy {a, b} ≤ {c, d}, there exists an m ∈ X such that {a, b} ≤ m ≤ {c, d} (the Riesz Interpolation Property)

Posets

Objects: posets Subobjects: subposets Morphisms: $x \leq y \Rightarrow f(x) \leq f(y)$

Theorem. [DM 2007]

A finite poset (X, \leq) is homomorphism-homogeneous if and only if it is one of the following:

- 1 every connected component of X is a chain,
- 2 X is a tree or a dual tree,
- 3 X splits into a tree and a dual tree,
- 4 X is a lattice.

Tournaments with loops

Objects: finite tournaments, vertices may have loops Subobjects: induced subtournaments Morphisms: $x \rightarrow y \Rightarrow f(x) \rightarrow f(y)$

Theorem. [Ilić, DM, Rajković 2008]

A finite tournament with loops is homomorphism-homogeneous if and only if it is one of the following:

- **1** C_3 or C_3° , where C_3° denotes C_3 with all loops,
- 2 acyclic tournaments with precisely one loopless vertex,
- acyclic tournaments with two consecutive loopless vertices where both the initial and the final vertex have a loop,
- 4 acyclic tournaments dense in the following sense:
 - ► there exist $0, 1 \in V(T)$ such that $0 \Rightarrow x \Rightarrow 1$ for all $x \in V(T)$, and
 - ▶ for all $x, y \in V(T)$ such that $x \to y$ there is a $z \in V(T)$ such that $z \to z$ and $x \to z \to y$.

Digraphs with loops

Objects: finite digraphs, vertices may have loops Subobjects: induced subdigraphs Morphisms: $x \to y \Rightarrow f(x) \to f(y)$

Theorem. [DM (submitted)]

Let *D* be a finite digraph with loops which is disconnected or uniform (= all loops, or no loops). Then *D* is homomorphism-homogeneous if and only if it is one of the following:

1 $L + k \cdot 1$ for some integer $k \ge 0$ and some finite homomorphism-homogeneous partially ordered set *L*;

2
$$n \cdot C_3 + m \cdot C_3^{\circ} + k \cdot \mathbf{1}^{\circ}$$
 for some $n, m, k \ge 0$;

3
$$n \cdot C_3^{\circ} + m \cdot \mathbf{1}^{\circ} + k \cdot \mathbf{1}$$
 for some $n, m, k \ge 0$;

4
$$n \cdot C_3^{\circ} + m \cdot \mathbf{1}^{\circ} + k \cdot A_2^{\circ}(1)$$
 for some $n, m, k \ge 0$;

- 5 $n \cdot C_3^{\circ} + m \cdot \mathbf{1}^{\circ} + k \cdot A_2^{\circ}(2)$ for some $n, m, k \ge 0$;
- 6 every connected component of D is a dense tournament;

Digraphs with loops

Objects: finite digraphs, vertices may have loops Subobjects: induced subdigraphs Morphisms: $x \to y \Rightarrow f(x) \to f(y)$

Theorem. [DM (submitted)]

Let *D* be a finite digraph with loops which is disconnected or uniform (= all loops, or no loops). Then *D* is homomorphism-homogeneous if and only if it is one of the following:

- 7 for every connected component *S* of *D* there is a $k \ge 1$ such that $D[S] \cong A_k^\circ$ or $D[S] \cong A_k^\circ(1)$;
- 8 for every connected component *S* of *D* there is a $k \ge 1$ such that $D[S] \cong A_k^\circ$ or $D[S] \cong A_k^\circ(k)$;
- 9 for every connected component *S* of *D* there exist *j* and *k* such that $k \ge 1$ and $D[S] \cong A_k^\circ$, or 1 < j < k and $D[S] \cong A_k^\circ(j)$, or 1 < j < j + 1 < k and $D[S] \cong A_k^\circ(j, j + 1)$.

Graphs with loops

Adding loops makes the classification problem more interesting!

Graphs with loops

Adding loops makes the classification problem more interesting!

Unfortunately, adding loops makes it too much fun ...

Objects: finite graphs (X, \sim) , loops allowed Subobjects: iduced subgraphs Morphisms: $x \sim y \Rightarrow f(x) \sim f(y)$

Theorem. [Rusinov, Schweitzer 2010] Deciding whether a finite graph with loops is homomorphismhomogeneous is coNP-complete.

Graphs with loops

Adding loops makes the classification problem more interesting!

Unfortunately, adding loops makes it too much fun ...

Objects: finite graphs (X, \sim) , loops allowed Subobjects: iduced subgraphs Morphisms: $x \sim y \Rightarrow f(x) \sim f(y)$

Theorem. [Rusinov, Schweitzer 2010] Deciding whether a finite graph with loops is homomorphismhomogeneous is coNP-complete.

Another interpretation: there is no "reasonable" classification of finite homomorphism-homogeneous graphs with loops allowed.

1 Introduction

2 Relational structures

3 Algebras

- 4 Geometries and metric spaces
- 5 Various kinds of homogeneity
- 6 Classifiability v. nonclassifiability

Groups

Objects: finite groups Subobjects: subgroups Morphisms: homomorphisms of groups

Bertholf D., Walls D.: *Finite quasi-injective groups.* Glasgow Math. J. 20(1979), 29–33

(NB: finite quasi-injective = finite homomorphism-homog.)

Lattices

Objects: lattices as algebras (L, \land, \lor) Subobjects: sublattices as subalgebras Morphisms: homomorphisms of lattices as algebras

Theorem. [Dolinka, DM 2011]

(a) A lattice L is homomorphism-homogeneous if and only if it is either a chain or every interval of L is a boolean lattice.

(b) A finite lattice L is homomorphism-homogeneous if and only if it is either a chain or a direct power of 0 < 1.

Semilattices

Objects: semilattices as algebras (S, \land) Subobjects: subsemilattices as subalgebras Morphisms: homomorphisms of semilattices as algebras

Theorem. [Dolinka, DM 2011]

(a) A finite homomorphism-homogeneous semilattice is either a tree or the \land -semilattice reduct of a lattice.

(b) Every tree is a homomorphism-homogeneous semilattice.

(c) The \land -semilattice reduct of a distributive lattice is homomorphism-homogeneous.

(d) (M_3, \wedge) and (N_5, \wedge) are homomorphism-homogeneous.

Universal algebras

Objects: algebras (A, \mathcal{F}) Subobjects: subalgebras Morphisms: homomorphisms

Theorem. [Jungábel, DM (to appear)]

A monounary algebra \mathcal{A} is homomorphism-homogeneous if and only if \mathcal{A} belongs to one of the following classes:

- 1 every branch in A is infinite;
- 2 every connected component in A is regular, and for any two connected components $S_1, S_2 \subseteq A$, if $cn(S_1)|cn(S_2)$ then $ht(S_1) \ge ht(S_2)$ or $ht(S_1) = 0$.

Universal algebras

Objects: algebras (A, \mathcal{F}) Subobjects: subalgebras Morphisms: homomorphisms

Theorem. [DM (submitted)]

Let \mathcal{K} be the class of all finite algebras whose signature contains at least one at least binary operation. Deciding whether an algebra from \mathcal{K} is homomorphism-homogeneous is a coNP-complete problem.

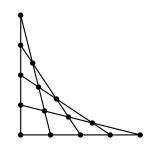
1 Introduction

- 2 Relational structures
- 3 Algebras
- 4 Geometries and metric spaces
- 5 Various kinds of homogeneity
- 6 Classifiability v. nonclassifiability

Point-line geometries

Definition. A *point-line geometry* is an ordered pair (X, \mathcal{L}) where X is a set of *points*, $\mathcal{L} \subseteq \mathcal{P}(X)$ is a set of *lines* and the following is satisfied:

- every line contains at least two points, and
- every pair of points is contained in at most one line.



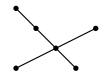
Objects: point-line geometries

Subobjects: induced subgeometries (Y, $\mathcal{L}|_{Y}$) where $\mathcal{L}|_{Y} = \{\ell \cap Y : \ell \in \mathcal{L}, |\ell \cap Y| \ge 2\}$

Morphisms: functions that map collin. points to collin. points $\forall \ell \in \mathcal{L} \exists m \in \mathcal{L} (f(\ell) \subseteq m)$

Point-line geometries

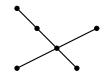
A point-line geometry is *proper* if it contains a pair of intersecting *proper* lines (proper line = line with at least 3 points).



Theorem. [Jungábel, DM (in preparation)] Deciding whether a finite connected improper point-line geometry which is not a graph is homomorphism-homogeneous is a coNP-complete problem.

Point-line geometries

A point-line geometry is *proper* if it contains a pair of intersecting *proper* lines (proper line = line with at least 3 points).



Theorem. [DM (to appear)]

A finite connected proper point-line geometry is homomorphism-homogeneous if and only if it is one of the following:

- 1 a pencil of lines,
- 2 the Fano plane,
- 3 a subdivision of the triangular space T(n), $n \ge 1$,
- 4 a particular trivial projective point-line geometry with only two proper lines.

Metric spaces

Objects: metric spaces with rational distances Subobjects: subspaces Morphisms: nonexpansive maps $d(f(x), f(y)) \leq d(x, y)$

Fact. Deciding whether a finite metric space with rational distances is homomorphism-homogeneous is a coNP-complete problem.

Theorem. [Dolinka 2012]

The rational Urysohn space (the Fraïssé limit of the class of all finite metric spaces with rational distances) is homomorphism-homogeneous.

Fix a "traditional" normed space $(\mathbb{R}^n, \|\cdot\|_p)$, $n \ge 1$, $p \in [1, \infty]$ Morphisms: nonexpansive (1-Lipschitz) maps $\|f(x) - f(y)\|_p \le \|x - y\|_p$

Theorem.

 $(\mathbb{R}^n, \|\cdot\|_p)$ is homomorphism-homogeneous if and only if $(\mathbb{R}^n, \|\cdot\|_p)$ has the (n + 1)-*Kirszbraun Intersection Property*.

Proof. Transfinite induction + Helly's theorem + Closed balls in $(\mathbb{R}^n, \|\cdot\|_p)$ are convex and compact. \Box

The *m*-Kirszbraun Intersection Property (*m*-KIP). Let $\overline{B}(x_i, r_i)$, $i \in \{1, ..., m\}$, be a collection of *m* closed balls in a Banach space $(X, \|\cdot\|)$ such that:

$$\bigcap_{i=1}^{m} \overline{B}(\mathbf{x}_i, \mathbf{r}_i) \neq \emptyset$$

and let $y_1, \ldots, y_m \in X$ be such that, for all *i* and *j*:

$$\|\mathbf{y}_i-\mathbf{y}_j\|\leqslant \|\mathbf{x}_i-\mathbf{x}_j\|.$$

Then we also have:

$$\bigcap_{i=1}^{m} \overline{B}(y_i, r_i) \neq \emptyset.$$

Fact. $(\mathbb{R}, \|\cdot\|_p)$ is homomorphism-homogeneous for all p.

Fact. $(\mathbb{R}, \|\cdot\|_p)$ is homomorphism-homogeneous for all p.

Theorem. [Kirszbraun 1934] $(\mathbb{R}^n, \|\cdot\|_2)$ has the *m*-KIP for all $m \ge 1$.

Fact. $(\mathbb{R}, \|\cdot\|_p)$ is homomorphism-homogeneous for all p.

Theorem. [Kirszbraun 1934] $(\mathbb{R}^n, \|\cdot\|_2)$ has the *m*-KIP for all $m \ge 1$.

Theorem.

```
(\mathbb{R}^n, \|\cdot\|_{\infty}) has the m-KIP for all m \ge 1.
```

Proof. Helly's theorem

Fact. $(\mathbb{R}, \|\cdot\|_p)$ is homomorphism-homogeneous for all p.

Theorem. [Kirszbraun 1934] $(\mathbb{R}^n, \|\cdot\|_2)$ has the *m*-KIP for all $m \ge 1$.

Theorem.

```
(\mathbb{R}^n, \|\cdot\|_{\infty}) has the m-KIP for all m \ge 1.
```

Proof. Helly's theorem □

Theorem. $(\mathbb{R}^2, \|\cdot\|_1)$ has the *m*-KIP for all $m \ge 1$.

Proof. Helly's theorem □

Fact. $(\mathbb{R}, \|\cdot\|_p)$ is homomorphism-homogeneous for all p.

Theorem. [Kirszbraun 1934] $(\mathbb{R}^n, \|\cdot\|_2)$ has the *m*-KIP for all $m \ge 1$.

Theorem. $(\mathbb{R}^n, \|\cdot\|_{\infty})$ has the *m*-KIP for all $m \ge 1$.

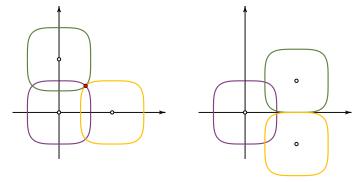
Proof. Helly's theorem \Box

Theorem. $(\mathbb{R}^2, \|\cdot\|_1)$ has the *m*-KIP for all $m \ge 1$.

Proof. Helly's theorem \Box

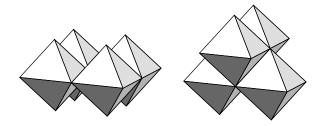
These are the only homomorphism-homogeneous "traditional" metric spaces!

Example. [J. T. Schwartz 1969] $(\mathbb{R}^n, \|\cdot\|_p)$ doesn't have 3-KIP for $p \in (1,2) \cup (2,\infty)$, $n \ge 2$: there exist $x_1, x_2, x_3, y_1, y_2, y_3 \in \mathbb{R}^n$ and an r > 0 such that $\|y_i - y_i\|_p \le \|x_i - x_j\|_p$ for all *i* and *j*, and $\bigcap_{i=1}^3 \overline{B}(x_i, r) \ne \emptyset$, but $\bigcap_{i=1}^3 \overline{B}(y_i, r) = \emptyset$.



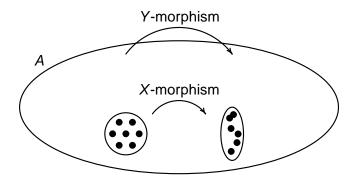
Example.

 $(\mathbb{R}^n, \|\cdot\|_1)$ doesn't have 4-KIP for $n \ge 3$: there exist $x_1, \ldots, x_4, y_1, \ldots, y_4 \in \mathbb{R}^n$ and an r > 0 such that $\|y_i - y_i\|_1 \le \|x_i - x_j\|_1$ for all *i* and *j*, and $\bigcap_{i=1}^4 \overline{B}(x_i, r) \ne \emptyset$, but $\bigcap_{i=1}^4 \overline{B}(y_i, r) = \emptyset$.



1 Introduction

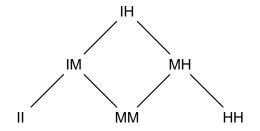
- 2 Relational structures
- 3 Algebras
- 4 Geometries and metric spaces
- 5 Various kinds of homogeneity
- 6 Classifiability v. nonclassifiability

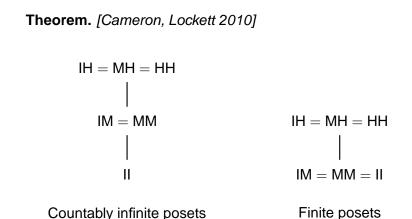


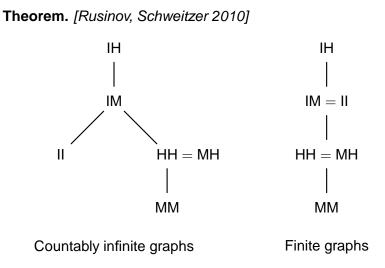
Cameron, P. J., Nešetřil, J., *Homomorphism-homogeneous relational structures*, Combinatorics, Probability and Computing 15, 91–103 (2006)

\uparrow homomorphism-homogeneity

HH-homogeneity: homomorphism ~> homomorphism MH-homogeneity: monomorphism ~> homomorphism IH-homogeneity: isomorphism ~> homomorphism monomorphism ~> monomorphism MM-homogeneity: IM-homogeneity: isomorphism ~> monomorphism II-homogeneity: isomorphism → isomorphism $\hat{\downarrow}$ (ultra)homogeneity





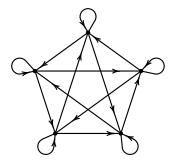


Question. Is MH always equal to HH?

Question. Is MH always equal to HH?

Answer. [Hartman, Hubička, DM (submitted)] NO.

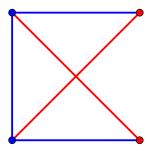
Example 1. Digraphs with loops.



Question. Is MH always equal to HH?

Answer. [Hartman, Hubička, DM (submitted)] NO.

Example 2. Colored graphs.



1 Introduction

- 2 Relational structures
- 3 Algebras
- 4 Geometries and metric spaces
- 5 Various kinds of homogeneity

6 Classifiability v. nonclassifiability

Classifiability v. nonclassifiability

Where is the borderline between classifiability and nonclassifiability for finite structures?

Classifiability v. nonclassifiability

Where is the borderline between classifiability and nonclassifiability for finite structures?

Theorem. [DM, Nenadov, Škorić 2011; Ilić, DM, Rajković 2012] $\mathcal{B} =$ all finite structures (X, ρ) where $\rho \subseteq X^2$. $X' = \{x \in X : x \ \rho \ x\}, \ \rho' = \rho|_{X'}.$

C =all $(X, \rho) \in B$ such that (X', ρ') is \leftrightarrows -connected.

 $\mathcal{D} =$ all $(X, \rho) \in \mathcal{B}$ such that (X', ρ') is \subseteq -disconnected.

- Deciding whether a structure from D is homomorphismhomogeneous is in P (⇐ we have explicit descriptions).
- 2 Deciding whether a structure from *C* is homomorphismhomogeneous is coNP-complete.

Classifiability v. nonclassifiability

Where is the borderline between classifiability and nonclassifiability for finite structures?

A feeling (Hypothesis?)

For the class of finite relational structures where vertices with "loops" form a "connected" substructure, deciding homomorphism-homogeneity is coNP-complete. Otherwise it is in P.