Overgroups of the Automorphism Group of the Rado Graph

P. Cameron, C. Laflamme, M. Pouzet, S. Tarzi and R.Woodrow

Queen Mary, University of London, University of Calgary, Université Claude-Bernard Lyon1

2nd Workshop on Homogeneous Structures Prague, July 2012

()

Rado Graph

The Rado graph \mathcal{R} is the (unique) countable graph with the property that:

For all finite disjoint $U, V \subseteq \mathcal{R}$, there is a vertex x connected to all vertices of U and none of V.

- 4 3 6 4 3 6

Rado Graph

The Rado graph \mathcal{R} is the (unique) countable graph with the property that:

For all finite disjoint $U, V \subseteq \mathcal{R}$, there is a vertex x connected to all vertices of U and none of V.

Definition

Let $W_{\mathcal{R}}(U, V)$ be the collection of all these witness x

Basic Properties

Basic Argument

- \mathcal{R} is (strongly) indivisible:
 - If $\mathcal{R} = A \cup B$, then one of A or B IS the Rado graph.

A B M A B M

Basic Argument

• \mathcal{R} is (strongly) indivisible: If $\mathcal{R} = A \cup B$, then one of A or B IS the Rado graph.

Proof: If A is not Rado with bad pair U, V, then $W_{\mathcal{R}}(U, V) \subseteq B$. But $W_{\mathcal{R}}(U \cup \overline{U}, V \cup \overline{V}) = W_{\mathcal{R}}(U, V) \cap W_{\mathcal{R}}(\overline{U}, \overline{V})$.

< 3 > < 3 >

Automorphism Group $Aut(\mathcal{R})$

• \mathcal{R} is homogeneous:

Any finite partial automorphism $\alpha : X \to Y$ extends to a full automorphism $\overline{\alpha}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automorphism Group $Aut(\mathcal{R})$

• \mathcal{R} is homogeneous:

Any finite partial automorphism $\alpha : X \to Y$ extends to a full automorphism $\overline{\alpha}$.

A B F A B F

The closed subgroups of $Sym(\mathcal{R})$ containing $Aut(\mathcal{R})$ (the reducts) are:

The closed subgroups of $Sym(\mathcal{R})$ containing $Aut(\mathcal{R})$ (the reducts) are:

• $Aut(\mathcal{R})$

The closed subgroups of $Sym(\mathcal{R})$ containing $Aut(\mathcal{R})$ (the reducts) are:

- $Aut(\mathcal{R})$
- $\mathcal{D}(\mathcal{R})$, the group of dualities: automorphisms and anti-automorphisms.

The closed subgroups of $Sym(\mathcal{R})$ containing $Aut(\mathcal{R})$ (the reducts) are:

- $Aut(\mathcal{R})$
- $\mathcal{D}(\mathcal{R})$, the group of dualities: automorphisms and anti-automorphisms.
- $\mathcal{S}(\mathcal{R})$, the group of switching automorphisms.

The closed subgroups of $Sym(\mathcal{R})$ containing $Aut(\mathcal{R})$ (the reducts) are:

- $Aut(\mathcal{R})$
- $\mathcal{D}(\mathcal{R})$, the group of dualities: automorphisms and anti-automorphisms.
- $\mathcal{S}(\mathcal{R})$, the group of switching automorphisms.
- $\mathcal{B}(\mathcal{R})$, the big group generated by the above two groups.

A B F A B F

The closed subgroups of $Sym(\mathcal{R})$ containing $Aut(\mathcal{R})$ (the reducts) are:

- $Aut(\mathcal{R})$
- $\mathcal{D}(\mathcal{R})$, the group of dualities: automorphisms and anti-automorphisms.
- $\mathcal{S}(\mathcal{R})$, the group of switching automorphisms.
- $\mathcal{B}(\mathcal{R})$, the big group generated by the above two groups.
- $Sym(\mathcal{R})$

Switching automorphisms

Switching

For $X \subset \mathcal{R}$, consider the new graph S(X) on the same vertex set as \mathcal{R} , but adjacencies between X and X^c are switched. A switching automorphism is a graph isomorphism $\alpha : \mathcal{R} \to S(X)$ for some X.

Switching

Switching automorphisms

Switching

For $X \subset \mathcal{R}$, consider the new graph S(X) on the same vertex set as \mathcal{R} , but adjacencies between X and X^c are switched.

A switching automorphism is a graph isomorphism $\alpha : \mathcal{R} \to S(X)$ for some X.

4 3 > 4 3 >

Switching

Switching automorphisms

Switching

For $X \subset \mathcal{R}$, consider the new graph S(X) on the same vertex set as \mathcal{R} , but adjacencies between X and X^c are switched.

A switching automorphism is a graph isomorphism $\alpha : \mathcal{R} \to S(X)$ for some X.

< 3 > < 3 >

Cameron

Any overgroup of $Aut(\mathcal{R})$ not contained in $\mathcal{B}(\mathcal{R})$ is highly transitive.

.

Hypergraph of Copies and relatives

Let $\mathcal{H} = \mathcal{H}_{\mathcal{R}}$, the hypergraph of copies of \mathcal{R} :

• $Aut(\mathcal{H}_{\mathcal{R}}) =$ $\{\sigma \in Sym(\mathcal{R}) : \forall E \in \mathcal{H} \ E\sigma \ and \ E\sigma^{-1} \in \mathcal{H}\}$ • $FAut(\mathcal{H}_{\mathcal{R}}) =$ $\{\sigma \in Sym(\mathcal{R}) : \exists F \ finite \ \forall E \in \mathcal{H} \ (E \setminus F)\sigma \ and \ (E \setminus F)\sigma^{-1} \in \mathcal{H}\}$ • $Aut^{*}(\mathcal{H}_{\mathcal{R}}) =$ $\{\sigma \in Sym(\mathcal{R}) : \forall E \in \mathcal{H} \ \exists F \ finite \ (E \setminus F)\sigma \ and \ (E \setminus F)\sigma^{-1} \in \mathcal{H}\}$

Hypergraph of Copies and relatives

Let $\mathcal{H}=\mathcal{H}_{\mathcal{R}},$ the hypergraph of copies of $\mathcal{R}:$

•
$$Aut(\mathcal{H}_{\mathcal{R}}) =$$

 $\{\sigma \in Sym(\mathcal{R}) : \forall E \in \mathcal{H} \ E\sigma \ and \ E\sigma^{-1} \in \mathcal{H}\}$
• $FAut(\mathcal{H}_{\mathcal{R}}) =$
 $\{\sigma \in Sym(\mathcal{R}) : \exists F \ finite \ \forall E \in \mathcal{H} \ (E \setminus F)\sigma \ and \ (E \setminus F)\sigma^{-1} \in \mathcal{H}\}$
• $Aut^{*}(\mathcal{H}_{\mathcal{R}}) =$
 $\{\sigma \in Sym(\mathcal{R}) : \forall E \in \mathcal{H} \ \exists F \ finite \ (E \setminus F)\sigma \ and \ (E \setminus F)\sigma^{-1} \in \mathcal{H}\}$

CLPTW

$$\operatorname{Aut}(\mathcal{R}) < \operatorname{Aut}(\mathcal{H}_{\mathcal{R}}) < \operatorname{FAut}(\mathcal{H}_{\mathcal{R}}) < \operatorname{Aut}^*(\mathcal{H}_{\mathcal{R}}) < \operatorname{Sym}(\mathcal{R}).$$

Diversion (L-Pouzet-Sauer)

$\textit{Aut}(\mathcal{H}_{\mathbb{Q}})$ 'is' $\textit{Aut}(\mathbb{Q},<)$

If $f : \mathbb{Q} \to \mathbb{Q}$ is a bijection preserving copies of the rationals (and conversely), then f is order preserving or reverse order preserving.

イロト 不得下 イヨト イヨト

Diversion (L-Pouzet-Sauer)

${\it Aut}({\cal H}_{\mathbb Q})$ 'is' ${\it Aut}({\mathbb Q},<)$

If $f : \mathbb{Q} \to \mathbb{Q}$ is a bijection preserving copies of the rationals (and conversely), then f is order preserving or reverse order preserving.

 $Aut(\mathcal{H}_{\Gamma}) = Aut(\Gamma)$

where Γ is the K_n -free graph.

- 4 週 ト - 4 三 ト - 4 三 ト -

Diversion (L-Pouzet-Sauer)

$\textit{Aut}(\mathcal{H}_\mathbb{Q})$ 'is' $\textit{Aut}(\mathbb{Q},<)$

If $f : \mathbb{Q} \to \mathbb{Q}$ is a bijection preserving copies of the rationals (and conversely), then f is order preserving or reverse order preserving.

 $Aut(\mathcal{H}_{\Gamma}) = Aut(\Gamma)$

where Γ is the K_n -free graph.

$Aut(\mathcal{H}_{\mathcal{R}})$ is 'large'!

e.g. if X, Y are two thin subsets of \mathcal{R} , then any bijection $\alpha : X \to Y$ extends to an automorphism $\overline{\alpha}$ of $\mathcal{H}_{\mathcal{R}}$.

イロト 不得 トイヨト イヨト

Reducts and $Aut(\mathcal{H})$

æ

くほと くほと くほと

$\begin{array}{l} \mathsf{CLPTW} \\ \mathcal{S}(\mathcal{R}) \not\leq \mathrm{FAut}(\mathcal{H}_{\mathcal{R}}) \end{array}$

2

イロン イヨン イヨン イヨン

2

<ロ> (日) (日) (日) (日) (日)

2

<ロト < 団ト < 団ト < 団ト

♥n ∀k ≤ n a_n ≠ b_k and c_n ~ b_k
♥n E_n := {a_k : k ≥ n} ∪ {b_n} ∪ {c_k : k ≥ n} is an edge of H.

3

イロト 不得下 イヨト イヨト

- - S(C) is the Rado graph.

3

- $\forall n \forall k \le n a_n \not\sim b_k \text{ and } c_n \sim b_k$ $\forall n E_n := \{a_k : k \ge n\} \cup \{b_n\} \cup \{c_k : k \ge n\} \text{ is an edge of } \mathcal{H}.$
 - S(C) is the Rado graph.
 - In S(C), b_n is isolated in E_n .

3

- $\exists \forall n \ E_n := \{a_k : k \ge n\} \cup \{b_n\} \cup \{c_k : k \ge n\} \text{ is an edge of } \mathcal{H}.$
 - S(C) is the Rado graph.
 - In S(C), b_n is isolated in E_n .
 - For any finite set F, choose n large enough so that $E_n = E_n \setminus F$.

Then E_n is a copy in \mathcal{R} , but E_n is not a copy in S(C).

2

イロト イヨト イヨト イヨト

2

<ロト < 団ト < 団ト < 団ト

2

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

 $W_{\mathcal{R}}(U_1 \cup V_2 \cup \overline{U_2} \cup \overline{V_1}, U_2 \cup V_1 \cup \overline{U_1} \cup \overline{V_2}) \subseteq X \cap W_{\mathcal{R}}(U_1 \cup V_2, U_2 \cup V_1)$

э

So $W_{S(X)}(U, V) \cap (\mathcal{R} \setminus F) \neq \emptyset$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\begin{array}{l} \mathsf{CLPTW} \\ \mathcal{B}(\mathcal{R}) < \mathsf{Aut}^*(\mathcal{H}_{\mathcal{R}}) \end{array}$

2

イロト イヨト イヨト イヨト

Cameron and Tarzi have also studied the following overgroups of $\mathcal{R}:$

Cameron and Tarzi have also studied the following overgroups of $\ensuremath{\mathcal{R}}$:

a) $Aut_1(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies;

A B < A B </p>

Cameron and Tarzi have also studied the following overgroups of $\ensuremath{\mathcal{R}}$:

- a) $Aut_1(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies;
- b) Aut₂(R), the group of permutations which change only a finite number of adjacencies at each vertex;

Cameron and Tarzi have also studied the following overgroups of $\ensuremath{\mathcal{R}}$:

- a) $Aut_1(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies;
- b) Aut₂(R), the group of permutations which change only a finite number of adjacencies at each vertex;
- c) $Aut_3(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies at all but finitely many vertices;

A B F A B F

Cameron and Tarzi have also studied the following overgroups of $\ensuremath{\mathcal{R}}$:

- a) $Aut_1(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies;
- b) Aut₂(R), the group of permutations which change only a finite number of adjacencies at each vertex;
- c) $Aut_3(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies at all but finitely many vertices;
- d) $Aut(\mathcal{F}_{\mathcal{R}})$, where $\mathcal{F}_{\mathcal{R}}$ is the neighbourhood filter of \mathcal{R} , the filter generated by the neighbourhoods of vertices of \mathcal{R} .

- 4 週 ト - 4 三 ト - 4 三 ト

Cameron and Tarzi have also studied the following overgroups of $\ensuremath{\mathcal{R}}$:

- a) $Aut_1(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies;
- b) Aut₂(R), the group of permutations which change only a finite number of adjacencies at each vertex;
- c) $Aut_3(\mathcal{R})$, the group of permutations which change only a finite number of adjacencies at all but finitely many vertices;
- d) Aut(\$\mathcal{F}_{\mathcal{R}}\$), where \$\mathcal{F}_{\mathcal{R}}\$ is the neighbourhood filter of \$\mathcal{R}\$, the filter generated by the neighbourhoods of vertices of \$\mathcal{R}\$.

CT

- $Aut(\mathcal{R}) < Aut_1(\mathcal{R}) < Aut_2(\mathcal{R}) < Aut_3(\mathcal{R})$
- $Aut_2(\mathcal{R}) \leq Aut(\mathcal{F}_{\mathcal{R}})$ but $Aut_3(\mathcal{R})$ and $Aut(\mathcal{F}_{\mathcal{R}})$ are incomparable.

イロン イヨン イヨン イヨン

CLPTW

a) $Aut_2(\mathcal{R}) \leq Aut(\mathcal{H})$ and $Aut_3(\mathcal{R}) \leq FAut(\mathcal{H})$.

3

CLPTW

- a) $Aut_2(\mathcal{R}) \leq Aut(\mathcal{H})$ and $Aut_3(\mathcal{R}) \leq FAut(\mathcal{H})$.
- b) $FSym(\mathcal{R}) \leq FAut(\mathcal{H})$ but $FSym(\mathcal{R}) \cap Aut(\mathcal{H}) = 1$.

э

CLPTW

- a) $Aut_2(\mathcal{R}) \leq Aut(\mathcal{H})$ and $Aut_3(\mathcal{R}) \leq FAut(\mathcal{H})$.
- b) $FSym(\mathcal{R}) \leq FAut(\mathcal{H})$ but $FSym(\mathcal{R}) \cap Aut(\mathcal{H}) = 1$.
- c) $Aut(\mathcal{F}_{\mathcal{R}}) \not\leq Aut^*(\mathcal{H}).$

3

CLPTW

- a) $Aut_2(\mathcal{R}) \leq Aut(\mathcal{H})$ and $Aut_3(\mathcal{R}) \leq FAut(\mathcal{H})$.
- b) $FSym(\mathcal{R}) \leq FAut(\mathcal{H})$ but $FSym(\mathcal{R}) \cap Aut(\mathcal{H}) = 1$.
- c) $Aut(\mathcal{F}_{\mathcal{R}}) \not\leq Aut^*(\mathcal{H}).$

- 4 同 6 4 日 6 4 日 6

CLPTW

- a) $Aut_2(\mathcal{R}) \leq Aut(\mathcal{H})$ and $Aut_3(\mathcal{R}) \leq FAut(\mathcal{H})$.
- b) $FSym(\mathcal{R}) \leq FAut(\mathcal{H})$ but $FSym(\mathcal{R}) \cap Aut(\mathcal{H}) = 1$.
- c) $Aut(\mathcal{F}_{\mathcal{R}}) \not\leq Aut^*(\mathcal{H}).$

 $g\in Aut(\mathcal{F}_{\mathcal{R}})\setminus Aut^*(\mathcal{H})$

Overall picture

3

Question

• What are $Aut(\mathcal{F}_{\mathcal{R}})$ and $Aut(\mathcal{H})$ exactly?

æ

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Question

- What are $Aut(\mathcal{F}_{\mathcal{R}})$ and $Aut(\mathcal{H})$ exactly?
- What is the full structure of overgroups of Aut(\mathcal{R}), and of other homogeneous structures?

Question

- What are $Aut(\mathcal{F}_{\mathcal{R}})$ and $Aut(\mathcal{H})$ exactly?
- What is the full structure of overgroups of Aut(*R*), and of other homogeneous structures?
- What insight does this bring us?