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Rado Graph Basic Properties

Rado Graph

The Rado graph R is the (unique) countable graph with the propery that:

For all finite disjoint U,V ⊆ R, there is a vertex x connected to all
vertices of U and none of V .

Definition

Let WR(U,V ) be the collection of all these witness x
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Rado Graph Basic Properties

Basic Argument

R is (strongly) indivisible:
If R = A ∪ B, then one of A or B IS the Rado graph.

Proof: If A is not Rado with bad pair U,V , then WR(U,V ) ⊆ B.
But WR(U ∪ U,V ∪ V ) = WR(U,V ) ∩WR(U,V ).

�
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Overgroups of Aut(R) Automorphism group Aut(R)

Automorphism Group Aut(R)

R is homogeneous:
Any finite partial automorphism α : X → Y extends to a full
automorphism α.
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Overgroups of Aut(R) Reducts

S. Thomas [91]

The closed subgroups of Sym(R)
containing Aut(R) (the reducts) are:

Aut(R)

D(R), the group of dualities:
automorphisms and
anti-automorphisms.

S(R), the group of switching
automorphisms.

B(R), the big group generated by
the above two groups.

Sym(R)
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Overgroups of Aut(R) Switching

Switching automorphisms

Switching

For X ⊂ R, consider the new graph S(X ) on the same vertex set as R,
but adjacencies between X and X c are switched.
A switching automorphism is a graph isomorphism α : R → S(X ) for
some X .
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Overgroups of Aut(R) Transitivity

Transitivity of Reducts

Aut(R) is 1-transitive, not 2-transitive.

D(R) is 2-transitive, not 3-transitive.

S(R) is 2-transitive, not 3-transitive.

B(R) is 3-transitive, not 4-transitive.

Sym(R) is highly transitive.

Cameron

Any overgroup of Aut(R) not contained in B(R) is highly transitive.

WHS Summer 2012 () Rado Graph 7 / 17



Overgroups of Aut(R) Transitivity

Transitivity of Reducts

Aut(R) is 1-transitive, not 2-transitive.

D(R) is 2-transitive, not 3-transitive.

S(R) is 2-transitive, not 3-transitive.

B(R) is 3-transitive, not 4-transitive.

Sym(R) is highly transitive.

Cameron

Any overgroup of Aut(R) not contained in B(R) is highly transitive.

WHS Summer 2012 () Rado Graph 7 / 17



Overgroups of Aut(R) Aut(H) / FAut(HR) / Aut∗(HR)

Hypergraph of Copies and relatives

Let H = HR, the hypergraph of copies of R:

• Aut(HR) =

{σ ∈ Sym(R) : ∀E ∈ H Eσ and Eσ−1 ∈ H}
• FAut(HR) =

{σ ∈ Sym(R) : ∃F finite ∀E ∈ H (E \ F )σ and (E \ F )σ−1 ∈ H}
• Aut∗(HR) =

{σ ∈ Sym(R) : ∀E ∈ H ∃F finite (E \ F )σ and (E \ F )σ−1 ∈ H}

CLPTW

Aut(R) < Aut(HR) < FAut(HR) < Aut∗(HR) < Sym(R).

WHS Summer 2012 () Rado Graph 8 / 17



Overgroups of Aut(R) Aut(H) / FAut(HR) / Aut∗(HR)

Hypergraph of Copies and relatives

Let H = HR, the hypergraph of copies of R:

• Aut(HR) =

{σ ∈ Sym(R) : ∀E ∈ H Eσ and Eσ−1 ∈ H}
• FAut(HR) =

{σ ∈ Sym(R) : ∃F finite ∀E ∈ H (E \ F )σ and (E \ F )σ−1 ∈ H}
• Aut∗(HR) =

{σ ∈ Sym(R) : ∀E ∈ H ∃F finite (E \ F )σ and (E \ F )σ−1 ∈ H}

CLPTW

Aut(R) < Aut(HR) < FAut(HR) < Aut∗(HR) < Sym(R).

WHS Summer 2012 () Rado Graph 8 / 17



Overgroups of Aut(R) Diversion

Diversion (L-Pouzet-Sauer)

Aut(HQ) ’is’ Aut(Q, <)

If f : Q→ Q is a bijection preserving copies of the rationals (and
conversely), then f is order preserving or reverse order preserving.

Aut(HΓ) = Aut(Γ)

where Γ is the Kn-free graph.

Aut(HR) is ’large’ !

e.g. if X ,Y are two thin subsets of R, then any bijection α : X → Y
extends to an automorphism α of HR.
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Overgroups of Aut(R) Reducts, Aut(H) and relatives

Reducts and Aut(H)

Observation

D(R) ≤ Aut(HR)

Cameron

S(R) 6≤ Aut(HR)
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Overgroups of Aut(R) Reducts, Aut(H) and relatives

CLPTW

S(R) 6≤ FAut(HR)

1 ∀n ∀k ≤ n an 6∼ bk and cn ∼ bk
2 ∀n En := {ak : k ≥ n} ∪ {bn} ∪ {ck : k ≥ n} is an edge of H.

S(C ) is the Rado graph.

In S(C ), bn is isolated in En.

For any finite set F , choose n large enough so that En = En \ F .

Then En is a copy in R, but En is not a copy in S(C ).
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Overgroups of Aut(R) Reducts, Aut(H) and relatives
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Overgroups of Aut(R) Reducts, Aut(H) and relatives

CLPTW

B(R) < Aut∗(HR)
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Overgroups of Aut(R) More Overgroups

More overgroups

Cameron and Tarzi have also studied the following overgroups of R:

a) Aut1(R), the group of permutations which change only a finite number
of adjacencies;

b) Aut2(R), the group of permutations which change only a finite number
of adjacencies at each vertex;

c) Aut3(R), the group of permutations which change only a finite number
of adjacencies at all but finitely many vertices;

d) Aut(FR), where FR is the neighbourhood filter of R, the filter
generated by the neighbourhoods of vertices of R.

CT

Aut(R) < Aut1(R) < Aut2(R) < Aut3(R)

Aut2(R) ≤ Aut(FR) but Aut3(R) and Aut(FR) are incomparable.

WHS Summer 2012 () Rado Graph 14 / 17



Overgroups of Aut(R) More Overgroups

More overgroups

Cameron and Tarzi have also studied the following overgroups of R:

a) Aut1(R), the group of permutations which change only a finite number
of adjacencies;

b) Aut2(R), the group of permutations which change only a finite number
of adjacencies at each vertex;

c) Aut3(R), the group of permutations which change only a finite number
of adjacencies at all but finitely many vertices;

d) Aut(FR), where FR is the neighbourhood filter of R, the filter
generated by the neighbourhoods of vertices of R.

CT

Aut(R) < Aut1(R) < Aut2(R) < Aut3(R)

Aut2(R) ≤ Aut(FR) but Aut3(R) and Aut(FR) are incomparable.

WHS Summer 2012 () Rado Graph 14 / 17



Overgroups of Aut(R) More Overgroups

More overgroups

Cameron and Tarzi have also studied the following overgroups of R:

a) Aut1(R), the group of permutations which change only a finite number
of adjacencies;

b) Aut2(R), the group of permutations which change only a finite number
of adjacencies at each vertex;

c) Aut3(R), the group of permutations which change only a finite number
of adjacencies at all but finitely many vertices;

d) Aut(FR), where FR is the neighbourhood filter of R, the filter
generated by the neighbourhoods of vertices of R.

CT

Aut(R) < Aut1(R) < Aut2(R) < Aut3(R)

Aut2(R) ≤ Aut(FR) but Aut3(R) and Aut(FR) are incomparable.

WHS Summer 2012 () Rado Graph 14 / 17



Overgroups of Aut(R) More Overgroups

More overgroups

Cameron and Tarzi have also studied the following overgroups of R:

a) Aut1(R), the group of permutations which change only a finite number
of adjacencies;

b) Aut2(R), the group of permutations which change only a finite number
of adjacencies at each vertex;

c) Aut3(R), the group of permutations which change only a finite number
of adjacencies at all but finitely many vertices;

d) Aut(FR), where FR is the neighbourhood filter of R, the filter
generated by the neighbourhoods of vertices of R.

CT

Aut(R) < Aut1(R) < Aut2(R) < Aut3(R)

Aut2(R) ≤ Aut(FR) but Aut3(R) and Aut(FR) are incomparable.

WHS Summer 2012 () Rado Graph 14 / 17



Overgroups of Aut(R) More Overgroups

More overgroups

Cameron and Tarzi have also studied the following overgroups of R:

a) Aut1(R), the group of permutations which change only a finite number
of adjacencies;

b) Aut2(R), the group of permutations which change only a finite number
of adjacencies at each vertex;

c) Aut3(R), the group of permutations which change only a finite number
of adjacencies at all but finitely many vertices;

d) Aut(FR), where FR is the neighbourhood filter of R, the filter
generated by the neighbourhoods of vertices of R.

CT

Aut(R) < Aut1(R) < Aut2(R) < Aut3(R)

Aut2(R) ≤ Aut(FR) but Aut3(R) and Aut(FR) are incomparable.

WHS Summer 2012 () Rado Graph 14 / 17



Overgroups of Aut(R) More Overgroups

More overgroups

Cameron and Tarzi have also studied the following overgroups of R:

a) Aut1(R), the group of permutations which change only a finite number
of adjacencies;

b) Aut2(R), the group of permutations which change only a finite number
of adjacencies at each vertex;

c) Aut3(R), the group of permutations which change only a finite number
of adjacencies at all but finitely many vertices;

d) Aut(FR), where FR is the neighbourhood filter of R, the filter
generated by the neighbourhoods of vertices of R.

CT

Aut(R) < Aut1(R) < Aut2(R) < Aut3(R)

Aut2(R) ≤ Aut(FR) but Aut3(R) and Aut(FR) are incomparable.

WHS Summer 2012 () Rado Graph 14 / 17



Overgroups of Aut(R) More Overgroups

Connections with Aut(H)

CLPTW

a) Aut2(R) ≤ Aut(H) and Aut3(R) ≤ FAut(H).

b) FSym(R) ≤ FAut(H) but FSym(R) ∩ Aut(H) = 1.

c) Aut(FR) 6≤ Aut∗(H).

g ∈ Aut(FR) \ Aut∗(H)
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Conclusion

Overall picture

Aut(R)

D(R) S(R)

B(R)

Aut∗(H)

Sym(R)

Aut(H)

FAut(H)

Aut1(R)

Aut2(R)

Aut3(R)

(1)

FSym(R)

Aut(FR)
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Conclusion

Question

What are Aut(FR) and Aut(H) exactly?

What is the full structure of overgroups of Aut(R), and of other
homogeneous structures?

What insight does this bring us?
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