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Small and big objects

We fix a pair of categories S ⊆ B.
The objects of S will be called small, while the objects of B will
be called big.
We denote by Sε and Bε the same categories with restricted
arrows, called embeddings.
We require that:

1 Every big object is the co-limit of a sequence of
embeddings of small objects.

2 Every arrow between big objects is the co-limit of a
sequence of arrows of small objects.
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Mixed pushouts

Definition
We say that 〈Sε,S〉 has the mixed pushout property if given a
Sε-arrow e : c → a, and a S-arrow f : c → b, there exist a
Sε-arrow e′ : b → w and a S-arrow f ′ : a→ w for which the
diagram

b � � e′
//______ w

c � �

e
//

f

OO

a

f ′

OO�
�
�
�
�
�

is the pushout in S.
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Mixed pushouts

The pushout of 〈f ,g〉

y
g′

// w

z
f

//

g

OO

x

f ′

OO
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Fraı̈ssé limits

Definition
A big object U is the Fraı̈ssé limit of Sε if

1 Every small object embeds into U.

2 Given an embedding of small objects a � � e // b , given an

embedding a � � i // U , there exists an embedding

b � � j // U such that j ◦ e = i .

Fact
The Fraı̈ssé limit is unique, up to an isomorphism.
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Injectivity

Injectivity

Main definition
A big object X is S-injective if for every embedding of small
objects a � � e // b , for every arrow f : a→ X , there exists an
arrow g : b → X such that f = g ◦ e, that is, the diagram

X

a

f

OO

� �

e
// b

g
ffM M M M M M M

is commutative.
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Theorem
Assume
(h1) Sε has a weakly initial object.
(h2) 〈Sε,S〉 has the mixed pushout property.
(h3) Sε has the Fraı̈ssé limit U in B.
Let X be a B-object. The following properties are equivalent:
(a) X is S-injective.
(b) X is a retract of U, that is, there exists an embedding

e : X → U and a homomorphism r : U → X such that
r ◦ e = idX .
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Motivation

Theorem (Dolinka 2011)

Let M be a nice Fraı̈ssé class of finite models and let U be its
Fraı̈ssé limit. Given a countable model X , TFAE:
(a) X is a retract of U.
(b) X is algebraically closed.
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Fraı̈ssé limit. Given a countable model X , TFAE:
(a) X is a retract of U.
(b) X is algebraically closed.



The setup Main result Motivation Selected applications HH structures About the proof The end

Metric spaces

Theorem
Let 〈X ,d〉 be a separable complete metric space. TFAE:

1 〈X ,d〉 is a non-expansive retract of the Urysohn space U.
2 〈X ,d〉 is finitely hyperconvex, that is, given a finite family of

closed balls

F = {B(x0, r0), . . . ,B(xn−1, rn−1)}

with
⋂
F = ∅, there exist i < j < n such that

d(xi , xj) > ri + rj .
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Banach spaces

Theorem (Wojtaszczyk 1972)
Let X be a separable Banach space. TFAE:

1 X is linearly isometric to a 1-complemented subspace of
the Gurariı̆ space G.

2 X is almost 1-injective for finite-dimensional spaces.
3 X is an isometric L1 predual.
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Definition (Cameron & Nešetřil 2006)
A countable relational structure X is homomorphism
homogeneous if every homomorphism between its finite
substructures extends to an endomorphism of X .

Theorem
Let S ⊆ B be a pair of categories of small – big objects,
satisfying conditions (h1) – (h3) above. Let X be a big object.
The following properties are equivalent:
(a) X is homomorphism-homogeneous.
(b) X is a retract of the Fraı̈ssé limit of some subcategory of

Sε satisfying (h1) – (h3).
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Main Lemma

Main Lemma
Assume Sε ⊆ S satisfy conditions (h1) – (h3) above.
For every big obect X there is an embedding J : X → U
satisfying the following condition:

Given a S-injective object Y , given a B-arrow F : X → Y ,
there exists a B-arrow G : U → Y such that G ◦ J = F .

X
��

J
��

F // Y

U
G

88qqqqqqq



The setup Main result Motivation Selected applications HH structures About the proof The end

Main Lemma

Main Lemma
Assume Sε ⊆ S satisfy conditions (h1) – (h3) above.
For every big obect X there is an embedding J : X → U
satisfying the following condition:

Given a S-injective object Y , given a B-arrow F : X → Y ,
there exists a B-arrow G : U → Y such that G ◦ J = F .

X
��

J
��

F // Y

U
G

88qqqqqqq



The setup Main result Motivation Selected applications HH structures About the proof The end

Main Lemma

Main Lemma
Assume Sε ⊆ S satisfy conditions (h1) – (h3) above.
For every big obect X there is an embedding J : X → U
satisfying the following condition:

Given a S-injective object Y , given a B-arrow F : X → Y ,
there exists a B-arrow G : U → Y such that G ◦ J = F .

X
��

J
��

F // Y

U
G

88qqqqqqq



The setup Main result Motivation Selected applications HH structures About the proof The end

Main Lemma

About the proof

x0
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THE END
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