The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end

Injectivity and retracts of Fraïssé limits

Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC) and Jan Kochanowski University, Kielce (POLAND) http://www.math.cas.cz/~kubis/

2nd Workshop on Homogeneous Structures Praha, 27 July 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Outlir	ne					

・ コット (雪) (小田) (コット 日)

- Small and big objects
- Mixed pushouts
- Fraïssé limits
- Injectivity
- Main result
- 3 Motivation
- Selected applications
 - Metric spaces
 - Banach spaces
- 5 HH structures
- 6 About the proof
 - Main Lemma
 - The end

The setup ●○○○○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Small and big of	objects					

We fix a pair of categories $\mathfrak{S}\subseteq\mathfrak{B}.$

The objects of \mathfrak{S} will be called small, while the objects of \mathfrak{B} will be called big.

We denote by $\mathfrak{S}^{\varepsilon}$ and $\mathfrak{B}^{\varepsilon}$ the same categories with restricted arrows, called embeddings.

We require that:

- Every big object is the co-limit of a sequence of embeddings of small objects.
- Every arrow between big objects is the co-limit of a sequence of arrows of small objects.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The setup ●○○○○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Small and big	objects					

We fix a pair of categories $\mathfrak{S} \subseteq \mathfrak{B}$.

The objects of \mathfrak{S} will be called small, while the objects of \mathfrak{B} will be called big.

We denote by $\mathfrak{S}^{\varepsilon}$ and $\mathfrak{B}^{\varepsilon}$ the same categories with restricted arrows, called embeddings.

We require that:

- Every big object is the co-limit of a sequence of embeddings of small objects.
- Every arrow between big objects is the co-limit of a sequence of arrows of small objects.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The setup ●○○○○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Small and big o	objects					

We fix a pair of categories $\mathfrak{S} \subseteq \mathfrak{B}$.

The objects of \mathfrak{S} will be called small, while the objects of \mathfrak{B} will be called big.

We denote by $\mathfrak{S}^{\varepsilon}$ and $\mathfrak{B}^{\varepsilon}$ the same categories with restricted arrows, called embeddings.

We require that:

- Every big object is the co-limit of a sequence of embeddings of small objects.
- Every arrow between big objects is the co-limit of a sequence of arrows of small objects.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The setup ○●○○○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Mixed pushouts	;					

We say that $\langle \mathfrak{S}^{\varepsilon}, \mathfrak{S} \rangle$ has the mixed pushout property if given a $\mathfrak{S}^{\varepsilon}$ -arrow $e: c \to a$, and a \mathfrak{S} -arrow $f: c \to b$, there exist a $\mathfrak{S}^{\varepsilon}$ -arrow $e': b \to w$ and a \mathfrak{S} -arrow $f': a \to w$ for which the diagram

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The setup ○○●○○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Mixed pushouts	S					

The pushout of $\langle f, g \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The setup ○○●○○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Mixed pushouts	5					

The pushout of $\overline{\langle f, g \rangle}$

The setup ○○●○○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Mixed pushouts	5					

The pushout of $\overline{\langle f, g \rangle}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

The setup ○○○●○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Fraïssé limits						

A big object U is the Fraïssé limit of $\mathfrak{S}^{\varepsilon}$ if

- Every small object embeds into U.
- Given an embedding of small objects $a \xrightarrow{e} b$, given an embedding $a \xrightarrow{i} U$, there exists an embedding $b \xrightarrow{j} U$ such that $j \circ e = i$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fact

The setup ○○○●○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Fraïssé limits						

A big object U is the Fraïssé limit of $\mathfrak{S}^{\varepsilon}$ if

Every small object embeds into U.

3 Given an embedding of small objects $a \xrightarrow{e} b$, given an embedding $a \xrightarrow{i} U$, there exists an embedding $b \xrightarrow{j} U$ such that $j \circ e = i$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fact

The setup ○○○●○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Fraïssé limits						

A big object U is the Fraïssé limit of $\mathfrak{S}^{\varepsilon}$ if

- Every small object embeds into U.
- ② Given an embedding of small objects a → b, given an embedding a → U, there exists an embedding b → U such that j ∘ e = i.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Fact

The setup ○○○●○	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Fraïssé limits						

A big object U is the Fraïssé limit of $\mathfrak{S}^{\varepsilon}$ if

- Every small object embeds into U.
- ② Given an embedding of small objects a → b, given an embedding a → U, there exists an embedding b → U such that j ∘ e = i.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Fact

The setup ○○○○●	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Injectivity						
Injecti	vity					

Main definition

A big object X is \mathfrak{S} -injective if for every embedding of small objects $a \xrightarrow{e} b$, for every arrow $f: a \to X$, there exists an arrow $g: b \to X$ such that $f = g \circ e$, that is, the diagram

・ロト ・四ト ・ヨト ・ヨト

is commutative.

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end

Theorem

Assume

- (h1) $\mathfrak{S}^{\varepsilon}$ has a weakly initial object.
- (h2) $\langle \mathfrak{S}^{\varepsilon}, \mathfrak{S} \rangle$ has the mixed pushout property.
- (h3) $\mathfrak{S}^{\varepsilon}$ has the Fraïssé limit U in \mathfrak{B} .
- Let X be a \mathfrak{B} -object. The following properties are equivalent:
- (a) X is G-injective.
- (b) X is a retract of U, that is, there exists an embedding
 e: X → U and a homomorphism r: U → X such that
 r ∘ e = id_X.

ne setup 0000	Main result	Motivation	Selected applications	HH structures	About the proof	The e
Th						
	eorem					
ASS	Suille CE baa		initial abiant			
(11)	G° nas a	a weakiy i	nillai objeci.			
	$\langle \mathfrak{S}^{\varepsilon},\mathfrak{S}\rangle$	has the m	nixed pushout pi	roperty.		
	$\mathfrak{S}^{\varepsilon}$ has t	he Fraïss	é limit U in B.			
Let	X be a B	-object.	The following pr	operties are	e equivalent:	
	X is G-ii	njective.				
	X is a re $e: X \rightarrow$ $r \circ e = ie$	etract of U U and a I d _X .	l, that is, there e nomomorphism	exists an en $r: U \to X$ s	nbedding such that	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

e setup 000	Main result	Motivation	Selected applications	HH structures	About the proof	The
The	eorem					
Ass	sume					
(h1)	$\mathfrak{S}^arepsilon$ has a	a weakly i	initial object.			
(h2)	$\langle \mathfrak{S}^arepsilon, \mathfrak{S} angle$,	has the n	nixed pushout p	roperty.		
	$\mathfrak{S}^{arepsilon}$ has t	he Fraïss	é limit U in B.			
Let	X be a B	-object.	The following pr	operties are	e equivalent:	
	X is G-ii	njective.				
	X is a re e: $X \rightarrow$ $r \circ e = ie$	etract of U U and a I d _X .	l, that is, there e homomorphism	exists an en $r: U \to X$ s	nbedding such that	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end

Theorem

Assume

- (h1) $\mathfrak{S}^{\varepsilon}$ has a weakly initial object.
- (h2) $\langle \mathfrak{S}^{\varepsilon}, \mathfrak{S} \rangle$ has the mixed pushout property.
- (h3) $\mathfrak{S}^{\varepsilon}$ has the Fraïssé limit U in \mathfrak{B} .
- Let X be a B-object. The following properties are equivalent: (a) X is G-injective.
- (b) X is a retract of U, that is, there exists an embedding e: $X \rightarrow U$ and a homomorphism $r: U \rightarrow X$ such that $r \circ e = id_X$.

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end

Theorem

Assume

- (h1) $\mathfrak{S}^{\varepsilon}$ has a weakly initial object.
- (h2) $\langle \mathfrak{S}^{\varepsilon}, \mathfrak{S} \rangle$ has the mixed pushout property.
- (h3) $\mathfrak{S}^{\varepsilon}$ has the Fraïssé limit U in \mathfrak{B} .

Let X be a \mathfrak{B} -object. The following properties are equivalent:

- (a) X is \mathfrak{S} -injective.
- (b) X is a retract of U, that is, there exists an embedding
 e: X → U and a homomorphism r: U → X such that
 r ∘ e = id_X.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation	The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end
	Motiv	ation					

Theorem (Dolinka 2011)

Let \mathfrak{M} be a **nice** Fraïssé class of finite models and let U be its Fraïssé limit. Given a countable model X, TFAE:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(a) X is a retract of U.

(b) X is algebraically closed.

Motivation	The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end
	Motiva	ation					

Theorem (Dolinka 2011)

Let \mathfrak{M} be a **nice** Fraïssé class of finite models and let U be its Fraïssé limit. Given a countable model X, TFAE:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

(a) X is a retract of U.

(b) X is algebraically closed.

Motivation	The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end
	Motiva	ation					

Theorem (Dolinka 2011)

Let \mathfrak{M} be a **nice** Fraïssé class of finite models and let U be its Fraïssé limit. Given a countable model X, TFAE:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(a) X is a retract of U.

(b) X is algebraically closed.

The setup 00000	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Metric spaces						

Theorem

Let $\langle X, d \rangle$ be a separable complete metric space. TFAE:

- **(**X, d) is a non-expansive retract of the Urysohn space \mathbb{U} .
- (X, d) is finitely hyperconvex, that is, given a finite family of closed balls

$$\mathcal{F} = \{\overline{\mathsf{B}}(x_0, r_0), \dots, \overline{\mathsf{B}}(x_{n-1}, r_{n-1})\}$$

with $\bigcap \mathcal{F} = \emptyset$, there exist i < j < n such that

 $d(x_i, x_j) > r_i + r_j.$

(日) (日) (日) (日) (日) (日) (日)

The setup 00000	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Metric spaces						

Theorem

Let $\langle X, d \rangle$ be a separable complete metric space. TFAE:

- **(**) $\langle X, d \rangle$ is a non-expansive retract of the Urysohn space \mathbb{U} .
- (X, d) is finitely hyperconvex, that is, given a finite family of closed balls

$$\mathcal{F} = \{\overline{\mathsf{B}}(x_0, r_0), \dots, \overline{\mathsf{B}}(x_{n-1}, r_{n-1})\}$$

with $\bigcap \mathcal{F} = \emptyset$, there exist *i* < *j* < *n* such that

 $d(x_i, x_j) > r_i + r_j.$

(日) (日) (日) (日) (日) (日) (日)

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Banach space	s					

Theorem (Wojtaszczyk 1972)

Let X be a separable Banach space. TFAE:

X is linearly isometric to a 1-complemented subspace of the Gurariĭ space G.

・ コット (雪) (小田) (コット 日)

- 2 X is almost 1-injective for finite-dimensional spaces.
- **3** X is an isometric L^1 predual.

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end

Definition (Cameron & Nešetřil 2006)

A countable relational structure X is homomorphism homogeneous if every homomorphism between its finite substructures extends to an endomorphism of X.

Theorem

Let $\mathfrak{S} \subseteq \mathfrak{B}$ be a pair of categories of small – big objects, satisfying conditions (h1) – (h3) above. Let X be a big object. The following properties are equivalent:

(a) X is homomorphism-homogeneous.

 (b) X is a retract of the Fraïssé limit of some subcategory of ^𝔅 satisfying (h1) − (h3).

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end

Definition (Cameron & Nešetřil 2006)

A countable relational structure X is homomorphism homogeneous if every homomorphism between its finite substructures extends to an endomorphism of X.

Theorem

Let $\mathfrak{S} \subseteq \mathfrak{B}$ be a pair of categories of small – big objects, satisfying conditions (h1) – (h3) above. Let X be a big object. The following properties are equivalent:

- (a) X is homomorphism-homogeneous.
- (b) X is a retract of the Fraïssé limit of some subcategory of G^ε satisfying (h1) – (h3).

The setup 00000	Main result	Motivation	Selected applications	HH structures	About the proof	The end

Definition (Cameron & Nešetřil 2006)

A countable relational structure X is homomorphism homogeneous if every homomorphism between its finite substructures extends to an endomorphism of X.

Theorem

Let $\mathfrak{S} \subseteq \mathfrak{B}$ be a pair of categories of small – big objects, satisfying conditions (h1) – (h3) above. Let X be a big object. The following properties are equivalent:

- (a) X is homomorphism-homogeneous.
- (b) X is a retract of the Fraïssé limit of some subcategory of S^ε satisfying (h1) − (h3).

The setup	Main result	Motivation	Selected applications	HH structures	About the proof ●○	The end
Main Lemma						

Main Lemma

Assume $\mathfrak{S}^{\varepsilon} \subseteq \mathfrak{S}$ satisfy conditions (h1) – (h3) above. For every big obect *X* there is an embedding $J \colon X \to U$ satisfying the following condition:

• Given a \mathfrak{S} -injective object *Y*, given a \mathfrak{B} -arrow $F: X \to Y$, there exists a \mathfrak{B} -arrow $G: U \to Y$ such that $G \circ J = F$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ◆○ ○ ○

The setup	Main result	Motivation	Selected applications	HH structures	About the proof ●○	The end
Main Lemma						

Main Lemma

Assume $\mathfrak{S}^{\varepsilon} \subseteq \mathfrak{S}$ satisfy conditions (h1) – (h3) above. For every big obect *X* there is an embedding $J \colon X \to U$ satisfying the following condition:

 Given a 𝔅-injective object Y, given a 𝔅-arrow F: X → Y, there exists a 𝔅-arrow G: U → Y such that G ∘ J = F.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ◆○ ○ ○

The setup	Main result	Motivation	Selected applications	HH structures	About the proof ●○	The end
Main Lemma						

Main Lemma

Assume $\mathfrak{S}^{\varepsilon} \subseteq \mathfrak{S}$ satisfy conditions (h1) – (h3) above. For every big obect *X* there is an embedding $J: X \to U$ satisfying the following condition:

 Given a 𝔅-injective object Y, given a 𝔅-arrow F: X → Y, there exists a 𝔅-arrow G: U → Y such that G ∘ J = F.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The setup 00000	Main result	Motivation	Selected applications	HH structures	About the proof ○●	The end
Main Lemma						

About the proof

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end

THE END

The setup	Main result	Motivation	Selected applications	HH structures	About the proof	The end
Selec	ted bibl	iograph	у			

- DOLINKA, I., A characterization of retracts in certain Fraïssé limits, MLQ. Mathematical Logic Quarterly, 58 (2012) 46–54
- **KUBIŚ, W.,** *Fraïssé sequences: category-theoretic approach to universal homogeneous structures*, preprint, http://arxiv.org/abs/0711.1683
- **KUBIŚ**, W., *Injective objects and retracts of Fraïssé limits*, preprint, http://arxiv.org/abs/1107.4620

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●