Homogeneity in infinite graphs

MATTHIAS HAMANN

UNIVERSITÄT HAMBURG

July 27, 2012

A graph G is k-distance-transitive if the automorphisms of G act transitively on the pairs of vertices (v, w) with $d(v, w) = \ell$ for each $\ell \leq k$.

A graph G is k-distance-transitive if the automorphisms of G act transitively on the pairs of vertices (v, w) with $d(v, w) = \ell$ for each $\ell \le k$. A graph is distance-transitive if it is k-distance-transitive for every $k \in \mathbb{N}$.

The graphs $X_{k,\ell}$

 $X_{k,\ell}$ is the graph of connectivity 1 such that every block is a complete graph on k vertices and every vertex lies in ℓ such blocks.

The graph $X_{3,3}$.

THEOREM (MACPHERSON '82)

The connected locally finite distance-transitive graphs are the graphs $X_{k,\ell}$ for integers $k, \ell \ge 2$.

THEOREM (MACPHERSON '82)

The connected locally finite distance-transitive graphs are the graphs $X_{k,\ell}$ for integers $k, \ell \ge 2$.

THEOREM (MÖLLER '94)

The connected locally finite 2-distance-transitive graphs with more than one end are the connected locally finite distance-transitive graphs.

In a graph G, two rays (one-way infinite paths) are equivalent if for any finite vertex set S of G both rays lie eventually in the same component of G - S. The ends of a graph are the equivalence classes of this equivalence relation.

In a graph G, two rays (one-way infinite paths) are equivalent if for any finite vertex set S of G both rays lie eventually in the same component of G - S. The ends of a graph are the equivalence classes of this equivalence relation.

Observation

A graph has more than one end if and only if there is a finite vertex set whose deletion leaves two components each of which contains a ray.

ENDS OF GRAPHS

one end

ENDS OF GRAPHS

infinitely many ends

one end

THEOREM (MACPHERSON '82)

The connected locally finite distance-transitive graphs are the graphs $X_{k,\ell}$ for integers $k, \ell \ge 2$.

THEOREM (MÖLLER '94)

The connected locally finite 2-distance-transitive graphs with more than one end are the connected locally finite distance-transitive graphs.

THEOREM (MACPHERSON '82)

The connected locally finite distance-transitive graphs are the graphs $X_{k,\ell}$ for integers $k, \ell \ge 2$.

THEOREM (MÖLLER '94)

The connected locally finite 2-distance-transitive graphs with more than one end are the connected locally finite distance-transitive graphs.

Theorem (H + Pott)

For a connected graph G with more than one end the following assertions are equivalent:

- G is distance-transitive;
- G is 2-distance-transitive;
- $G \cong X_{\kappa,\lambda}$ for cardinals $\kappa, \lambda \geq 2$.

A graph is k-CS-transitive if for every two isomorphic connected induced subgraphs on k vertices some isomorphism between them extends to an automorphism of the whole graph.

A graph is k-CS-transitive if for every two isomorphic connected induced subgraphs on k vertices some isomorphism between them extends to an automorphism of the whole graph.

Remark

• The 1-CS-transitive graphs are the vertex-transitive graphs.

A graph is k-CS-transitive if for every two isomorphic connected induced subgraphs on k vertices some isomorphism between them extends to an automorphism of the whole graph.

Remark

- The 1-CS-transitive graphs are the vertex-transitive graphs.
- The 2-CS-transitive graphs are the edge-transitive graphs.

 Gray '09: classification of all connected locally finite k-CS-transitive graphs with more than one end for k = 3.

- Gray '09: classification of all connected locally finite k-CS-transitive graphs with more than one end for k = 3.
- H + Pott: classification of all connected k-CS-transitive graphs with more than one end for k = 3.

- Gray '09: classification of all connected locally finite k-CS-transitive graphs with more than one end for k = 3.
- H + Pott: classification of all connected k-CS-transitive graphs with more than one end for every k ≥ 3.

- Gray '09: classification of all connected locally finite k-CS-transitive graphs with more than one end for k = 3.
- H + Pott: classification of all connected k-CS-transitive graphs with more than one end for every k ≥ 3.

There are three distinct infinite families of connected k-CS-transitive graphs with more than one end (for $k \ge 3$).

The graphs X_{κ,λ}(E) for certain cardinals κ, λ and some finite homogeneous graph E: replace every vertex in X_{κ,λ} by a copy of E and join two vertices of distinct copies if they replace adjacent vertices in X_{κ,λ}.

The graph $X_{2,3}(K_2)$ (k-CS-transitive for $k \ge 3$)

The graphs X_{κ,λ}(E) for certain cardinals κ, λ and some finite homogeneous graph E: replace every vertex in X_{κ,λ} by a copy of E and join two vertices of distinct copies if they replace adjacent vertices in X_{κ,λ}.

The graph $X_{2,3}(K_2)$ (k-CS-transitive for $k \ge 3$)

The graphs X_{κ,λ}(E) for certain cardinals κ, λ and some finite homogeneous graph E: replace every vertex in X_{κ,λ} by a copy of E and join two vertices of distinct copies if they replace adjacent vertices in X_{κ,λ}.

These graphs occur for any k:

- $X_{\kappa,\lambda}(K_1)$ for any $\kappa,\lambda\geq 2$;
- $X_{2,\lambda}(K_n)$ for any $\lambda \ge 2$ and $n < \frac{k}{2} + 1;$
- $X_{\kappa,2}(\overline{K_m})$ for any $\kappa \ge 2$ and $m < \frac{k+2}{3}$;
- X_{2,2}(E) for certain finite homogeneous graphs E (depending on k).

The graphs Y_κ for some cardinal κ (if k is odd): graphs of connectivity 1 such that every vertex lies in precisely two blocks, one of size 2 and one complete graph on κ vertices.

The graph Y_3 (k-CS-transitive for odd k) The graphs Y_κ for some cardinal κ (if k is odd): graphs of connectivity 1 such that every vertex lies in precisely two blocks, one of size 2 and one complete graph on κ vertices.

These graphs occur for any odd k:

•
$$Y_{\kappa}$$
 for any $\kappa \geq 3$.

③ The graphs $Z_{\kappa,\lambda}(E_1, E_2)$ for certain cardinals κ, λ and finite homogeneous graphs E_1, E_2 (if k is even): replace in a semi-regular tree with degrees κ and λ every second vertex by a copy of E_1 and the other vertices by a copy of E_2 . Then join two vertices in distinct copies by an edge if these copies replace adjacent vertices of the tree.

The graph $Z_{2,2}(K_1, C_4)$ (k-CS-transitive for even $k \ge 4$) The graphs Z_{κ,λ}(E₁, E₂) for certain cardinals κ, λ and finite homogeneous graphs E₁, E₂ (if k is even):

> replace in a semi-regular tree with degrees κ and λ every second vertex by a copy of E_1 and the other vertices by a copy of E_2 . Then join two vertices in distinct copies by an edge if these copies replace adjacent vertices of the tree.

These graphs occur for any even k:

- $Z_{2,2}(\overline{K_m}, K_n)$ for any m, n with 2m + n < k + 1;
- $Z_{\kappa,\lambda}(K_1, K_n)$ for any $n \le k-1$ and either $\kappa = 2$ or $\lambda = 2$;
- Z_{2,2}(K₁, E) for certain finite homogeneous graphs E (depending on k).

Theorem (H + Pott)

A connected graph with more than one end is k-CS-transitive (for some $k \ge 3$) if and only if it is one of the following graphs:

- $X_{\kappa,\lambda}(K_1)$ for any $\kappa, \lambda \geq 2$;
- 3 $X_{2,\lambda}(K_n)$ for any $\lambda \ge 2$ and $n < \frac{k}{2} + 1$;
- **3** $X_{\kappa,2}(\overline{K_m})$ for any $\kappa \ge 2$ and $m < \frac{k+2}{3}$;
- X_{2,2}(E) for certain finite homogeneous graphs E (depending on k);
- Y_{κ} for any $\kappa \geq 3$ (if k is odd);
- $Z_{2,2}(\overline{K_m}, K_n)$ for any m, n with 2m + n < k + 1 (if k is even);
- $Z_{\kappa,\lambda}(K_1, K_n)$ for any $n \le k 1$ and either $\kappa = 2$ or $\lambda = 2$ (if k is even);
- Z_{2,2}(K₁, E) for certain finite homogeneous graphs E (depending on k) (if k is even).

A graph is C-homogeneous (or connected-homogeneous) if every isomorphism between two connected induced subgraphs extends to an automorphism of the whole graph.

A graph is C-homogeneous (or connected-homogeneous) if every isomorphism between two connected induced subgraphs extends to an automorphism of the whole graph.

• Gray and Macpherson ('11) classified the countable C-homogeneous graphs.

A graph is C-homogeneous (or connected-homogeneous) if every isomorphism between two connected induced subgraphs extends to an automorphism of the whole graph.

• Gray and Macpherson ('11) classified the countable C-homogeneous graphs.

Corollary (H + Pott)

The connected C-homogeneous graphs with more than one end are the connected distance-transitive graphs with more than one end.