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Distance-transitive graphs

Definition

A graph G is k-distance-transitive if the automorphisms of G act
transitively on the pairs of vertices (v ,w) with d(v ,w) = ` for
each ` ≤ k .

A graph is distance-transitive if it is k-distance-transitive for every
k ∈ N.
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The graphs Xk,`

Xk,` is the graph of
connectivity 1 such
that every block is
a complete graph
on k vertices and
every vertex lies in
` such blocks.

The graph X3,3.
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Distance-transitive graphs

Theorem (Macpherson ’82)

The connected locally finite distance-transitive graphs are the
graphs Xk,` for integers k, ` ≥ 2.

Theorem (Möller ’94)

The connected locally finite 2-distance-transitive graphs with more
than one end are the connected locally finite distance-transitive
graphs.

Matthias Hamann Homogeneity in infinite graphs



Distance-transitive graphs

Theorem (Macpherson ’82)

The connected locally finite distance-transitive graphs are the
graphs Xk,` for integers k, ` ≥ 2.

Theorem (Möller ’94)
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Ends of graphs

Definition

In a graph G , two rays (one-way infinite paths) are equivalent if for
any finite vertex set S of G both rays lie eventually in the same
component of G − S .
The ends of a graph are the equivalence classes of this equivalence
relation.

Observation

A graph has more than one end if and only if there is a finite
vertex set whose deletion leaves two components each of which
contains a ray.
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Ends of graphs

one end

infinitely many ends
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Ends of graphs

one end
infinitely many ends
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Distance-transitive graphs

Theorem (Macpherson ’82)

The connected locally finite distance-transitive graphs are the
graphs Xk,` for integers k, ` ≥ 2.

Theorem (Möller ’94)

The connected locally finite 2-distance-transitive graphs with more
than one end are the connected locally finite distance-transitive
graphs.

Theorem (H+Pott)

For a connected graph G with more than one end the following
assertions are equivalent:

G is distance-transitive;

G is 2-distance-transitive;

G ∼= Xκ,λ for cardinals κ, λ ≥ 2.
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Distance-transitive graphs

Theorem (Macpherson ’82)

The connected locally finite distance-transitive graphs are the
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k-CS-transitive graphs

Definition

A graph is k-CS-transitive if for every two isomorphic connected
induced subgraphs on k vertices some isomorphism between them
extends to an automorphism of the whole graph.

Remark

The 1-CS-transitive graphs are the vertex-transitive graphs.

The 2-CS-transitive graphs are the edge-transitive graphs.
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k-CS-transitive graphs

Definition

A graph is k-CS-transitive if for every two isomorphic connected
induced subgraphs on k vertices some isomorphism between them
extends to an automorphism of the whole graph.

Remark

The 1-CS-transitive graphs are the vertex-transitive graphs.

The 2-CS-transitive graphs are the edge-transitive graphs.
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k-CS-transitive graphs

Classification results

Gray ’09: classification of all connected locally finite
k-CS-transitive graphs with more than one end for k = 3.

H + Pott: classification of all connected k-CS-transitive
graphs with more than one end for k = 3.

There are three distinct infinite families of connected
k-CS-transitive graphs with more than one end (for k ≥ 3).
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k-CS-transitive graphs

Classification results

Gray ’09: classification of all connected locally finite
k-CS-transitive graphs with more than one end for k = 3.

H + Pott: classification of all connected k-CS-transitive
graphs with more than one end for every k ≥ 3.

There are three distinct infinite families of connected
k-CS-transitive graphs with more than one end (for k ≥ 3).
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k-CS-transitive graphs

Classification results

Gray ’09: classification of all connected locally finite
k-CS-transitive graphs with more than one end for k = 3.

H + Pott: classification of all connected k-CS-transitive
graphs with more than one end for every k ≥ 3.

There are three distinct infinite families of connected
k-CS-transitive graphs with more than one end (for k ≥ 3).
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k-CS-transitive graphs

1 The graphs Xκ,λ(E ) for
certain cardinals κ, λ
and some finite
homogeneous graph E :
replace every vertex in
Xκ,λ by a copy of E and
join two vertices of
distinct copies if they
replace adjacent vertices
in Xκ,λ.

The graph X2,3(K2)
(k-CS-transitive for k ≥ 3)

Matthias Hamann Homogeneity in infinite graphs



k-CS-transitive graphs

1 The graphs Xκ,λ(E ) for
certain cardinals κ, λ
and some finite
homogeneous graph E :
replace every vertex in
Xκ,λ by a copy of E and
join two vertices of
distinct copies if they
replace adjacent vertices
in Xκ,λ.

The graph X2,3(K2)
(k-CS-transitive for k ≥ 3)

Matthias Hamann Homogeneity in infinite graphs



k-CS-transitive graphs

1 The graphs Xκ,λ(E ) for
certain cardinals κ, λ
and some finite
homogeneous graph E :
replace every vertex in
Xκ,λ by a copy of E and
join two vertices of
distinct copies if they
replace adjacent vertices
in Xκ,λ.

These graphs occur for any k :

Xκ,λ(K1) for any κ, λ ≥ 2;

X2,λ(Kn) for any λ ≥ 2 and
n < k

2 + 1;

Xκ,2(Km) for any κ ≥ 2 and
m < k+2

3 ;

X2,2(E ) for certain finite
homogeneous graphs E
(depending on k).
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k-CS-transitive graphs

2 The graphs Yκ for some
cardinal κ (if k is odd):
graphs of connectivity 1
such that every vertex
lies in precisely two
blocks, one of size 2 and
one complete graph on
κ vertices.

The graph Y3

(k-CS-transitive for odd k)
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k-CS-transitive graphs

2 The graphs Yκ for some
cardinal κ (if k is odd):
graphs of connectivity 1
such that every vertex
lies in precisely two
blocks, one of size 2 and
one complete graph on
κ vertices.

These graphs occur for any odd k :

Yκ for any κ ≥ 3.
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k-CS-transitive graphs

3 The graphs Zκ,λ(E1,E2)
for certain cardinals κ, λ
and finite homogeneous
graphs E1,E2 (if k is
even):
replace in a semi-regular
tree with degrees κ and
λ every second vertex by
a copy of E1 and the
other vertices by a copy
of E2. Then join two
vertices in distinct copies
by an edge if these
copies replace adjacent
vertices of the tree.

The graph Z2,2(K1,C4)
(k-CS-transitive for even k ≥ 4)
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k-CS-transitive graphs

3 The graphs Zκ,λ(E1,E2)
for certain cardinals κ, λ
and finite homogeneous
graphs E1,E2 (if k is
even):
replace in a semi-regular
tree with degrees κ and
λ every second vertex by
a copy of E1 and the
other vertices by a copy
of E2. Then join two
vertices in distinct copies
by an edge if these
copies replace adjacent
vertices of the tree.

These graphs occur for any even k :

Z2,2(Km,Kn) for any m, n with
2m + n < k + 1;

Zκ,λ(K1,Kn) for any n ≤ k − 1
and either κ = 2 or λ = 2;

Z2,2(K1,E ) for certain finite
homogeneous graphs E
(depending on k).
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C-homogeneous graphs

Theorem (H+Pott)

A connected graph with more than one end is k-CS-transitive (for
some k ≥ 3) if and only if it is one of the following graphs:

1 Xκ,λ(K1) for any κ, λ ≥ 2;

2 X2,λ(Kn) for any λ ≥ 2 and n < k
2 + 1;

3 Xκ,2(Km) for any κ ≥ 2 and m < k+2
3 ;

4 X2,2(E ) for certain finite homogeneous graphs E (depending
on k);

5 Yκ for any κ ≥ 3 (if k is odd);

6 Z2,2(Km,Kn) for any m, n with 2m + n < k + 1 (if k is even);

7 Zκ,λ(K1,Kn) for any n ≤ k − 1 and either κ = 2 or λ = 2 (if
k is even);

8 Z2,2(K1,E ) for certain finite homogeneous graphs E
(depending on k) (if k is even).
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C-homogeneous graphs

Definition

A graph is C-homogeneous (or connected-homogeneous) if every
isomorphism between two connected induced subgraphs extends to
an automorphism of the whole graph.

Gray and Macpherson (’11) classified the countable
C-homogeneous graphs.

Corollary (H+Pott)

The connected C-homogeneous graphs with more than one end are
the connected distance-transitive graphs with more than one end.
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