# Universal structures and universal homomorphisms

**Christian Pech** 

25.07.2012

(joint work with Maja Pech)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

# Some Motivation

In

[Rad64] R. Rado. Universal graphs and universal functions. *Acta Arith.*, 9:331–340, 1964.

Richard Rado used universal functions to explain his well-known construction of a universal countable graph:

$$K_{kl} := \left\{ f \mid f : \binom{\mathbb{N}}{l+1} \to \{0, \dots, k-1\} \right\}$$

#### Definition

 $f^* \in K_{kl}$  is universal in  $K_{kl}$  if for every  $f \in K_{kl}$  there exists a self-embedding  $\varphi$  of  $\mathbb{N}$  such that

$$f(x_0,\ldots,x_l)=f^*(\varphi(x_0),\ldots,\varphi(x_l))$$

 $K_{2,1}$  is essentially the class of countable graphs. Hence, a universal function  $f^* \in K_{2,1}$  is a countable universal graph.

### Outline

Universal homomorphisms

Universal polymorphisms

Cofinality of Menger algebras and clones

Retracts

Fraïssé-limits in comma categories

# Outline

#### Universal homomorphisms

Universal polymorphisms

Cofinality of Menger algebras and clones

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Retracts

Fraïssé-limits in comma categories

# We propose to study universal homomorphisms

### Definition

Let  $\mathcal{K}$  be a class of structures,  $T \in \mathcal{K}$ .  $u : U \to T$  is called universal within  $\mathcal{K}$  if  $U \in \mathcal{K}$ , and

$$\forall \mathbf{A} \in \mathcal{K}, h : \mathbf{A} \to \mathbf{T} \quad \exists \iota : \mathbf{A} \hookrightarrow \mathbf{U} : u \circ \iota = h.$$

#### Note

*u* is a retraction: Consider  $1_T : T \to T$ ; by universality, there exists  $\iota : T \hookrightarrow U$  such that  $u \circ \iota = 1_T$ .

### More general definition

A homomorphism  $u : \mathbf{U}^n \to \mathbf{T}$  is called *n*-ary universal homomorphism to  $\mathbf{T}$  within  $\mathcal{K}$  if  $\mathbf{U} \in \mathcal{K}$ , and

$$\forall \mathbf{A} \in \mathcal{K}, h : \mathbf{A}^n \to \mathbf{T} \quad \exists \iota : \mathbf{A} \hookrightarrow \mathbf{U} : u \circ \iota^n = h.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </

# Strict Fraïssé-classes

If  $\mathcal{K}$  is an age, then  $\overline{\mathcal{K}} := \{ \mathbf{A} \mid \mathbf{A} \text{ countable, } \operatorname{Age}(\mathbf{A}) \subseteq \mathcal{K} \}.$ 

### Definition (Dolinka)

A Fraïssé-class  $\mathcal{K}$  of relational structures is called strict Fraïssé-class if every pair of morphisms in  $(\mathcal{K}, \hookrightarrow)$  with the same domain has a pushout in  $(\overline{\mathcal{K}}, \rightarrow)$ .

### Observation

Note that these pushouts will always be amalgams. Thus the strict amalgamation property postulates canonical amalgams.

### Examples for strict Fraïssé-classes

- free amalgamation classes,
- the class of finite partial orders.

# Homogeneous homomorphisms

### Definition

Let  $u : \mathbf{U}^n \to \mathbf{T}$  be an *n*-ary homomorphism. Let  $\mathbf{A} \leq \mathbf{U}$  and let  $\iota : \mathbf{A} \hookrightarrow \mathbf{U}$ . We say that  $\iota$  preserves *u* if the following diagram commutes:



### Definition

Let  $u : \mathbf{U}^n \to \mathbf{T}$  be an *n*-ary homomorphism. *u* is called homogeneous if for all finitely generated substructures **A** of **U**, every *u*-preserving embedding  $\iota : \mathbf{A} \to \mathbf{U}$  can be extended to a *u*-preserving automorphism of **U**.

# Existence of universal homogeneous homomorphisms

### Theorem

Let  $\mathcal{K}$  be a strict Fraïssé-class,  $\mathbf{T} \in \overline{\mathcal{K}}$ . Then there exists a universal homogeneous n-ary homomorphism  $u : \mathbf{U}^n \to \mathbf{T}$  within  $\overline{\mathcal{K}}$ . Moreover, if  $\hat{u} : \hat{\mathbf{U}}^n \to \mathbf{T}$  is another such homomorphism, then there exists an isomorphism  $h : \hat{\mathbf{U}} \to \mathbf{U}$  such that



commutes.

Let **K** be the Fraïssé-limit of  $\mathcal{K}$ .

If all structures from  $\mathcal{K}$  are finite,  $\operatorname{Aut}(K)$  is oligomorphic, and if  $\operatorname{Aut}(T)$  is oligomorphic, then  $\operatorname{Aut}(U)$  is oligomorphic, too.

### Corollary

For every  $\mathbf{T} \in \overline{\mathcal{K}}$ , the homomorphism-equivalence class  $\overline{\mathcal{K}}_{\mathbf{T}}$  has a universal element.

# Countable universal well-founded posets

Let  $\alpha$  be a countable ordinal number. Let C be the class of all countable well-founded strict posets of height  $\leq \alpha$ .

Question

Does C have a universal object?

#### Note

 $\mathcal{C}$  is not elementary.



# Countable universal well-founded posets

Let  $\alpha$  be a countable ordinal number. Let C be the class of all countable well-founded strict posets of height  $\leq \alpha$ .

Question

Does C have a universal object?

#### Note

 $\mathcal{C}$  is not elementary.

### Answer to the question

Yes, C has a universal element **U**.

- Note that C
   consists of all countable strict posets that have a homomorphism to (α, ∈).
- Take *K* as the class of all finite posets. Set **T** := (α, ∈). Then there exists a universal homogeneous homomorphism *u* : **U** → **T**.
- Observe that U is universal in C.

# A countable universal directed acyclic graph

- ► K be the class of all finite structures with one binary relation,
- ► **T** := (ℚ, <),
- $u: \mathbf{U} \to \mathbf{T}$  be a universal homogeneous homomorphism within  $\overline{\mathcal{K}}$ .

Then **U** is a countable universal directed acyclic graph.

Note

- ► The signature is finite. Hence the Fraïssé-limit of K is ℵ<sub>0</sub>-categorical.
- (Q, <) is homogeneous over a finite signature. Hence it is ℵ₀-categorical.

Hence **U** is  $\aleph_0$ -categorical, too.

# Outline

Universal homomorphisms

### Universal polymorphisms

Cofinality of Menger algebras and clones

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Retracts

Fraïssé-limits in comma categories

# Universal homogeneous polymorphisms

Let *R* denote the countable random graph. Let  $u : \mathbf{U}^n \to R$  be an *n*-ary universal homogeneous homomorphism within the class of all countable simple graphs.

Question

What is **U**? (clearly,  $Age(\mathbf{U}) = Age(R)$ )



# Universal homogeneous polymorphisms

Let *R* denote the countable random graph.

Let  $u: \mathbf{U}^n \to \mathbf{R}$  be an *n*-ary universal homogeneous

homomorphism within the class of all countable simple graphs.

Question

What is **U**? (clearly,  $Age(\mathbf{U}) = Age(R)$ )

### Answer

 $\mathbf{U} \cong \mathbf{R}$ . That is, we can assume w.l.o.g., that  $\mathbf{U} = \mathbf{R}$ . Hence *u* is an *n*-ary polymorphism of  $\mathbf{R}$ .

### In other words:

The countable random graph has universal homogeneous polymorphisms of every arity.

### Questions:

- 1. Which structures have universal homogeneous endomorphisms?
- 2. Which structures have universal homogeneous polymorphisms?

# Existence of universal homogeneous polymorphisms

### Homo amalgamation property (HAP)

 $\mathcal{K}$  has the (HAP) if for all  $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$ , for all homomorphisms  $f_1 : \mathbf{A} \to \mathbf{B}_1, f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$  there exist  $\mathbf{C} \in \mathcal{K}, g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{C}$ , and  $g_2 : \mathbf{B}_2 \to \mathbf{C}$ , such that the following diagram commutes:



#### Theorem

Let  $\mathcal{K}$  be a strict Fraïssé-class with the HAP. Let **U** be a Fraïssé-limit of  $\mathcal{K}$ . If  $\mathcal{K}$  is closed with respect to n-th powers, then **U** has an n-ary universal homogeneous polymorphism.

# Some examples

The following structures have universal homogeneous polymorphisms of every arity:

- ► the countable random graph R (here K is the class of all finite simple graphs),
- ► the countable generic poset P = (P, ≤) (here K is the class of all finite posets),
- ► the countable atomless Boolean algebra A (here K is the class of finite Boolean algebras),
- the countable universal homogeneous semilattice Ω (here *K* is the class of all finite semilattices),
- ► the countable universal homogeneous distributive lattice D (here K is the class of all finite distributive lattices).

# Outline

Universal homomorphisms

Universal polymorphisms

#### Cofinality of Menger algebras and clones

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Retracts

Fraïssé-limits in comma categories

# Clones and Menger algebras

Given a set A.

$$egin{aligned} O_A^{(n)} &:= \{f \mid f: A^n o A\}, \quad O_A := igcup_{n \in \mathbb{N} \setminus \{0\}} O_A^{(n)} \ f \in O_A^{(n)}, \, g_1, \dots, g_n \in O_A^{(m)} : f \circ \langle g_1, \dots, g_n 
angle \in O_A^{(m)} \ f \circ \langle g_1, \dots, g_n 
angle : ar{x} \mapsto f(g_1(ar{x}), \dots, g_n(ar{x})). \ e_i^n \in O_A^{(n)} : (x_1, \dots, x_n) \mapsto x_i \quad ( ext{projections}) \end{aligned}$$

#### Definition

A clone on A is a subset of  $O_A$  that contains all projections and is closed with respect to composition.

#### Definition

An *n*-ary pre-Menger algebra on *A* is a subset of  $O_A^{(n)}$  that is closed with respect to composition.

#### Definition

An *n*-ary pre-Menger algebra is called Menger algebra if it contains all  $e_i^n$ 

### Clones and Menger algebras of Polymorphisms

Given a structure A (with carrier A).

$$ext{Pol}^{(n)}(\mathbf{A}) := \{ f \in O_A^{(n)} \mid f : \mathbf{A}^n o \mathbf{A} \}$$
  
  $ext{Pol}(\mathbf{A}) = igcup_{n \in \mathbb{N} \setminus \{0\}} ext{Pol}^{(n)}(\mathbf{A})$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Note:

- 1.  $Pol^{(n)}(\mathbf{A})$  is an *n*-ary Menger algebra,
- 2.  $Pol(\mathbf{A})$  is a clone.

Cofinality of clones and Menger algebras

- The notions subclone, and pre-Menger subalgebra are defined in the obvious way.
- ▶ Let *C* be a clone, *M* be an *n*-ary pre-Menger algebra

### Definition

*C* is said to have uncountable cofinality if it can not be written as the union of a countable chain of proper subclones.

### Definition

*M* is said to have uncountable cofinality if it can not be written as the union of a countable chain of proper pre-Menger subalgebras.

(日) (日) (日) (日) (日) (日) (日) (日)

# Uncountable cofinality for clones

- For M ⊆ O<sub>A</sub> the smallest clone on A containing M is denoted by ⟨M⟩<sub>O<sub>A</sub></sub>,
- For a clone *C* on *A*, we define  $C^{(n)} := C \cap O_A^{(n)}$

### Proposition

A clone C has uncountable cofinality if and only if there exists some  $k \in \mathbb{N} \setminus \{0\}$  such that

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

1. 
$$C = \langle C^{(k)} \rangle_{O_A}$$
,

2.  $C^{(k)}$ , considered as a pre-Menger algebra, has uncountable cofinality

# Uncountable cofinality for Menger algebras

### Proposition

Let **A** be a structure such that  $End(\mathbf{A})$  has uncountable cofinality. If **A** has a universal n-ary polymorphism, then  $Pol^{(n)}(\mathbf{A})$  has uncountable cofinality, too.

### Remark

- In the proposition above, uncountable cofinality can be replaced by strong uncountable cofinality,
- strong uncountable cofinality is equivalent to uncountable cofinality + Bergman property.

Here a pre-Menger algebra M has the Bergman property if for every generating set T there exists a  $k_T$  such that every element of M can be obtained by a term over T of depth  $\leq k$ .

# Examples

The following Menger algebras have uncountable cofinality and the Bergman property:

- ▶  $Pol^{(n)}(R)$ , where R is the countable random graph,
- ▶  $Pol^{(n)}(\mathbb{P})$  where  $\mathbb{P} = (P, \leq)$  is the countable generic poset,
- Pol<sup>(n)</sup>(A), where A is the countable atomless Boolean algebra,
- Pol<sup>(n)</sup>(Ω), where Ω is the countable universal homogeneous semilattice,
- Pol<sup>(n)</sup>(D), where D is the countable universal homogeneous distributive lattice,

$$\triangleright O_A^{(n)}$$
.

### Corollary

The clone  $O_A$  has uncountable cofinality (since it is generated by  $O_A^{(2)}$ ).

# Outline

Universal homomorphisms

Universal polymorphisms

Cofinality of Menger algebras and clones

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Retracts

Fraïssé-limits in comma categories

### Definition

A retraction  $r : \mathbf{U} \rightarrow \mathbf{T}$  is called <u>universal homogeneous</u> retraction if it is a universal homogeneous homomorphism to  $\mathbf{T}$ within  $\overline{\operatorname{Age}(\mathbf{U})}$ 

### Theorem

Let C be a Fraïssé-class with Fraïssé-limit U, and let  $T \in \overline{C}$ . Then there exists a universal homogeneous retraction  $r : U \rightarrow T$  if and only if

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので



### Definition

A retraction  $r : \mathbf{U} \rightarrow \mathbf{T}$  is called <u>universal homogeneous</u> retraction if it is a universal homogeneous homomorphism to  $\mathbf{T}$ within  $\overline{\operatorname{Age}(\mathbf{U})}$ 

### Theorem

Let C be a Fraïssé-class with Fraïssé-limit U, and let  $T \in \overline{C}$ . Then there exists a universal homogeneous retraction  $r : U \rightarrow T$  if and only if

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので



### Definition

A retraction  $r : \mathbf{U} \rightarrow \mathbf{T}$  is called <u>universal homogeneous</u> retraction if it is a universal homogeneous homomorphism to  $\mathbf{T}$ within  $\overline{\operatorname{Age}(\mathbf{U})}$ 

#### Theorem

Let C be a Fraïssé-class with Fraïssé-limit U, and let  $T \in \overline{C}$ . Then there exists a universal homogeneous retraction  $r : U \rightarrow T$  if and only if



### Definition

A retraction  $r : \mathbf{U} \rightarrow \mathbf{T}$  is called <u>universal homogeneous</u> retraction if it is a universal homogeneous homomorphism to  $\mathbf{T}$ within  $\overline{\operatorname{Age}(\mathbf{U})}$ 

#### Theorem

Let C be a Fraïssé-class with Fraïssé-limit U, and let  $T \in \overline{C}$ . Then there exists a universal homogeneous retraction  $r : U \rightarrow T$  if and only if



# Subretracts of universal homogeneous retracts

### Proposition

Let C be a Fraïssé-class with Fraïssé-limit **U** and let  $\mathbf{V}, \mathbf{W} \in \overline{C}$ Let  $r : \mathbf{U} \twoheadrightarrow \mathbf{V}$  be a universal homogeneous retraction. Let  $s : \mathbf{V} \twoheadrightarrow \mathbf{W}$  be any retraction. Then there is a universal homogeneous retraction  $\hat{s} : \mathbf{U} \twoheadrightarrow \mathbf{W}$ .

### Corollary

If **U** has a universal homogeneous endomorphism, then every retract of **U** is induced by a universal homogeneous retraction.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Universal homogeneous endomorphisms revisited

Kubiś's amalgamated extension property

Let C be a class of countable, finitely generated structures. We say that C has the amalgamated extension property if



### Universal homogeneous endomorphisms revisited

### Kubiś's amalgamated extension property

Let C be a class of countable, finitely generated structures. We say that C has the amalgamated extension property if



Universal homogeneous endomorphisms revisited II

### Proposition

Let C be a Fraïssé-class. Let U be its Fraïssé-limit. Then U has a universal homogeneous endomorphism if and only if

- 1. C has the amalgamated extension property, and
- 2. C has the homo amalgamation property.

### Proposition

Let  $\mathbf{U}$  be a countable structure that has a universal homogeneous endomorphism. Then  $\mathbf{U}$  is homogeneous if and only if  $\mathbf{U}$  is homomorphism homogeneous.

### Corollary

Let C be a Fraïssé-class with Fraïssé-limit **U**. Then C has the HAP and the amalgamated extension property if and only if every retract of **U** is induced by a universal homogeneous retraction.

# Outline

Universal homomorphisms

Universal polymorphisms

Cofinality of Menger algebras and clones

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Retracts

Fraïssé-limits in comma categories

# Universal homogeneous objects in categories

### Definition

We call a category  $\mathfrak{C}$  a  $\lambda$ -amalgamation category if

- 1. all morphisms of  $\mathfrak C$  are monomorphisms,
- 2.  $\mathfrak{C}$  is  $\lambda$ -algebroidal,
- 3.  $\mathfrak{C}_{<\lambda}$  has the joint embedding property,
- 4.  $\mathfrak{C}_{<\lambda}$  has the amalgamation property.

### Theorem (Droste, Göbel '92)

Let  $\lambda$  be a regular cardinal, and let  $\mathfrak{C}$  be a  $\lambda$ -algebroidal category in which all morphisms are monomorphisms. Then there exists a  $\mathfrak{C}$ -universal,  $\mathfrak{C}_{<\lambda}$ -homogeneous object in  $\mathfrak{C}$  if and only if  $\mathfrak{C}$  is a  $\lambda$ -amalgamation category. Moreover, any two  $\mathfrak{C}$ -universal,  $\mathfrak{C}_{<\lambda}$ -homogeneous objects in  $\mathfrak{C}$  are isomorphic.

# (F, G)-amalgamation property

Given categories  $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ , functors  $F : \mathfrak{A} \to \mathfrak{C}, G : \mathfrak{B} \to \mathfrak{C}$ .  $\mathfrak{A}$  has the (F, G)-amalgamation property if



# (F, G)-amalgamation property

Given categories  $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ , functors  $F : \mathfrak{A} \to \mathfrak{C}, G : \mathfrak{B} \to \mathfrak{C}$ .  $\mathfrak{A}$  has the (F, G)-amalgamation property if



(*F*, *G*)-amalgamation property Given categories  $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ , functors  $F : \mathfrak{A} \to \mathfrak{C}, G : \mathfrak{B} \to \mathfrak{C}$ .  $\mathfrak{A}$  has the (*F*, *G*)-amalgamation property if



#### Theorem

Let  $\mathfrak{A}$  be a  $\lambda$ -algebroidal category all of whose morphisms are monos, and let  $\mathfrak{B}$  be a  $\lambda$ -amalgamation category. Let  $\mathfrak{C}$  be any category. Let  $F : \mathfrak{A} \to \mathfrak{C}$ ,  $G : \mathfrak{B} \to \mathfrak{C}$ . Further suppose that

- 1. *F* is  $\lambda$ -continuous,
- 2. F preserves  $\lambda$ -smallness with respect to G,
- 3. G preserves monomorphisms,
- 4. for every  $A \in \mathfrak{A}_{<\lambda}$  and for every  $B \in \mathfrak{B}_{<\lambda}$  there are at most  $\lambda$  morphisms in  $\mathfrak{C}(FA \to GB)$ .

Then  $(F \downarrow G)$  is a  $\lambda$ -amalgamation category if and only if a.  $(F|_{\mathfrak{A}_{<\lambda}} \downarrow G|_{\mathfrak{B}_{<\lambda}})$  has the joint embedding property, and b.  $\mathfrak{A}$  has the  $(F|_{\mathfrak{A}_{<\lambda}}, G|_{\mathfrak{B}_{<\lambda}})$ -amalgamation property.

#### Question

Let (U, u, T) be universal homogeneous in  $(F \downarrow G)$ . When is U universal homogeneous in  $\mathfrak{A}$ ?

# Mixed amalgamation

#### Definition

Let  $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$  be categories and let  $F : \mathfrak{A} \to \mathfrak{C}$  and  $G : \mathfrak{B} \to \mathfrak{C}$ . We say that F and G have the mixed amalgamation property if for all  $A, B \in \mathfrak{A}, S \in \mathfrak{B}, g : A \to B, a : FA \to GS$ ,



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

# Mixed amalgamation

#### Definition

Let  $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$  be categories and let  $F : \mathfrak{A} \to \mathfrak{C}$  and  $G : \mathfrak{B} \to \mathfrak{C}$ . We say that F and G have the mixed amalgamation property if for all  $A, B \in \mathfrak{A}, S \in \mathfrak{B}, g : A \to B, a : FA \to GS$ , there exists  $T \in \mathfrak{B}, h : S \to T$ , and  $b : FB \to GT$  such that the following diagram commutes:



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

# At last...

Let  $(\widehat{\mathfrak{A}}, \mathfrak{A})$  be a  $\lambda$ -amalgamation pair,  $\mathfrak{B}$  be a  $\lambda$ -amalgamation category, and let  $\mathfrak{C}$  be a category. Let  $\widehat{F} : \widehat{\mathfrak{A}} \to \mathfrak{C}, G : \mathfrak{B} \to \mathfrak{C}$  and let F be the restriction of  $\widehat{F}$  to  $\mathfrak{A}$ . Further suppose that

- 1. *F* and *G* are  $\lambda$ -continuous,
- 2. F preserves  $\lambda$ -smallness with respect to G,
- 3. G preserves monomorphisms,
- 4. for every  $A \in \mathfrak{A}_{<\lambda}$  and for every  $B \in \mathfrak{B}_{<\lambda}$  there are at most  $\lambda$  morphisms in  $\mathfrak{C}(FA \to GB)$ .

Finally, suppose that *F* is faithful, and that  $(F \downarrow G)$  is a  $\lambda$ -amalgamation category.

Let (U, u, T) be universal and homogeneous in  $(F \downarrow G)$ 

### Proposition

*U* is  $\mathfrak{A}_{<\lambda}$ -saturated in  $\mathfrak{A}$  if and only if  $F|_{\mathfrak{A}_{<\lambda}}$  and  $G|_{\mathfrak{B}_{<\lambda}}$  have the mixed amalgamation property.

Thank you for your attention!

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●