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Part 1: Phylogenetic Reconstruction

Biological species evolved in history
in a tree-like fashion

There are about 100 million species
presently living on earth.

Goal of biologists: reconstruct this tree
(from data about the still existing species)
Computationally challenging

Large amounts of data
Conflicting information
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Phylogenetic Trees

Pigeons Humans Cranberry

x

y

Assumptions: species-tree is rooted, binary

Notation: for set of species S, write yca(S) for youngest common
ancestor of S

Notation: for sets of species S and T , write S|T if yca(S) and yca(T ) are
incomparable

Example: pigeons humans | cranberries

Tractable Phylogeny Problems Manuel Bodirsky 4



Phylogenetic Trees

Pigeons Humans Cranberry

x

y

Assumptions: species-tree is rooted, binary

Notation: for set of species S, write yca(S) for youngest common
ancestor of S

Notation: for sets of species S and T , write S|T if yca(S) and yca(T ) are
incomparable

Example: pigeons humans | cranberries

Tractable Phylogeny Problems Manuel Bodirsky 4



Phylogenetic Trees

Pigeons Humans Cranberry

x

y

Assumptions: species-tree is rooted, binary

Notation: for set of species S, write yca(S) for youngest common
ancestor of S

Notation: for sets of species S and T , write S|T if yca(S) and yca(T ) are
incomparable

Example: pigeons humans | cranberries

Tractable Phylogeny Problems Manuel Bodirsky 4



Phylogenetic Trees

Pigeons Humans Cranberry

x

y

Assumptions: species-tree is rooted, binary

Notation: for set of species S, write yca(S) for youngest common
ancestor of S

Notation: for sets of species S and T , write S|T if yca(S) and yca(T ) are
incomparable

Example: pigeons humans | cranberries

Tractable Phylogeny Problems Manuel Bodirsky 4



Phylogenetic Trees

Pigeons Humans Cranberry

x

y

Assumptions: species-tree is rooted, binary

Notation: for set of species S, write yca(S) for youngest common
ancestor of S

Notation: for sets of species S and T , write S|T if yca(S) and yca(T ) are
incomparable

Example: pigeons humans | cranberries

Tractable Phylogeny Problems Manuel Bodirsky 4



The Rooted Triple Consistency Problem

A fundamental computational problem studied in phylogenetic reconstruction.

Input: A set of variables V , a set of triples T ⊆ V 3

Question: Is there a rooted binary tree with leaves V such that for all
(x , y , z) ∈ T we have xy |z.

Dutch KoreanGerman Czech Turkish

Example Instance:
Dutch German | Czech, German Czech | Turkish,
Turkish Korean | Czech, Turkish Korean | Dutch
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Algorithms

First polynomial-time algorithm for rooted triple consistency:

Theorem (Aho, Sagiv, Szymanski, Ullman’81).

The rooted triple consistency problem can be solved in quadratic time.

Work of Aho, Sagiv, Szymanski, Ullman independently motivated in
database theory

Running time improved to O(n3/2) by Henzinger+King+Warnow’95,
and to O(n log2 n) by Holm+deLichtenberg+Thorup’98.
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Other Phylogeny Problems
Forbidden Triples

Input: A set of variables V , a set of triples T ⊆ V 3.
Question: Is there a binary T with leaves V s.t. for every (x , y , z) ∈ T

x , y , z are pairwise distinct, and we do not have xy |z?

Complexity: NP-hard [Bryant’97]
(Unrooted) Quartet Consistency

Input: A set of variables V , a set of quartets Q ⊆ V 4.
Question: Is there a tree T with leaves V such that for each

(x , y ,u, v) ∈ Q the shortest path from x to y does not intersect
the shortest path from u to v?

Complexity: NP-hard [Steel’92]
Tree Balance Constraints

Input: A set of variables V , a set of quartets Q ⊆ V 4.
Question: Is there a binary rooted tree T with leaves V such that for each

(x , y ,u, v) ∈ Q we have xy |uv or xu|yv or xv |yu?
Complexity: Can be solved in polynomial time.
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Part 2: Constraint Satisfaction Problems

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure A homomorphically maps to Γ .

Example: 3-colorability is CSP(K3)

G K3
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More Examples of CSPs

Positive 1-in-3-3SAT
Input: A set of triples of variables (x , y , z)

Question: Is there a 0/1-assignment to the variables such that in each
clause exactly one variable is true?

Is a CSP: template is
(
{0,1}; {(0,0,1), (0,1,0), (1,0,0)}

)
Directed Graph Acyclicity

Input: A directed graph (V ;E)

Question: Is (V ;E) acyclic?

Is CSP: template is (Q;<)
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Rooted Triple Consistency as a CSP

Template 1:

For u, v ∈ {0,1}∗, write u / v if u is prefix of v .

Λ =
(
{0,1}∗; C

)
where C = {(x , y , z) | and ∃u. u / x and u / y and

¬(u / z) and ¬(z / u)}

x y z

u

ε
Facts.

CSP(Λ) is the rooted triple consistency problem
(have C(x , y , z) iff xy |z)

Structure Λ not homogeneous

Template 2:
The age of Λ has the amalgamation property.
Write (L;C) for its Fraı̈ssé-limit.
CSP((L;C)) is the rooted triple consistency problem.
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CSP((L;C)) is the rooted triple consistency problem.

Tractable Phylogeny Problems Manuel Bodirsky 10



Rooted Triple Consistency as a CSP

Template 1: For u, v ∈ {0,1}∗, write u / v if u is prefix of v .

Λ =
(
{0,1}∗; C

)
where C = {(x , y , z) | and ∃u. u / x and u / y and

¬(u / z) and ¬(z / u)}

x y z

u

ε
Facts.

CSP(Λ) is the rooted triple consistency problem
(have C(x , y , z) iff xy |z)

Structure Λ not homogeneous

Template 2:
The age of Λ has the amalgamation property.
Write (L;C) for its Fraı̈ssé-limit.
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C-relations

The structure (L;C) has been studied in other contexts:

‘Relations related to Betweenness’ (Adeleke+Neumann):
C-relations are ternary relations C satisfying the following axioms:
C1 ∀a, b, c.C(a; b, c) ⇒ C(a; c, b);
C2 ∀a, b, c.C(a; b, c) ⇒ ¬C(b; a, c);
C3 ∀a, b, c, d .C(a; b, c) ⇒ C(a; d , c)∨ C(d ; b, c);
C4 ∀a, b. a 6= b ⇒ ∃e (e 6= b ∧ C(a; b, e));
C5 ∀a, b. ∃e.C(e; a, b).

Aut(L;C) is a Jordan permutation group

Literature on C-minimal structures (in analogy to o-minimal structures,
where the role of the order is played by a C-relation)
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Templates for other phylogeny problems

Forbidden Triples
Input: A set of variables V , a set of triples T ⊆ V 3.

Question: Is there a tree T with leaves V such that for every (x , y , z) ∈ T
x , y , z are pairwise distinct, and we do not have xy |z?

Template:
(
L; {(x , y , z) : x 6= y , y 6= z, x 6= z, xz |y ∨ xy |z}

)
(Unrooted) Quartet Consistency

Input: A set of variables V , a set of quartets Q ⊆ V 4.
Question: Is there a tree T with leaves V such that for each

(x , y ,u, v) ∈ Q the shortest path from x to y does not intersect
the shortest path from u to v?

Template:
(
L; {(x , y ,u, v) : (xy |u ∧ xy |v)∨ (x |uv ∧ y |uv)}

)
Tree Balance Constraints

Input: A set of variables V , a set of quartets Q ⊆ V 4.
Question: Is there a tree T such that for each (x , y ,u, v) ∈ Q we have

xy |uv ∨ xu|yv ∨ xv |yu?
Template:

(
L; {(x , y ,u, v) : xy |uv ∨ xu|yv ∨ xv |yu}

)
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Complexity Classification

Definition
A relational structure Γ is called a reduct of ∆ if Γ and ∆ have the same
domain, and every relation of Γ has a first-order definition in ∆.

Question: let Γ be a reduct of (L;C) with finite signature.
What is the complexity of CSP(Γ)?

Theorem (B., van Pham, Jonsson’12).

CSP(Γ) is either in P or NP-complete.

P

NP-c NP
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Reducts up to first-order interdefinability

Two reducts Γ , ∆ of (L;C) are called first-order interdefinable if Γ is first-order
definable in ∆ and vice versa.
Fact: Two reducts Γ and ∆ of (L;C) are first-order interdefinable if and only if
Γ and ∆ have the same automorphisms.

Theorem.

Let Γ be a reduct of (L;C). Then Γ is first-order interdefinable with (L;C),
(L; {(x , y ,u, v) | (xy |u ∧ xy |v)∨ (x |uv ∧ y |uv)}), or (L; =).

Two proofs:

Using known results about Jordan permutation groups
(Adeleke+Macpherson’94)

Using the Ramsey techniques that will be presented in this talk.
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Tractability Boarder

Write Pol(Γ) for clone formed by the set of all polymorphisms of Γ , i.e.,
homomorphisms from Γ k to Γ for some finite k .
Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson’12).

Let Γ be a reduct of (L;C) that contains the relation C. Then exactly one of
the following applies.

Pol(Γ) has a continuous clone homomorphism to 1.
I.e., all finite structures have a primitive positive interpretation in Γ .
In this case, CSP(Γ) is NP-hard.

Γ has a polymorphism f and an endomorphism e satisfying

∀x , y . f (x , y) = e(f (y , x)) .

In this case, CSP(Γ) is in P.

Key ingredient in proof: Ramsey theory
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Ramsey Classes

Write
(G

H

)
for the set of all induced substructures of G that are isomorphic to H.

Definition
For structures G,H,P, write

G→ (H)P
k

if for all χ :
(G

P

)→ [k ] there exists H ′ ∈
(G

H

)
such that χ is constant on

(H ′

P

)
.

Definition
A class R of finite τ-structures is called a Ramsey class if for all H,P ∈ R and
k ∈ N there exists a G ∈ R such that

G→ (H)P
k .

Example: The class of all finite linear orders. (Ramsey’s theorem)
Non-example: The class of all finite graphs.
Example: The class of all finite linearly ordered graphs. (Nešetřil-Rödl)

Tractable Phylogeny Problems Manuel Bodirsky 16



Ramsey Classes

Write
(G

H

)
for the set of all induced substructures of G that are isomorphic to H.

Definition
For structures G,H,P, write

G→ (H)P
k

if for all χ :
(G

P

)→ [k ] there exists H ′ ∈
(G

H

)
such that χ is constant on

(H ′

P

)
.

Definition
A class R of finite τ-structures is called a Ramsey class if for all H,P ∈ R and
k ∈ N there exists a G ∈ R such that

G→ (H)P
k .

Example: The class of all finite linear orders. (Ramsey’s theorem)
Non-example: The class of all finite graphs.
Example: The class of all finite linearly ordered graphs. (Nešetřil-Rödl)
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A Consequence of Miliken’s Theorem

Let ≺ be a linear order of L such that
xy |z ⇒ (x ≺ z ∧ y ≺ z)∨ (z ≺ x ∧ z ≺ y)

x y u v

x⧼y y⧼u u⧼v

Theorem (consequence of Miliken’79).

The class of all finite structures that embed into (L;C,≺) is a Ramsey class.

A consequence of Miliken’79, generalizing earlier results of Deuber.

See B.+Piguet’09 for a direct proof.
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Canonical Functions

Let ∆1, ∆2 be homogeneous structures.

Definition (Canonical Functions)

A function f : ∆1 → ∆2 is canonical iff for all finite tuples t over ∆1, the type of
f (t) in ∆2 only depends on the type of t in ∆1.

Example:
There are three types of canonical functions from (Q;<) to (Q;<):

the function x 7→ −x

the constant function

the identity

Remarks.

Can be generalized to higher-ary functions

If ∆1 and ∆2 have finite relational signature, then there are
finitely many canonical behaviors.
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Canonizing

Let Γ be ω-categorical, and let R be a k -ary relation.

R has a existential definition in Γ iff R is preserved by Emb(Γ)
(Engeler, Svenonius, Ryll-Nardzewski and Los-Tarski)

R has a primitive positive definition in Γ iff R is preserved by Pol(Γ)
(B.+Nesetril’03)

Theorem (B,Pinsker,Tsankov’11).

Let Γ be a reduct of a homogeneous Ramsey structure ∆ with finite relational
signature. Then a relation R has an existential definition in Γ if and only if
Γ has a self-embedding e and elements c1, . . . , ck such that

(c1, . . . , ck ) ∈ R(
e(c1), . . . ,e(ck )

)
/∈ R

f is canonical as a function from (∆, c1, . . . , ck ) to ∆.

In the same way we can characterize primitive positive definability by
replacing with (canonical) polymorphisms.
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Topological Dynamics

Say that a homogeneous relational structure ∆ is Ramsey
iff the class of all finite substructures that embed into ∆ is Ramsey.

Theorem (Kechris+Pestov+Todorcevic’05).

An ordered homogeneous structure Γ is Ramsey if and only if Aut(Γ) is
extremely amenable, i.e., if every continuous action of Aut(Γ) on a compact
Hausdorff space has a fixed point.

Fact 1 [Kechris+Pestov+Todorcevic’05]:
if a topological group G is extremely amenable, then so is Gk

(corresponds to product Ramsey theorem in combinatorics)

Fact 2 [B+Pinsker+Tsankov’11]:
open subgroups of extremely amenable groups are extremely amenable
(combinatorial counterpart: expansions of homogeneous structures by finitely
many constants preserve the Ramsey property)
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Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature.

Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ .

That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.

Suffices to show: {
αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.

Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.

Define a pseudo-metric d on S :=
{

g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).

S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.

Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable;

let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,

and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



Canonizing, with proof

Let Γ be a reduct of a homogeneous ordered Ramsey structure ∆ with finite
relational signature. Suppose R is not existentially definable in Γ . That is,
there is e ∈ Emb(Γ) and (c1, . . . , ck ) ∈ R such that (e(c1), . . . ,e(ck )) /∈ R.
Suffices to show: {

αeβ | α,β ∈ Aut(∆)(c1,...,ck)

}
contains a canonical function.
Proof. Let t1, t2, . . . enumerate ∆.
Define a pseudo-metric d on S :=

{
g ∈ Emb(Γ) : g|{c1,...,ck } = e|{c1,...,ck }

}
:

Set d(g,g ′) := 1/21+m for m ∈ N smallest such that
(g(t1), . . . ,g(tm)) has a different type in ∆ than (g ′(t1), . . . ,g ′(tm)).
S/∼, where x ∼ y iff d(x , y) = 0, is compact.
Aut(∆, c1, . . . , ck ) is extremely amenable; let it act on S/∼ by

α
(
[g(x)]

)
:= [g

(
α−1(x)

)
]

This action is continuous, therefore has a fixed point FP,
and every h ∈ FP is canonical as a function from (∆, c1, . . . , ck ) to ∆. �

Tractable Phylogeny Problems Manuel Bodirsky 21



The Affine Tree Polymorphism

Combinatorial core:
For all reducts Γ of (L;C) that contain the
relation C either

xy |z ∨ x |yz has a primitive positive
definition in Γ , or

Γ is preserved by the (binary) affine
tree polymorphism.

Example: the tree balance relation B(x , y ,u, v) defined by
xy |uv ∨ xu|yv ∨ xv |yu is preserved by the affine tree polymorphism.
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Algorithm

Illustration: Algorithm for CSP((L;B)),
where B =

{
(x , y ,u, v) | xy |uv ∨ xu|yv ∨ xv |yu

}
.

Input: finite structure (V ;B).
If B = ∅ then accept
else

Solve the following linear equation system with variables V :
{x + y + u + v = 0 mod 2 | (x , y ,u, v) ∈ B}.
If the only solution is constant 0 then reject
else

let s be a non-constant solution
recurse on sub-instance induced by {x ∈ V | s(x) = 0}
recurse on sub-instance induced by {x ∈ V | s(x) = 1}
If one of these calls reject, then reject else accept

end if
end if
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Dichotomy for all ω-categorical structures?

Conjecture 1.

Every ω-categorical structure Γ is homomorphically equivalent to a structure
∆ such that either

all finite structures have a primitive positive interpretation in ∆ with
parameters, or

∆ has a polymorphism f of arity n ≥ 2 and an endomorphism e such that

∀x1, . . . , xn. f (x1, . . . , xn) =e(f (x2, . . . , xn, x1))

True for finite structures Γ
(Taylor’77,Hobby+MacKenzie’88,Barto+Kozik’10)
True for all reducts of (Q;<) (B.+Kara’08)
True for all reducts of the Random Graph (B.+Pinsker’11)
True for all reducts of the equivalence relation with infinitely many infinite
classes (B.+Wrona’12)

In all those cases, dichotomy coincides with a complexity dichotomy NPc/P
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Open Problems

Let Γ be homogeneous with finite relational structure. Can we always add
finitely many relations to Γ so that the expansion is still homogeneous,
and has the Ramsey property?

Let G be an oligomorphic permutation group. Does G always have an
extremely amenable oligomorphic subgroup?
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