# The Szemerédi-Trotter theorem using polynomials 

Jirí Matoušek<br>Department of Applied Mathematics, Charles University Malostranské nám. 25, 11800 Praha 1, Czech Republic

We apply the Guth-Katz method of "polynomial partitions" in yet another simple proof of the Szemerédi-Trotter theorem on point-line incidences.

## 1 Preliminaries on polynomials

We will consider mostly bivariate polynomials $f=f(x, y)=\sum_{i, j} a_{i j} x^{i} y^{j} \in \mathbb{R}[x, y]$. The degree of $f$ is $\operatorname{deg}(f)=\max \left\{i+j: a_{i j} \neq 0\right\}$. Let $Z(f)=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}$ be the zero set of $f$.
1.1 Lemma. If $\ell$ is a line in $\mathbb{R}^{2}$ and $f \in \mathbb{R}[x, y]$ is of degree at most $d$, then either $\ell \subseteq Z(f)$, or $|\ell \cap Z(f)| \leq d$.

Proof. Writing $\ell$ in parametric form $\left\{\left(u_{1} t+v_{1}, u_{2} t+v_{2}\right): t \in \mathbb{R}\right\}$, we get that the points of $\ell \cap Z(f)$ are roots of the univariate polynomial $g(t):=f\left(u_{1} t+v_{1}, u_{2} t+v_{2}\right)$, which is of degree at most $d$. Thus, either $g$ is identically 0 , or it has at most $d$ roots.
1.2 Lemma. If $f \in \mathbb{R}[x, y]$ is nonzero and of degree at most $d$, then $Z(f)$ contains at most $d$ distinct lines.

Proof. We need to know that a nonzero bivariate polynomial (i.e., with at least one nonzero coefficient) does not vanish on all of $\mathbb{R}^{2}$. There are several ways of proving this-we leave it as a challenge for the reader to find one.

Now we fix a point $p \in \mathbb{R}^{2}$ not belonging to $Z(f)$. Let us suppose $Z(f)$ contains lines $\ell_{1}, \ldots, \ell_{k}$. We choose another line $\ell$ passing through $p$ that is not parallel to any $\ell_{i}$ and not passing through any of the intersections $\ell_{i} \cap \ell_{j}$. (Such an $\ell$ exists since only finitely many directions need to be avoided.) Then $\ell$ is not contained in $Z(f)$ and it has $k$ intersections with $\bigcup_{i=1}^{k} \ell$. Lemma 1.1 yields $k \leq d$.

## 2 The polynomial ham-sandwich theorem

We assume the ham sandwich theorem in the following discrete version: Every d finite sets $A_{1}, \ldots, A_{k} \subset \mathbb{R}^{k}$ can be simultaneously bisected by a hyperplane. Here a hyperplane $h$
bisects a finite set $A$ if neither of the two open halfspaces bounded by $A$ contains more than $\lfloor|A| / 2\rfloor$ points of $A$.

From this, it is easy to derive the polynomial ham-sandwich theorem (which we state for bivariate polynomials).
2.1 Theorem. Let $A_{1}, \ldots, A_{t} \subseteq \mathbb{R}^{2}$ be finite sets, and let $d$ be an integer with $\binom{d+2}{2}-1 \geq t$. Then there exists a nonzero polynomial $f \in \mathbb{R}[x, y]$ of degree at most $d$ that simultaneously bisects all the $A_{i}$, where " $f$ bisecting $A_{i}$ " means that $f>0$ in at most $\left\lfloor\left|A_{i}\right| / 2\right\rfloor$ points of $A_{i}$ and $f<0$ in at most $\left\lfloor\left|A_{i}\right| / 2\right\rfloor$ points of $A_{i}$.

Proof. We note that $\binom{d+2}{2}$ is the number of monomials in a bivariate polynomial of degree $d$, or in other words, the number of pairs $(i, j)$ of nonnegative integers with $i+j \leq d$. We set $k:=\binom{d+2}{2}-1$, and we let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{k}$ be the Veronese map given by

$$
\Phi(x, y):=\left(x^{i} y^{j}\right)_{(i, j): 1 \leq i+j \leq d} \in \mathbb{R}^{k} .
$$

(We think of the coordinates in $\mathbb{R}^{k}$ as indexed by pairs $(i, j)$ with $1 \leq i+j \leq d$.)
Assuming, as we may, that $t=k$, we set $A_{i}^{\prime}:=\Phi\left(A_{i}\right), i=1,2, \ldots, k$, and we let $h$ be a hyperplane simultaneously bisecting $A_{1}^{\prime}, \ldots, A_{k}^{\prime}$. Then $h$ can has an equation of the form $a_{00}+\sum_{i, j} a_{i j} z_{i j}=0$, where $\left(z_{i j}\right)_{(i, j): 1 \leq i+j \leq d}$ are the coordinates in $\mathbb{R}^{k}$. It is easy to check that $f(x, y):=\sum_{i, j} a_{i j} x^{i} y^{j}$ is the desired polynomial.

## 3 Proof of the Szemerédi-Trotter theorem

For a finite set $P \subset \mathbb{R}^{2}$ and a finite set $L$ of lines in $\mathbb{R}^{2}$, let $I(P, L)$ denote the number of incidences of $P$ and $L$, i.e., of pairs $(p, \ell)$ with $p \in P, \ell \in L$, and $p \in \ell$.
3.1 Theorem (Szemerédi-Trotter). We have $I(P, L)=O\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ for every $m$-point $P$ and every set $L$ of $n$ lines.

Let us say that sets $P, Q \subset \mathbb{R}^{2}$ are strictly separated by a polynomial $f \in \mathbb{R}[x, y]$ if $P \cap Z(f)=Q \cap Z(f)=\emptyset$, and every segment $p q, p \in P, q \in Q$, intersects $Z(f)$.

Let $P \subset \mathbb{R}^{2}$ be an $m$-point set, and let $s>1$ be a parameter. We say that $f \in \mathbb{R}[x, y]$ is an $s$-partitioning polynomial for $P$ if the set $P \backslash Z(f)$ can be partitioned into disjoint subsets $P_{1}, \ldots, P_{t}$ so that $t=O(s),\left|P_{i}\right| \leq m / s$ for all $i$, and for every $i \neq j, P_{i}$ and $P_{j}$ are strictly separated by $f$.
3.2 Lemma (Polynomial partitioning lemma). For every $s>1$, every finite $P \subset \mathbb{R}^{2}$ admits an $s$-partitioning polynomial $f$ of degree $O(\sqrt{s})$.

Proof. We inductively construct collections $\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots$, each consisting of disjoint subsets of $P$. We start with $\mathcal{P}_{0}:=\{P\}$. Having constructed $\mathcal{P}_{j}$ with at most $2^{j}$ sets, we use the polynomial ham-sandwich theorem to construct a polynomial $f_{j}$ that bisects each of the sets of $\mathcal{P}_{j}$. Then for every class $Q \in \mathcal{P}_{j}$, we let $Q^{\prime}$ consist of the points of $Q$ on which $f_{j}>0, Q^{\prime \prime}$ consists of those points of $Q$ where $f_{j}<0$, and $\mathcal{P}_{j+1}:=\bigcup_{Q \in \mathcal{P}_{j}}\left\{Q^{\prime}, Q^{\prime \prime}\right\}$ (empty sets ignored).

The sets in $\mathcal{P}_{j}$ have size at most $|P| / 2^{j}$. We let $k:=\left\lceil\log _{2} s\right\rceil$; then the sets in $\mathcal{P}_{k}$ have size at most $|P| / s$ and they form the desired $P_{1}, \ldots, P_{t}$, where $t \leq 2^{k} \leq 2 s$. We also set $f:=f_{1} f_{2} \cdots f_{k}$.

Then $f$ is an $s$-partitioning polynomial for $P$ by the construction, and it remains to bound $\operatorname{deg}(f)$. By the polynomial ham sandwich theorem, for bisecting the at most $2^{j}$ sets in $\mathcal{P}_{j}$, a polynomial $f_{j}$ of degree $O\left(\sqrt{2^{j}}\right)$ suffices. Thus, $\operatorname{deg}(f)=O\left(\sum_{j=1}^{k} O\left(2^{j / 2}\right)\right)=O(\sqrt{s})$.
Proof of the Szemerédi-Trotter theorem. For simplicity, we prove the theorem for $m=n$. We set $s:=n^{2 / 3}$, and we let $f$ be an $s$-partitioning polynomial for $P$. By the polynomial partitioning lemma, we may assume $r:=\operatorname{deg}(f)=O(\sqrt{s})$.

Let $P_{1}, \ldots, P_{t}$ be the sets as in the definition of an $s$-partitioning polynomial for $P$, and let $R:=P \cap Z(f)$. Further let $L_{0} \subset L$ consist of the lines of $L$ contained in $Z(f)$; we have $\left|L_{0}\right| \leq r$ by Lemma 1.2.

We decompose

$$
I(P, L)=\sum_{i=1}^{t} I\left(P_{i}, L\right)+I\left(R, L_{0}\right)+I\left(R, L \backslash L_{0}\right)
$$

We can immediately bound

$$
I\left(R, L_{0}\right) \leq\left|L_{0}\right| \cdot|R| \leq\left|L_{0}\right| n \leq n r=O\left(n^{4 / 3}\right)
$$

and

$$
I\left(R, L \backslash L_{0}\right) \leq\left|L \backslash L_{0}\right| r=O\left(n^{4 / 3}\right)
$$

since each line of $L \backslash L_{0}$ intersects $Z(f)$, and thus also $R$, in at most $r=\operatorname{deg}(f)$ points.
It remains to bound $\sum_{i=1}^{t} I\left(P_{i}, L\right)$. Let $L_{i} \subset L$ be the lines containing at least one point of $P_{i}$ (the $L_{i}$ are typically not disjoint). By Lemma 1.1, no line intersects more than $r+1$ of the $P_{i}$, and so $\sum_{i=1}^{t}\left|L_{i}\right| \leq(r+1) n$.

Let us further divide $L_{i}$ into $L_{i}^{\prime}$, the lines containing exactly one point of $P_{i}$, and $L_{i}^{\prime \prime}$, the lines containing at least two points of $P_{i}$.

We have $I\left(P_{i}, L_{i}^{\prime \prime}\right) \leq\left|P_{i}\right|^{2}$, because for every $p \in P_{i}$, there are at most $\left|P_{i}\right|-1$ lines that pass through $p$ and contain at least one other point of $P_{i}$. Obviously, $I\left(P_{i}, L_{i}^{\prime}\right) \leq\left|L_{i}^{\prime}\right|$. Thus, we can estimate

$$
\begin{aligned}
\sum_{i=1}^{t} I\left(P_{i}, L\right) & =\sum_{i=1}^{t} I\left(P_{i}, L_{i}^{\prime}\right)+\sum_{i=1}^{t} I\left(P_{i}, L_{i}^{\prime \prime}\right) \leq \sum_{i=1}^{t}\left|L_{i}^{\prime}\right|+\sum_{i=1}^{t}\left|P_{i}\right|^{2} \\
& \leq(r+1) n+t\left(\frac{n}{s}\right)^{2}=O\left(n^{4 / 3}\right)
\end{aligned}
$$

