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Jiř́ı Matoušek
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We apply the Guth–Katz method of “polynomial partitions” in yet another simple proof
of the Szemerédi–Trotter theorem on point-line incidences.

1 Preliminaries on polynomials

We will consider mostly bivariate polynomials f = f(x, y) =
∑

i,j aijx
iyj ∈ R[x, y]. The

degree of f is deg(f) = max{i + j : aij 6= 0}. Let Z(f) = {(x, y) ∈ R2 : f(x, y) = 0} be the
zero set of f .

1.1 Lemma. If ` is a line in R2 and f ∈ R[x, y] is of degree at most d, then either ` ⊆ Z(f),
or |` ∩ Z(f)| ≤ d.

Proof. Writing ` in parametric form {(u1t + v1, u2t + v2) : t ∈ R}, we get that the points
of ` ∩ Z(f) are roots of the univariate polynomial g(t) := f(u1t + v1, u2t + v2), which is of
degree at most d. Thus, either g is identically 0, or it has at most d roots. 2

1.2 Lemma. If f ∈ R[x, y] is nonzero and of degree at most d, then Z(f) contains at most
d distinct lines.

Proof. We need to know that a nonzero bivariate polynomial (i.e., with at least one nonzero
coefficient) does not vanish on all of R2. There are several ways of proving this—we leave it
as a challenge for the reader to find one.

Now we fix a point p ∈ R2 not belonging to Z(f). Let us suppose Z(f) contains lines
`1, . . . , `k. We choose another line ` passing through p that is not parallel to any `i and not
passing through any of the intersections `i ∩ `j . (Such an ` exists since only finitely many
directions need to be avoided.) Then ` is not contained in Z(f) and it has k intersections
with

⋃k
i=1 `i. Lemma 1.1 yields k ≤ d. 2

2 The polynomial ham-sandwich theorem

We assume the ham sandwich theorem in the following discrete version: Every d finite
sets A1, . . . , Ak ⊂ Rk can be simultaneously bisected by a hyperplane. Here a hyperplane h
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bisects a finite set A if neither of the two open halfspaces bounded by A contains more than
b|A|/2c points of A.

From this, it is easy to derive the polynomial ham-sandwich theorem (which we state
for bivariate polynomials).

2.1 Theorem. Let A1, . . . , At ⊆ R2 be finite sets, and let d be an integer with
(
d+2
2

)
− 1 ≥ t.

Then there exists a nonzero polynomial f ∈ R[x, y] of degree at most d that simultaneously
bisects all the Ai, where “f bisecting Ai” means that f > 0 in at most b|Ai|/2c points of Ai

and f < 0 in at most b|Ai|/2c points of Ai.

Proof. We note that
(
d+2
2

)
is the number of monomials in a bivariate polynomial of degree

d, or in other words, the number of pairs (i, j) of nonnegative integers with i + j ≤ d. We set
k :=

(
d+2
2

)
− 1, and we let Φ: R2 → Rk be the Veronese map given by

Φ(x, y) :=
(
xiyj

)
(i,j):1≤i+j≤d

∈ Rk.

(We think of the coordinates in Rk as indexed by pairs (i, j) with 1 ≤ i + j ≤ d.)
Assuming, as we may, that t = k, we set A′i := Φ(Ai), i = 1, 2, . . . , k, and we let h be

a hyperplane simultaneously bisecting A′1, . . . , A
′
k. Then h can has an equation of the form

a00 +
∑

i,j aijzij = 0, where (zij)(i,j):1≤i+j≤d are the coordinates in Rk. It is easy to check
that f(x, y) :=

∑
i,j aijx

iyj is the desired polynomial. 2

3 Proof of the Szemerédi–Trotter theorem

For a finite set P ⊂ R2 and a finite set L of lines in R2, let I(P,L) denote the number of
incidences of P and L, i.e., of pairs (p, `) with p ∈ P , ` ∈ L, and p ∈ `.

3.1 Theorem (Szemerédi–Trotter). We have I(P,L) = O(m2/3n2/3 + m + n) for every
m-point P and every set L of n lines.

Let us say that sets P,Q ⊂ R2 are strictly separated by a polynomial f ∈ R[x, y] if
P ∩ Z(f) = Q ∩ Z(f) = ∅, and every segment pq, p ∈ P , q ∈ Q, intersects Z(f).

Let P ⊂ R2 be an m-point set, and let s > 1 be a parameter. We say that f ∈ R[x, y]
is an s-partitioning polynomial for P if the set P \ Z(f) can be partitioned into disjoint
subsets P1, . . . , Pt so that t = O(s), |Pi| ≤ m/s for all i, and for every i 6= j, Pi and Pj are
strictly separated by f .

3.2 Lemma (Polynomial partitioning lemma). For every s > 1, every finite P ⊂ R2

admits an s-partitioning polynomial f of degree O(
√

s ).

Proof. We inductively construct collections P0,P1, . . ., each consisting of disjoint subsets
of P . We start with P0 := {P}. Having constructed Pj with at most 2j sets, we use the
polynomial ham-sandwich theorem to construct a polynomial fj that bisects each of the sets
of Pj . Then for every class Q ∈ Pj , we let Q′ consist of the points of Q on which fj > 0, Q′′

consists of those points of Q where fj < 0, and Pj+1 :=
⋃

Q∈Pj
{Q′, Q′′} (empty sets ignored).
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The sets in Pj have size at most |P |/2j . We let k := dlog2 se; then the sets in Pk have
size at most |P |/s and they form the desired P1, . . . , Pt, where t ≤ 2k ≤ 2s. We also set
f := f1f2 · · · fk.

Then f is an s-partitioning polynomial for P by the construction, and it remains to bound
deg(f). By the polynomial ham sandwich theorem, for bisecting the at most 2j sets in Pj , a

polynomial fj of degree O(
√

2j ) suffices. Thus, deg(f) = O
(∑k

j=1 O(2j/2)
)

= O(
√

s ). 2

Proof of the Szemerédi–Trotter theorem. For simplicity, we prove the theorem for
m = n. We set s := n2/3, and we let f be an s-partitioning polynomial for P . By the
polynomial partitioning lemma, we may assume r := deg(f) = O(

√
s ).

Let P1, . . . , Pt be the sets as in the definition of an s-partitioning polynomial for P , and
let R := P ∩ Z(f). Further let L0 ⊂ L consist of the lines of L contained in Z(f); we have
|L0| ≤ r by Lemma 1.2.

We decompose

I(P,L) =
t∑

i=1

I(Pi, L) + I(R,L0) + I(R,L \ L0).

We can immediately bound

I(R,L0) ≤ |L0| · |R| ≤ |L0|n ≤ nr = O(n4/3),

and
I(R,L \ L0) ≤ |L \ L0|r = O(n4/3),

since each line of L \ L0 intersects Z(f), and thus also R, in at most r = deg(f) points.
It remains to bound

∑t
i=1 I(Pi, L). Let Li ⊂ L be the lines containing at least one point

of Pi (the Li are typically not disjoint). By Lemma 1.1, no line intersects more than r + 1 of
the Pi, and so

∑t
i=1 |Li| ≤ (r + 1)n.

Let us further divide Li into L′i, the lines containing exactly one point of Pi, and L′′i , the
lines containing at least two points of Pi.

We have I(Pi, L
′′
i ) ≤ |Pi|2, because for every p ∈ Pi, there are at most |Pi| − 1 lines that

pass through p and contain at least one other point of Pi. Obviously, I(Pi, L
′
i) ≤ |L′i|. Thus,

we can estimate

t∑
i=1

I(Pi, L) =
t∑

i=1

I(Pi, L
′
i) +

t∑
i=1

I(Pi, L
′′
i ) ≤

t∑
i=1

|L′i|+
t∑

i=1

|Pi|2

≤ (r + 1)n + t
(n

s

)2
= O(n4/3).
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