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Prague, 2007

Electronic version available at http://kam.mff.cuni.cz/~xofon/thesis/.

Hereby I declare that I have written all of the thesis on my own with the exceptions
explicitly mentioned, and that I cited all used sources of information. I agree with

public availability and lending of the thesis.

Petr Škovroň
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�
The set of real numbers�
The set of positive integers; i.e., �1, 2, 3, . . .�

a := b Define a symbol a to mean b� A column vector� � � Every component of a vector � is less or equal to the corresponding
component of a vector �� �

L
� A vector � is lexicographically less or equal to a vector �

AT, �T Transpose of a matrix A or a vector ��
n

k	 The binomial coefficient for integers 0 � k � n; otherwise 0

exp x The x-th power of the number e 
 2.71828

ln x Natural logarithm of a number x (with base e)

[ϕ] Indicator for a formula ϕ; i.e., 1 if ϕ holds, 0 otherwise�
X
�

Size of a set X

X
.�
Y Disjoint union of X and Y ; i.e., X

�
Y assuming X  Y = �

X � Y The set difference of sets X and Y ; i.e., �x � X : x �� Y �� �
Intersection of sets in a family

�
; i.e., �G∈G G�

H

k 	 Family of all k-element subsets of a set H

f
�
M Restriction of a mapping f to a set M
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In this thesis we study abstract models of optimization problems. Such research

has both theoretical and algorithmic results. On the theoretical side it may reveal
hidden analogies in different problems; on the algorithmic side it allows to employ

known algorithms to new tasks.

The main model on which this thesis is based is the class called LP-type prob-

lems. This is an axiomatic framework invented by Sharir and Welzl [SW92] designed
to generalize linear programming. Since its invention it became a well-established

tool in the field of geometric optimization. As applications of LP-type problems we
may name algorithms for minimum enclosing ball for a given set of points [SW92],

parity games [BSV03], and determining the Tukey depth [Cha04]. Theoretical re-

sults concerning LP-type problems include proving subexponential running time
bounds for certain randomized variants of simplex algorithm for linear program-

ming [MSW96], and relating LP-type problems to Helly-type theorems [Ame94],
[Ame96] and to lexicographic Helly-type theorems [Hal04].

Whenever we prove that an optimization task is an LP-type problem and we
implement certain algorithmic primitives, we can immediately use several efficient

algorithms: Sharir-Welzl algorithm [SW92], Clarkson’s algorithms [Cla95], [GW96],
its deterministic version [CM96], and an algorithm for finding an optimum solution

satisfying all but at most k of the given constraints [Mat95].
An LP-type problem is given by a finite set H and a value w(G) for every subset

G of H . We interpret the elements of H as constraints, and w(G) as the cost of a
minimum solution that satisfies all constraints in G.

Other two abstract models explored in this thesis are concrete LP-type prob-
lems and violator spaces. The model of concrete LP-type problems is based on the

following property of LP-type problems: in practice, we can often represent con-
straints by sets of solutions satisfying the particular constraint. A concrete LP-type

problem is essentially an LP-type problem in which the constraints themselves are
subsets of a linearly ordered set X (whose elements are solutions), and where w(G)

is the value of the minimum point in the intersection of the respective constraints.
Violator spaces were developed as a theoretical tool for a proof that every LP-

type problem has a concrete representation. However, with discovering that a basis

in a violator space can be found using Clarkson’s algorithm [GMRŠ06], violator
spaces turned out to be an algorithmically useful generalization of LP-type prob-

lems.
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Another abstract model closely related to LP-type problems are unique sink

orientations (USO) of cubes and grids. In this context, by a cube we mean a graph
whose vertices correspond to vertices of an n-dimensional hypercube, and whose

edges connect adjacent vertices. A unique sink orientation is such an orientation of
edges that every subgraph corresponding to a face of the cube (including the whole

graph) has a unique sink. In applications we wish to find the sink of the cube.
Unique sink orientations of cubes date back to the seventies when they ap-

peared in connection to linear complementarity problems [SW78]. Current research
includes among others [SW01], [SS04], [Sch04], and [GMR]. Algorithmic applica-

tions of the model include linear programming [GS06] and minimum enclosing balls
of balls [Fis05]. An relation between unique sink orientations and violator spaces is

described in [GMRŠ06]. In this thesis we do not study unique sink orientations in
more depth.

Overview of the thesis. In Chapter 1 we motivate and define the models of op-
timization problems studied in this thesis: abstract and concrete LP-type problems

and violator spaces. We introduce important concepts like bases and combinatorial
dimension. We add a few notes concerning structure, usage, and relation between

the models.
In Chapter 2 we suggest a modification of frameworks of concrete LP-type prob-

lems and violator spaces that allow to model sets with value �� (i.e., unbounded
sets). We prove a theorem on equivalence of the models, extending the analogous

result achieved in the author’s master thesis [Ško02].
The message of Chapter 3 is that removing degeneracy from optimization prob-

lems is hard. We prove the following theorem.

Theorem 3.2 (abridged). For any positive integer ∆ there exists a degenerate

LP-type problem
�

such that to get a nondegenerate version of
�

, the combinatorial
dimension needs to increase at least by ∆.

We show a representation of the constructed problem by a linear program with
nonnegative variables. We conclude with an open question of how large increase of

dimension we need to remove degeneracy from fixed-dimensional problems.
In Chapter 4 we exhibit some examples of cyclic violator spaces of small com-

binatorial dimension. These serve as counterexamples to several conjectures con-
cerning cyclicity. The result of the chapter is the following proposition.

Proposition 4.2. There exists a 2-dimensional cyclic violator space with 4 con-
straints. There exists a 2-dimensional basis-regular cyclic violator space. There

exists a 3-dimensional nondegenerate basis-regular cyclic violator space.

In Chapter 5 we present several bounds on the number of violator spaces of

prescribed parameters:

Theorem 5.1 (abridged). The number of violator spaces with n constraints is

at most exp(n2n−1 ln 2).
The number of violator spaces with n constraints and with combinatorial di-

mension at most d is at most exp((e/d)d nd+1 ln 2).
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The number of basis-regular nondegenerate violator spaces with n constraints

and with combinatorial dimension exactly d is between exp(Ω(d−1/2(e/d)d (n�d)d))
and exp(O(d(e/d)d nd lnn)).

In Chapter 6 we prove that Clarkson’s algorithm originally developed for linear
programming in small dimension works in the context of violator spaces with minus

infinity. We derive the following result on the running time of the algorithm.

Theorem 6.13 (abridged). A basis of a violator space with �
� with n con-

straints and with combinatorial dimension d can be found in time O �t(dn+ dO(d))�
if certain elementary operations in the violator space are implemented and run in

time t.

In Chapter 7 we present another, generally known abstract model of optimiza-
tion problems: oriented matroid programming. We apply the machinery developed

in previous chapters to obtain Clarkson’s algorithm for nondegenerate OM pro-
gramming. To the best of our knowledge, this is the first algorithm for solving

nondegenerate OM programs of fixed rank running in expected linear time.

Original results. The following results included in this thesis are published or

accepted for publication in papers authored or coauthored by the author of this the-
sis. The text of the sections mentioned here originates in the corresponding papers.

The results based on a joint work are used with a kind permission of the coauthors.
� The construction and the general proof of the result on increase of the dimension

when removing degeneracy, and the representation of the example by a linear
program; i.e., Sections 3.1–3.3 and 3.5 [MŠ07].� The special case of the previous result for ∆ = 2; i.e., Section 3.4 [Ško06].� Most of the bounds on the number of violator spaces; i.e., Chapter 5 [Ško05].� Clarkson’s algorithm for violator spaces without �

� ; i.e., a special case of
Sections 6.1–6.6 [GMRŠ06].

Moreover, the following original results contained in this thesis are previously

unpublished.
� The ideas of representing minus infinity in concrete LP-type problems and vio-

lator spaces; i.e., Sections 2.1 and 2.2.� Small modifications of the theorem on equivalence of the models that allow for

minus infinity; i.e., Section 2.3.� Role of �� when removing degeneracy and the results concerning degeneracy

in 2-dimensional problems; i.e., Sections 3.6 and 3.7.� Particular examples of interesting small-dimensional violator spaces; i.e., Chap-

ter 4.� Small modifications of Clarkson’s algorithm for violator spaces that allow for

minus infinity; i.e., Sections 6.1–6.7.� The proposition that violator spaces are exactly the problems effectively solvable

by Clarkson’s algorithm; i.e., Section 6.8. This result has been achieved in
collaboration with Bernd Gärtner.� Relation between violator spaces and oriented matroid programs; i.e., Sec-
tion 7.3.
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In this chapter we introduce several models of optimization problems. We present

some related terminology and provide several examples.

���� � ��	
� ����
�� ���

Since this thesis concerns abstract models of linear programming, we start with a

brief description of linear programming itself. We can interpret linear programming
algebraically or geometrically. We present both of these approaches.

To a reader interested in a more detailed introduction to linear programming,
solving linear programming problems by simplex method, and a review of applica-

tions, we recommend Chvátal’s textbook [Chv83].

The algebraic setting. Algebraically, the linear programming problem consists
of finding a minimum of a linear function of n variables on a set of all solutions

to a system of m linear inequalities. To be more specific, we are presented with a

matrix A of size m � n, a vector � of length m and a vector � of length n. The
matrix A and the vector � represent the system of the inequalities and the vector �
represents the function to be minimized. To avoid trivial cases, we assume that � is
nonzero and that every row �i of A is nonzero. The linear program requires us to

find a vector �0 of length n satisfying A�0
� � (with the inequality holding in each

component) for which the value of the linear function � �� �T� is minimal.

The vector � is called the cost vector of the problem and the function � �� �T�
is called the objective function. The value of the objective function in a point � � � n

is called cost of �. The rows of the system A� � �, that is, the inequalities

n�
j=1

aijxj
� bi for i = 1, . . . ,m,

are called the constraints. If a vector � satisfies A� � �, it is called a feasible

solution to the linear program, otherwise is it called infeasible.
A problem of maximizing a linear function � �� �T� may be expressed as a

problem of minimizing the function � �� (��)T�; therefore we consider it to be a
problem of linear programming as well. Generally, the linear programming problem
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should contain the information whether the objective function has to be minimized

or maximized. We use the term optimizing, if we want to avoid explicitly stating
whether minimizing or maximizing is demanded. Since this thesis is centered around

LP-type problems, which are usually defined in such a way that the minimization
is more natural to express, we prefer the minimizing formulation of problems.

In some applications of linear programming we may encounter constraints ex-
pressed as equalities instead of inequalities. We can describe this situation as a

linear programming problem in the sense defined above if we replace every equality
�T

i � = bi by two inequalities �T
i � � bi and ��T

i � �
�bi.

The geometric setting. Consider the n-dimensional Euclidean space
� n . A

linear programming problem in the geometric setting is given by a nonzero vector

� � � n and a finite set � of closed halfspaces. We define the set P � � n to be the
polyhedron given as the intersection of the halfspaces in � . The task is to find a

point �0 � P for which the value of the function � �� �T� is minimal.
We call the polyhedron P the feasible region of the problem and we call the

points � � P feasible. The halfspaces in � are called the constraints.
Geometrically we interpret the vector � as a direction; the value of �T� in-

creases as the point � progresses in the direction of �. Thus minimizing � �� �T�
corresponds to looking for a point �0 furthermost in the direction of �.

We easily see that the algebraic and the geometric description of linear pro-
gramming are equivalent: A closed halfspace can be given analytically by a linear

inequality � j ajxj
� b with suitable coefficients aj and b, hence the polyhedron P

can be given by a system of linear inequalities. We leave the cost vector unchanged.

This expresses the geometric problem in the algebraic way.
We often give examples of 2-dimensional linear programs geometrically. We

draw a picture that for each constraint displays the boundary line of the constraint

halfplane and we mark on which side of the line the constraint is satisfied. As we
mentioned above, we prefer minimization problems, therefore we interpret such a

picture so that the y coordinate has to be minimized. However, the common practice
is to draw an arrow denoting the maximizing direction. We keep this tradition by

drawing an arrow pointing downwards.

Existence and uniqueness of the optimum solution. In some cases the op-
timum solution does not exist. There are several different reasons for such an out-

come, and whenever it occurs, the output of a good linear program solver should
contain an information which of the reasons applies.

The first, most obvious reason is that for the given linear program no feasible

solution � exists at all. In this case we say that the linear program is infeasible.
Even if some feasible solutions do exist, it may happen that none of them is

optimum. This happens when there are feasible solutions � with arbitrarily small
values of �T� (or arbitrarily large if we are maximizing). In this case we say that

the linear program is unbounded.
Furthermore, we often desire that the optimum solution is unique. However,

even if an optimum solution exists, there may be many of them. We can see an ex-
ample of a linear program where this happens in Figure 1.1. The set of all optimum
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Figure 1.1. A linear program where optimum solution is not unique

solutions is marked by the bold line. The lack of the uniqueness is particularly

unwelcome when expressing linear programming as an abstract LP-type problem.
We therefore introduce a lexicographic variant of linear programming, in which the

optimum solution is unique whenever it exists.
Put �1 := � (the cost vector) and fix vectors �2, . . . , �n so that the set B =��1, . . . , �n� forms an orthogonal basis of

� n . For a point � � � n , let (x1, . . . , xn)
denote the coordinates of � with respect to B. We define the lexicographic order-

ing �
L on

� n as follows. For �, � � � n , we say that � <L � if there exists some k
such that xk < yk, and xi = yi for all i < k. Furthermore, we say that � �

L � if

� <L � or � = � .
In the lexicographic variant of linear programming we look for the feasible point

for which the coordinate vector is lexicographically minimal, instead of minimizing

the first coordinate only. Now if the minimum is attained, it is unique, since every
point has a distinct coordinate vector.

Note that the existence of an optimum solution in standard linear programming
does not imply that the optimum solution exists in the lexicographic variant. A

simple example in
� 2 is the problem of minimizing x1, i.e., � = (1, 0)T, with a single

constraint x1 � 0. The optimum value 0 of the objective function is attained for

instance in �0 = (0, 0)T. However, the lexicographic minimum does not exist.
On the other hand, if we consider the linear programs including special con-

straints xi � 0 for all i = 1, . . . , n, it is possible to prove that the unique lexico-
graphic minimum exists in every feasible problem. We refer to the problems of this

type as lexicographic linear programming in the positive orthant.

��� � �����
�� ��	�
� 	 ����	� �

In this section we introduce abstract LP-type problems and some basic terminology.
Although we try to give some motivation, we proceed slightly more formally that

in the previous section, notably we state precise definitions of the presented con-
cepts. However, we do not demonstrate in detail how to represent a general linear

programming problem in the form of an abstract LP-type problem.
Abstract LP-type problems were introduced by Sharir and Welzl [SW92] as a

framework for a certain randomized algorithm for solving linear programs. We refer
to this algorithm as the Sharir-Welzl algorithm.

Originally, the name LP-type problems was used. We add the prefix ‘abstract’ to
emphasize the distinction from a different model called concrete LP-type problems

(see Section 1.3).
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An abstract LP-type problem is a structure capturing some combinatorial prop-

erties of a linear programming problem, or more generally, of an instance of some
classes of problems of looking for a minimum solution satisfying some constraints.

An instance of abstract LP-type problem consists of two basic ingredients:
� an abstract finite set H representing the constraints of the problem;� a function w that for a given set of constraints G � H gives the cost of the

optimum solution satisfying the constraints in G.

We call the function w the weight function and for a set G � H we call w(G) the
value of G. If h1, . . . , hk are some elements of H , we write w(h1, . . . , hk) instead of

w(�h1, . . . , hk �). We assume that the values w(G) are elements of a set W linearly
ordered by a relation �. If the structure of W is not important, we often omit its

specification.
To cope with infeasible and unbounded problems, the set W may contain a

special minimum element �� and a maximum element +� . If the problem repre-
sented by G is unbounded, we set w(G) = �

� , and for an infeasible problem we

set w(G) = +� .
To complete the formal definition of LP-type problems we postulate two prop-

erties of the function w.
Consider the optimum solution with respect to constraintsG with the cost w(G).

Now remove some of the constraints, so that only the constraints of F remain. The

original solution still remains a solution to the new problem, and maybe even some
new better solution is possible. Thus we have w(F ) � w(G) whenever F � G. This

property of w is called monotonicity.
Let us assume that for every feasible subproblem the optimum solution exists

and is unique. Let F � G � H be sets of constraints satisfying w(F ) = w(G); then
the optimum solution � with respect to F is actually the same as the optimum

solution with respect to G. Now consider an additional constraint h � H such
that w(F ) = w(F

� �h�). The vector � is optimum for F
� �h� as well, hence

� satisfies the constraint h. Therefore � is optimum for G
� �h� too. In other

words, w(F ) = w(F
� �h�) = w(G) implies w(G) = w(G

� �h�). This property is

called locality.
Actually, if w(F ) = w(G) = �

� , i.e., when the problems are unbounded, we

cannot claim that the optimum solution with respect to F is the same as the one
with respect to G, since they do not exist at all. In this case the argument does not

work, and the locality can fail actually.

To summarize, here is the formal definition.

Definition 1.1. Let W be a fixed set with a linear ordering �. An (abstract)
LP-type problem is a pair (H,w), where H is a finite set and w : 2H � W is a

mapping satisfying the following conditions:
� w(F ) � w(G) for all F � G � H (monotonicity);� if w(F ) = w(F

� �h�) = w(G) �= �
� for some F � G � H and h � H , then

also w(G) = w(G
� �h�) (locality).

For example, consider the linear program in Figure 1.2 with the set of constraints
H = �a, b, c, d�. As agreed, the y coordinate has to be minimized. The values of
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a b

c
d

1
2
3
4

w

X

Figure 1.2. A linear program interpreted as an abstract LP-type problem

the objective function are marked on the scale on the left side. To determine for

example the value of w(a, b), we note that the optimum solution satisfying the

constraints a, b is the point X, whose cost is 2. Hence we have w(a, b) = 2.
The values of all subsets of H (i.e., the main part of the specification of the

LP-type problem) follow:

w(�) = �
� , w(a) = �

� , w(b) = �
� , w(c) = �

� , w(d) = �
� ,

w(a, b) = 2, w(a, c) = �
� , w(a, d) = 1, w(b, c) = 4, w(b, d) = �

� ,
w(c, d) = 3, w(a, b, c) = 4, w(a, b, d) = 2, w(a, c, d) = 3, w(b, c, d) = 4,

w(a, b, c, d) = 4.

Bases, combinatorial dimension, and nondegeneracy. The optimum solution
with respect to G � H is often actually determined by much fewer constraints than

by the whole G. It is useful to introduce a special terminology for this.

Definition 1.2. Consider an abstract LP-type problem (H,w). A set B � H is

called a basis in (H,w) if for all proper subsets F � B we have w(F ) < w(B).
For G � H , we say that a basis B is a basis of G in (H,w) if B � G and

w(B) = w(G).

In other words, B is a basis if it contains no elements that are redundant for

determining the optimum solution. For instance, G = �a, b, d� is not a basis in
the example problem, since F = �a, b� � G has the same value, namely w(F ) =

w(G) = 2.
The terminology ‘a basis of G’ suggests that every set has a basis. This is indeed

the case, since we can take any inclusion-minimal subset B of G with w(B) = w(G).
In the example problem, the bases are �, �a, d�, �a, b�, �c, d� and �b, c� (ordered

by the value).

To measure the complexity of the structure of the problem, we introduce the

combinatorial dimension.

Definition 1.3. The combinatorial dimension of an abstract LP-type problem

(H,w), denoted by dim(H,w), is the maximum cardinality of a basis.

To illustrate the relevance of the definition of combinatorial dimension we re-

mark that LP-type problems representing linear programs in
� d have combinatorial

dimension at most d. For instance, in the example LP-type problem above we have

d = 2.
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The basis of a set G does not need to be unique. However, for some algorithms

the uniqueness of a basis is desirable. This leads to the notion of nondegeneracy. In
a sense, it is analogous to the concept of general position in combinatorial geometry.

Definition 1.4. We say that an abstract LP-type problem (H,w) is nondegenerate

if we have w(B) �= w(B′) for every two distinct bases B,B′. If the problem is not

nondegenerate, we say that it is degenerate.

Consequently, in a nondegenerate abstract LP-type problem every set G � H
has exactly one basis.

We study the problem of removing degeneracy in Chapter 3.

Optimization aspect of the LP-type problem. We interpret the abstract LP-

type problem (H,w) as a problem of finding a basis B of H . Actually, we are
interested in w(H); this seems to be an easy task, since the function w is included

in the specification of the LP-type problem. However, if the function G �� w(G)
is given as a subroutine, its running time likely depends on

�
G
�
or it even requires

that
�
G
� � dim(H,w). Since we often have dim(H,w) � �

H
�
, we expect that w(B)

is much simpler to evaluate than w(H).

Violation. In fact, most of the known algorithms related to LP-type problems

do not need to evaluate the exact values of w. A knowledge of a combinatorial

structure of the problem is often sufficient. This knowledge is usually provided by
the following two subroutines:
� For a basis B and a constraint h � H determine whether w(B) < w(B

� �h�)
(violation test).� For a basis B and h � H with w(B) < w(B

� �h�) find a basis of B
� �h� (basis

computation).

The first subroutine is closely related to the following concept. For a set of
constraints G � H and an additional constraint h � H , we are interested in whether

the value of G increases by adding h; in other words whether w(G) < w(G
� �h�) or

w(G) = w(G
� �h�) (note that w(G) � w(G

� �h�) by monotonicity). In the former

case the optimum solution with respect to G does not satisfy the constraint h;
therefore we say that the constraint h violates the set G. For a set of constraints

G � H , we define

V(G) :=
�
h � H : w(G) < w(G

� �h�)�
to be the set of all constraints violating G. We regard V as a mapping 2H � 2H

and we call it the violator mapping of the LP-type problem.
To demonstrate the power of the language of V, we prove a proposition that

allows us to remove the reference to the weight function in some statements about
LP-type problems.

Proposition 1.5. Let (H,w) be an LP-type problem with a violator mapping V.
Let F,G be sets of constraints with F � G � H and w(F ) �= �

� . Then w(F ) =

w(G) if and only if G  V(F ) = �.
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Proof. If w(F ) = w(G) and g � G, we have w(F ) � w(F
� �g�) � w(G) = w(F ),

thus w(F ) = w(F
� �g�), which means that g �� V(F ). Therefore G  V(F ) = �.

Conversely, if G  V(F ) = �, we have w(F ) = w(F
� �g�) for every g � G. Let

the elements of G � F be g1, . . . , gk. By locality successively applied to sets F ,
F
� �g1�, F � �g1, g2�, . . . , F � �g1, . . . , gk � = G, we obtain w(F ) = w(G).

Basis-regularity. The analysis of the Sharir-Welzl algorithm for solving LP-type

problems [MSW96] identifies a class of LP-type problems for which the running
time is subexponential. The class is characterized by the following property.

Definition 1.6. We say that an LP-type problem (H,w) of combinatorial dimen-
sion d is basis-regular if for every G � H with d or more elements, each basis B

of G has exactly d elements.

To see how we can profit from basis-regularity, note how we can implement

the basis computation. Consider a basis-regular LP-type problem of combinatorial
dimension d. If G is a set with d + 1 elements, we know that a basis B of G has

d elements; that is, exactly one element of G is missing in B. Therefore, if a sub-
routine for the violation test is provided, we can implement the basis computation

for a set G with
�
G
�
= d+ 1, using at most d+ 1 calls to the violation test.

On the other hand, if the basis-regularity of the problem is not guaranteed,

virtually any proper subset of G can be the basis, so in an extreme case we may
need to check all 2|G|

� 1 = 2d+1
� 1 proper subsets of G. A real-life example

of an LP-type problem of combinatorial dimension d that is not basis-regular is

the problem of finding a minimum ball enclosing a given set of points in
� d−1 ; an

analysis of the running time of LP-type based algorithms for this problem has been

provided by Gärtner [Gär95].

Need for the special treatment of �� . Note that for linear programs inter-
preted as LP-type problems, the condition of locality indeed may fail if we omit the

assumption w(G) �= �
� . In the example problem in Figure 1.2 putting F := �,

G := �a�, h := b, we have w(F ) = w(�) = �
� , w(G) = w(a) = �

� , and

w(F
� �h�) = w(b) = �

� , but w(G
� �h�) = w(a, b) = 2.

If the function w attains values w(G) �= �
� for all G � H , we call (H,w) an

abstract LP-type problem without �� . In this setting we have the axiom of locality
in a simplified form without the assumption w(G) �= �

� .

In applications, some important classes of optimization problems lead to ab-

stract LP-type problems without �� . These include problem of finding the mini-
mum ball enclosing a given set of points, and lexicographic linear programming in

the positive orthant.

The role of the structure of W . The set H is finite, hence we have only a
finite number of distinct values of w(G). Since all linear orderings of a finite set are

isomorphic, the structure of the set W is not important. Without loss of generality
we can even assume that W =

� � ��� ,+� �.
On the other hand, in many applications some choice of W based on the setting

of the problem is more appropriate than
�
. Therefore we stick to the more general
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definition. It is even possible to relax the assumption of linearity of the ordering �;

for details see the definition of LP-type problems as given by Fischer [Fis05].

��� � ����	�	 ��	�
� 	 ����	� �

In this section we continue the presentation of basic models of optimization problems

by introducing concrete LP-type problems.
In geometric examples of abstract LP-type problems, we often have some set X

representing the feasible solutions, and the constraints actually are subsets of X.
Moreover, the elements of X are ordered according to their cost, and the value w(G)

represents the optimum solution in the intersection of the constraints in G.

This view of LP-type problems is formalized in the following definition.

Definition 1.7. Let X be a set linearly ordered by a relation � and let � be a
finite multiset whose elements (called constraints) are subsets of X. We say that

a triple (X, �,� ) is a concrete LP-type problem (without �� ), if whenever the

intersection � �
= �G∈G G is nonempty for some

�
� � , then it has a minimum

element with respect to �. In the case that
�

= �, by � �
we mean X.

The definition allows � to be a multiset, so we may include a single constraint

A � X several times. For example, in an instance of linear programming in the
algebraic setting, some inequalities can describe identical halfspaces, and setting �
to be a multiset represents this in a natural way.

In this section we assume that the problem and all of its subproblems are
bounded; i.e., the presented definition introduces the problems without �� . We

study the unbounded case in Chapter 2.
On the other hand, representing the infeasible problems makes no special dif-

ficulty. We allow the intersection of constraints to be empty. For the subsequent
discussion, we set min(�) := +� for this case, and we put x < +� for every x � X.

We define bases and combinatorial dimension analogously as for abstract LP-
type problems.

Definition 1.8. Consider a concrete LP-type problem (X, �,� ). We say that a

multiset � � � is a basis in (X, �,� ) if for all proper submultisets � � � we have
min(� � ) < min(� �).

For
�
� � , we say that a basis � is a basis of

�
in (X, �,� ) if � �

�
and

min(� �) = min(� �
).

The combinatorial dimension of (X, �,� ) denoted by dim(X, �,� ) is the max-

imum cardinality of a basis.

A related model. The framework of concrete LP-type problems is similar to the
model presented by Amenta [Ame94] as a mathematical programming problem. The

small technical differences are that in a mathematical programming problem, more
points can have the same value; on the other hand, in an LP-type problem we allow

identical constraints.
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��� � � � �
�� ��
�	�

In this section we present yet another abstract framework for optimization problems
called violator spaces, which is a proper generalization of LP-type problems.

Violator spaces were introduced in [Ško02] where they were used as a tool for
studying structural properties of LP-type problems. Later, several algorithms re-

lated to LP-type problems were noted to work with violator spaces. The added
generality turned out to be useful in some applications, for example unique sink

orientations of grids [GMRŠ06].
For LP-type problems we have defined V(G) to be the set of all constraints

violating G, that is,

V(G) =
�
h � H : w(G) < w(G

� �h�)�,
and we regard V as a mapping 2H � 2H called the violator mapping. In a violator

space we specify the structure of the problem by the mapping V instead of the
weight function.

The definition of violator spaces postulates some properties of the violator map-
ping. In abstract LP-type problems without �� with the mapping V defined as

above, the properties are satisfied.

Definition 1.9. A violator space is a pair (H,V), where H is a finite set and

V : 2H � 2H is a mapping satisfying the following properties:
� G  V(G) = � for every G � H (consistency);� if F � G and G  V(F ) = � then V(G) = V(F ), for every F,G � H (locality).

The presented definition encompasses only LP-type problems without �� ; in-

deed, we require the locality axiom to hold for all sets F,G without exceptions. We
return to the problem of unboundedness in Chapter 2.

To exhibit an example of violator space we start with the linear programming
problem in Figure 1.3. To ensure the existence and uniqueness of optima of sub-

problems, we consider the lexicographic variant in the positive orthant. The con-
straints representing the positive orthant are marked in light grey; we do not in-

clude them into H , but they are implicitly present in all subproblems. We thus set
H := �a, b, c, d�. To determine V(G) for instance for G = �b, d�, we note that the

optimum solution with respect to the constraints b and d is the point X. Now we
have a � V(G) since the optimum solution with respect to G

� �a� = �a, b, d� is the

point Y > X, or in other words, the point X does not satisfy the constraint a. On
the other hand c �� V(G) since the point X satisfies the constraint c, so the optimum

solution with respect to �b, c, d� is X. To summarize, we have V(b, d) = �a�. All

values of V are recorded in the following list:

V(�) = �a, b�, V(a) = �c, d�, V(b) = �a, d�, V(c) = �a, b�, V(d) = �a, b�,
V(a, b) = �c, d�, V(a, c) = �d�, V(a, d) = �, V(b, c) = �a, d�, V(b, d) = �a�,
V(c, d) = �a, b�, V(a, b, c) = �d�, V(a, b, d) = �, V(a, c, d) = �, V(b, c, d) = �a�,

V(a, b, c, d) = �.



1.4. VIOLATOR SPACES 11

a

b
c

d

x1 � 0

x2 � 0

X
Y

Figure 1.3. A linear program interpreted as a violator space

Bases and combinatorial dimension. The bases in LP-type problems are de-

fined using the weight function. However, Proposition 1.5 suggests the following

way of defining bases in the setting of violator spaces:

Definition 1.10. Consider a violator space (H,V). We call a set B � H a basis
in (H,V) if for all proper subsets F � B we have B  V(F ) �= �.

For a set G � H , we say that a basis B is a basis of G in (H,V) if B � G and
G  V(B) = �.

The combinatorial dimension of (H,V) denoted by dim(H,V) is the maximum

cardinality of a basis.

From the axiom of locality we immediately get that for a basis B of G we have
V(B) = V(G). Furthermore we remark that every set G � H has a basis B (not

necessarily unique). To see this, we can take any inclusion-minimal subset B � G
with V(B) = V(G).

Basis-regularity and nondegeneracy. We defined basis-regularity of LP-type
problems using only the concept of basis in the problem. Now when we have defined

basis in violator spaces too, defining basis-regularity of violator spaces is simple.

Definition 1.11. We say that a violator space (H,V) of combinatorial dimension d

is basis-regular if for every G � H with d or more elements, each basis B of G has
exactly d elements.

Since the definition of nondegenerate LP-type problems refers to values of the

weight function, we cannot get the definition of nondegenerate violator spaces by

copying the LP-type version. Instead we proceed in accord with the observation
following Definition 1.4.

Definition 1.12. A violator space (H,V) is nondegenerate if every G � H has

exactly one basis. If the violator space is not nondegenerate, we say that it is
degenerate.

Acyclicity. Influenced by Proposition 1.5 valid for LP-type problems, it is tempting
to interpret an information that G  V(F ) �= � for some sets of constraints F � G

as that w(F ) < w(G), where w(G) is some kind of cost of the optimum solution
with respect to G. However, in some violator spaces we have a sequence of sets

of constraints G1, . . . , Gk with bases B1, . . . , Bk for which the interpretation above
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together with a natural assumption that w(Bi) = w(Gi) asserts that

w(G1) = w(B1) < w(G2) = w(B2) < � � � < w(Gn) = w(Bn) < w(G1),

which is at least suspicious. We therefore introduce the following definition, char-

acterizing the class of violator spaces where this happens.

Definition 1.13. We say that a violator space (H,V) is cyclic if there exists a

sequence of sets G1, . . . , Gk � H with k � 2, V(G1) �= V(G2), and

G1  V(G2) = G2  V(G3) = � � � = Gk  V(G1) = �.
Such a sequence G1, . . . , Gk is called a cycle. If (H,V) is not cyclic, we call it acyclic.

Examples of cyclic violator spaces are given in [GMRŠ06] and in Chapter 4.

��� � � 	 �
� ��� � 	��		� ��	 ��	 ��
In this section we summarize results on relation between the models presented in

the previous sections.

A concrete LP-type problem is an abstract LP-type problem. Consider a
concrete LP-type problem (X, �,� ). Define the function w : 2H � X

� �+� � by

setting

w(
�
) :=

�
min � �

if � �
is nonempty,

+� if � G = �,
for

�
� � . Then (� , w) is an abstract LP-type problem without �� . The proof

consists of checking the axioms of monotonicity and locality.

Strictly speaking, if the multiset � has elements with multiplicity greater than 1
then we are cheating: since � is not a set, it cannot be used as the set of constraints

for an abstract LP-type problem. However, this is only a formal obstacle. We can

bijectively map � to a set, i.e., we take any set H with
�
H
�
=

�� �
and a mapping

f : H � � so that for every h̄ � � , the number of elements h � H that map to h̄ is

equal to the multiplicity of h̄. For G � H we then define w(G) := min(�g∈G f(g)),
and this gives us a honest abstract LP-type problem P = (H,w,X, �) with H being

a set.

An abstract LP-type problem is a violator space. Consider an abstract LP-
type problem (H,w) without �� . Let V : 2H � 2H be its violator mapping, defined

as V(G) = �h � H : w(G) < w(G
� �h�)�. Then (H,V) is an acyclic violator space.

The proof of consistency and locality consists of checking the axioms; acyclicity

is obtained from transitivity and antisymmetricity of the ordering of values of the

function w.

Basis equivalence. We intuitively feel that the structure of an optimization
problem stays the same when we transform between the abstract models. Let

us formalize this feeling. We need to compare some feature of the problem that is
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defined in all models. We use an approach based on comparing the bases in the

problem.
Consider an abstract LP-type problem P = (H,w) without �� with violator

mapping V, and the violator space P ′ = (H,V). For B � G � H , we observe that
B is a basis of G in P if and only if B is a basis of G in P ′. We say that P ′ is

basis-equivalent to P .
Similarly, consider a concrete LP-type problem

�
= (X, �,� ) with the weight

mapping w, and the abstract LP-type problem P = (� , w). For � �
�
� � , we see

that � is a basis of
�

in P if and only if � is a basis of
�

in
�

. Again, we say that

P is basis-equivalent to
�

. If � has elements of multiplicity greater than 1, we have
to be a bit careful on the formal side. In such a case, by basis-equivalence we mean

the existence of a set H and a bijection f : H � � such that B � G is a basis of G
in P if and only if the multiset �f(b) : b � B� is a basis of �f(g) : g � G� in

�
.

Basis-equivalence of a concrete LP-type problem and a violator space is defined

in the obvious way.

Equivalence of the models. The main result on the relation of the models is
given by the following theorem.

Theorem 1.14. The axioms of abstract LP-type problems without �
� , of

concrete LP-type problems, and of acyclic violator spaces are equivalent. More

precisely, every problem in one of the three classes has a basis-equivalent counterpart
in each of the other two classes.

The surprising part of the theorem is that every acyclic violator space (H,V)
can be obtained from a suitable concrete LP-type problem (X, �,� ). The idea of

the proof is to construct the set X as the set of bases of the violator space (H,V).
The ordering imposed on X comes out from the requirement that for F � G we

have w(F ) < w(G) if and only if G  V(F ) �= �, as Proposition 1.5 asserts. Some
technicalities arise in the proof, such as the formal definition of the ordering.

A complete proof of a slightly more general version of this theorem is contained
in Section 2.3.

The theorem has a noteworthy algorithmic corollary. Every algorithm for LP-
type problems can be used for acyclic violator spaces, whenever it does not inquire

about the values of w and instead uses only queries about violation.



���(�$� �

��$ �" %$ "& * ),�� ),�,)��

The abstract LP-type framework allows us to represent optimization problems that
have some unbounded subproblems. This is achieved by allowing the unbounded

sets to break the locality axiom. In this chapter we closely examine the role of
unboundedness and of �� . We present modifications of the models of concrete LP-

type problems and violator spaces that allow representing unbounded problems. We
state and prove a �� analogue of Theorem 1.14 concerning equivalence of LP-type

problems, concrete LP-type problems, and acyclic violator spaces.

Expressive power of minus infinity. Every problem with �
� can be repre-

sented by a problem without �� exhibiting the same relations on the bounded sets;
more precisely, a constraint h violates a bounded set G in the original problem if and

only if it violates G in the new problem. The details of such a construction depend
on which model we are using. For instance, for abstract LP-type problem we can

set w′(G) := w(G) for G bounded and w′(G) :=
�
G
�
�M for G unbounded, where

M is a sufficiently big real number. However, sometimes we need to increase the

combinatorial dimension of the problem substantially; see Proposition 3.12. There-
fore in applications we may be able to prove better running time bounds etc., if we

use the models with minus infinity.

� ��� ����	�	 ��	�
� 	 ��� �	� � � ��� � ���� ������


This section’s goal is to modify the framework of concrete LP-type problems to be

able to represent �� . We provide two equivalent modifications of the framework.

Concrete LP-type problems as defined in Definition 1.7 cannot encompass ab-

stract LP-type problems where some sets with minus infinite weight break locality.
The reason is that the weight mapping of a concrete LP-type problem always satis-

fies the locality axiom. To see this, recall that concrete LP-type problem is a linearly
ordered set X of points together with a family � of subsets of X interpreted as

constraints. We defined a weight mapping w of a concrete LP-type problem as
w(

�
) := min(� �

). Now it is straightforward to check that for � �
�
� � and

Y � � with w(� ) = w(
�
) = w(� � �Y �), we have m := min(� � ) � G for every

G � �
, and m � Y , hence w(

� � �Y �) = w(G).
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It may not be obvious how to modify the framework of concrete LP-type prob-

lems to allow for �� . However, note that linear programming has a concrete nature,
although it is an exemplary class of problems that do need the minus infinity. By

inspecting linear programming, we can come up with the following modification
of the definition of concrete LP-type problems: we do not require the minimum

min(� �
) to exist if the set � �

is unbounded from below, and in this case we set
w(

�
) := �

� . This leads to the following definition.

Definition 2.1. Let X be a set linearly ordered by a relation � and let � be a
finite multiset whose elements are subsets of X. We say that the system (X, �,� )

is a concrete LP-type problem with �
� represented by unbounded sets if for every�

� � with � �
nonempty and bounded from below, the minimum min � �

is

attained.
We define the weight function w : 2H � X

� ��� ,+� � of the problem as

w(
�
) :=

��
�

+� if � �
is empty,

min � �
if � �

is nonempty and bounded from below,

�
� if � �

is not bounded from below.

This definition has a small drawback. From the proof of Theorem 1.14 follows
that every abstract LP-type problem without �� is basis-equivalent to a suitable

concrete LP-type problem (X, �,� ) with the set X finite. In other words, by
requiring the set X to be finite we do not lose any generality. On the other hand,

to model a problem with �
� using the definition above we need some nonempty

subsets of X that do not attain the minima. However, if X is finite, this is not

possible.
An alternative definition allows to represent any abstract LP-type problem by

a concrete one in which the set X is finite. The idea is to introduce several distinct

values for minus infinity that do satisfy locality. We keep a separate list Y containing
the minus infinities. We keep the ability to tell the minus infinities apart, but to

the observer having access only to the values of w they seem the same. Formally
we have the following definition.

Definition 2.2. Let X be a set linearly ordered by a relation �, let � be a finite
multiset whose elements are subsets of X, and let Y be a subset of X. We say that

the system (X, �,� , Y ) is a concrete LP-type problem with �
� represented by a

list if for every y � Y and x � X � Y we have y � x, and for every
�
� � with� � �= �, the minimum min� �

is attained.
We define the weight function w : 2H � (X � Y )

� ��� ,+� � as

w(G) :=

��
�

+� if � �
is empty,

min � �
if � �

is nonempty and (� �
)  Y is empty,

�
� if � �  Y is nonempty.

The spirit of Definition 2.1 with unbounded sets is more closely related to actual
geometric optimization problems. On the other hand, the theory is more elegant if

we adopt Definition 2.2 with the lists. Luckily, the definitions are equivalent in the
following sense.
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Proposition 2.3. For every concrete LP-type problem with �
� with weight

function w there exists a concrete LP-type problem with �
� in the other repre-

sentation with the weight function w′ identical to w up to an isomorphism of the

set of constraints; i.e., w(
�
) = w′(�H ′ : H � � �).

Proof. First assume that we have a problem (X, �,� , Y ) with �
� represented

by a list. We replace every element y � Y by an unbounded infinite chain Yy :=�(�1, y), (�2, y), ...�. We define

X ′ := (X � Y )
� �

y∈Y

Yy

and we define the ordering �′ on X ′ by saying that a �′ b if
� a, b � X � Y and a � b, or� a � Y and b � X � Y , or� a, b � Y , a = (i, y), b = (j, z), and i < j, or� a, b � Y , a = (i, y), b = (i, z), and y � z.

For every H � � we define

H ′ := (H � Y )
� �

y∈H∩Y

Yy

and we set � ′ := �H ′ : H � � �. Now (X ′, �′,� ′) is the desired concrete LP-type

problem with �
� represented by a list, equivalent to (X, �,� , Y ). We omit the

straightforward check of this fact.
In the other direction assume that in the problem (X, �,� ) we have �� rep-

resented by unbounded sets. We define Y as the list of unbounded subsets of � :

Y := �yG :
�
� � with w(

�
) = �

� �,
where yG �� X is a formal symbol. We set X ′ := X

�
Y . We define a relation �′

on X ′ as a linear ordering extending � so that for every a � Y, b � X we have a � b,
and for every yF , yG � Y with F � G we have yF

� yG. Now, for H � � we define

H ′ := H
� �yG :

�
� � with w(

�
) = �

� and H � � �
and we set � ′ := �H ′ : H � � �. Now (X ′, �′,� ′, Y ) is a concrete LP-type problem

with �
� represented by unbounded sets, equivalent to (X, �,� ), which is again

routine to check.

Linear programming. With these definitions it is tempting to think that repre-

senting linear programs by concrete LP-type problems with �
� is simple. Having

a linear program
�

of minimizing x1 subject to A� � �, it seems reasonable to

take Hi := �� � � n : �T
i � � bi� and expect that (

� n , �L, �Hi : i = 1, . . . ,m�) is a
concrete LP-type problem with �

� represented by unbounded sets. But generally

this does not work. Consider a linear program with variables x1, x2 and a single
constraint x1 � 0. We have H1 nonempty, since (1, 0) � H1, and bounded from

below for instance by (�1, 0), but H1 has no lexicographic minimum; therefore the
conditions of Definition 2.1 are not satisfied.
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However, every linear program does have a concrete representation conforming

to our definitions. It can be obtained from an abstract LP-type representation by
processing it as described in the following sections.

� �� � � � �
�� ��
�	� � ��� � ���� ������


The goal of this section is to introduce violator spaces with �
� . To get an inspi-

ration for the axioms in the formal definition, we start with proving some results

concerning violation in abstract LP-type problems.
Some of the propositions below strongly resemble the non-�� versions, differing

only by omitting the assumption w(F ) �= �
� . This kind of extension may seem

tautological. However, the final result of the following section, i.e., the �� version
of equivalence of LP-type problems and violator spaces, is not trivial.

Lemma 2.4. Let (H,w) be an LP-type problem with violator mapping V. If for

some F � G � H we have w(F ) = w(G) �= �
� then V(F ) = V(G).

Proof. If h � V(F ), then w(G) = w(F ) < w(F
� �h�) � w(G

� �h�), hence

h � V(G).
Conversely assume that h �� V(F ), that is, w(F ) = w(F

� �h�). Since w(F ) =

w(G) �= �
� , locality applies and gives w(G) = w(G

� �h�), that is, h �� V(G).

Proposition 2.5. Let (H,w) be an LP-type problem with violator mapping V.
Then the following holds.

(i) For every G � H we have G  V(G) = �.
(ii) For every F � G � H with w(F ) �= �

� and G  V(F ) = �, we have V(F ) =

V(G).
(iii) For every F � G � H with w(G) = �

� we have w(F ) = �
� .

(iv) For every G � H with w(G) = �
� we have V(G) = �h � H : G

� �h� �= �
� �.

Proof. The statements (i) and (iv) are obvious from the definition of V. The
statement (ii) follows by combining Proposition 1.5 (which gives w(F ) = w(G))

and Lemma 2.4. The statement (iii) is immediate from monotonicity.

Now we are ready to introduce the �� into the world of violator spaces. We

proceed as in Definition 2.2: to an ordinary violator space we add a list � rep-
resenting unbounded sets. The axioms in the definition match the conclusions of

Proposition 2.5.

Definition 2.6. Let H be a finite set, V a mapping 2H � 2H , and � a subset

of 2H . We say that (H,V,� ) is a violator space with minus infinity if the following
four conditions hold:
� for every G � H , we have G  V(G) = � (consistency);� for every F � G � H with F �� � and G  V(F ) = �, we have V(F ) = V(G)

(locality);
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� for every F � G � H with G � � we have F � � (monotonicity);� for every G � � , we have V(G) = �h � H : G
� �h� �� � � (matching of V and � ).

We say that a subset G � H is unbounded if G � � , otherwise it is bounded.

From every LP-type problem we can get a basis-equivalent violator space with
�
� . This follows from Proposition 2.5. In the next section we prove that the

obtained violator space is acyclic.
We continue by few more definitions.

Definition 2.7. Let (H,V,� ) be a violator space with �
� . We say that B � H

is a basis if
� either B is bounded and all bounded proper subsets F � B satisfy BV(F ) �= �,� or B is unbounded and empty.

By � we mean the set of all bases.
For a set G � H we say that a basis B � G is a basis of G if either B is bounded

and G  V(B) = �, or G is unbounded.

By a combinatorial dimension of the problem denoted by dim(H,V,� ) we mean
the maximum cardinality of a basis.

Observe that every basis is a basis of itself, and that every set has a basis.

Moreover, if B is a basis of G � H then B and G are either both bounded or both
unbounded. Furthermore, if B is a basis of a bounded set G, from locality follows

that V(B) = V(G).

� �� � ��� ��
 �	��	  � ��	 ��	 �� � ��� � ���� ������


In this section we prove the �� version of Theorem 1.14. The proof goes along the

lines of the proof of non-�� version [GMRŠ06]. We just have to take care of the
unbounded sets.

First we define the basis-equivalence as existence of a bijection preserving bases
and boundedness.

Definition 2.8. Let
�

be an abstract LP-type problem or violator space with
�
� ; let

� ′ be an abstract or concrete LP-type problem or violator space with �� .

Let H,H ′ denote the (multi)sets of constraints of
�
,
� ′. We say that

�
is basis-

equivalent to
� ′ if there exists a bijection ψ : H � H ′ such that

� for every G � H , the (multi)set ψ(G) := �ψ(g) : g � G� is bounded in
� ′ if and

only if G is bounded in
�

,� for every B � G � H , the (multi)set ψ(B) is a basis of ψ(G) in
� ′ if and only

if B is a basis of G in
�

.

Hereat, if H ′ is a multiset, by a bijection H � H ′ we mean a mapping ψ for
which the number of elements h � H that map to a particular h′ � � ′ is equal to

the multiplicity of h′ in H ′.

We successively prove several results on existence of basis-equivalent representa-

tions; we sum them up in Theorem 2.17. We start with exhibiting abstract LP-type
representations of concrete LP-type problems.
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Proposition 2.9. Every concrete LP-type problem with �
� can be represented

by a basis-equivalent abstract LP-type problem.

Proof. Let (X, �,� , Y ) be a concrete LP-type problem with �
� represented by

a list. Let w be its weight function. Let H be a set with
�
H
�
=

�� �
and let ψ be a

bijection H � � . Let the mapping w′ : 2H � (X � Y )
� ��� ,+� � be defined as

w′(G) := w(�ψ(g) : g � G�). It is easy to check that (H,w′) is an abstract LP-type
problem basis-equivalent to (X, �,� , Y ).

The other two results on representations concern acyclic violator spaces. In
order to define acyclicity we need some auxiliary notions.

Definition 2.10. Let (H,V,� ) be a violator space with �
� . We say that

bases B,C are equivalent, written as B � C, if either both B,C are bounded and

V(B) = V(C), or both B,C are unbounded.

Clearly, the relation � defined on the set � of all bases is an equivalence relation.

If B is a basis, by [B] we mean the equivalence class containing B. We write �/�
for the set of all equivalence classes.

In LP-type problems, equivalence of bases preserves the weight function:

Observation 2.11. Let (H,w) be an abstract LP-type problem. Let V be its

violator mapping and let � � 2H contain the unbounded sets. Then for any two
equivalent bases B,B′ we have w(B) = w(B′).

Proof. If B,B′ are both bounded, we have

(B
�
B′)  V(B) = (B  V(B))

�
(B′  V(B′)) = �,

hence Proposition 1.5 implies that w(B) = w(B
�
B′); symmetrically we get that

w(B
�
B′) = w(B′). If B,B′ are both unbounded, we have w(B) = �

� = w(B′).

Now we define an ordering of the bases, from this we derive an ordering of the

equivalence classes, and finally we define the acyclicity of violator spaces.

Definition 2.12. Let (H,V,� ) be a violator space with �
� . Let us define a

relation �
0 between subsets of H . If F,G are both bounded, we say that F �

0 G

if F  V(G) = �. For unbounded F � H we say that F �
0 G for all G � H .

For equivalence classes [B], [C] � �/� we say that [B] �0 [C] if there exist

bases B′ � [B] and C ′ � [C] such that B′ �
0 C

′. We write [B] <0 [C] if we have

[B] �0 [C] and [B] �= [C].
We define a relation �

1 on �/� as the transitive closure of �
0. The relation �

1

is clearly reflexive and transitive. If it is moreover antisymmetric, we say that the
violator space (H,V,� ) is acyclic.

Now we are ready to prove that abstract LP-type problems can be represented

as acyclic violator spaces, and those in turn as concrete LP-type problems.

Proposition 2.13. Let (H,w) be an abstract LP-type problem with violator

mapping V. Set � := �G � H : w(G) = �
� �. Then (H,V,� ) is an acyclic violator

space with �
� basis-equivalent to (H,w).
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Proof. Proposition 2.5 implies that (H,V,� ) is a violator space with �
� .

We proceed with acyclicity. First we prove that we have w(B) < w(C) whenever
[B] <0 [C]. For this, let B,C be bases such that [B] �= [C] and [B] �0 [C]. If B is

unbounded then C is bounded, therefore w(B) = �
� < w(C). If B is bounded, we

have B′  V(C ′) = � for some B′ � [B] and C ′ � [C]. Proposition 1.5 implies that

w(C ′) = w(B′ � C ′). We claim that we have w(B′) < w(C ′). To prove this, assume
for contradiction that w(B′) � w(C ′). We have w(B′) � w(C ′) = w(B′ � C ′) �
w(B′), hence w(B′) = w(B′ � C ′) = w(C ′). Since w(B′) �= �

� , Lemma 2.4 applies
and gives V(B′) = V(B′ � C ′) = V(C ′), which contradicts [B] �= [C]. This finishes

the proof that w(B′) < w(C ′). By Observation 2.11 we have w(B) < w(C).
If we have [B] <1 [C], we can chain several <0 to get w(B) < w(C). Since

the relation � on the range of the weight function is an ordering, antisymmetricity
of �1 follows. This concludes the proof of acyclicity.

Finally we prove the basis-equivalence. We set ψ : H � H to be the identity

mapping. By Lemma 2.4 and Observation 2.11, a set B is an inclusion-minimal
subset of G with w(B) = w(G) if and only if B is an inclusion-minimal subset of G

with V(B) = V(G). Hence B is a basis of G in the LP-type problem if and only
if B is a basis of G in the violator space. Furthermore we get that w(G) = �

� if

and only if G � � from the definition of � . Therefore (H,V,� ) is basis-equivalent
to (H,w).

Proposition 2.14. Every acyclic violator space with �
� can be represented by

a basis-equivalent concrete LP-type problem with �
� .

Proof. Let (H,V,� ) be an acyclic violator space with �
� . In the concrete repre-

sentation we take the following two kinds of points: the equivalence classes of bases,

and the unbounded sets; i.e., we set X := (�/�)
� � .

We define the mapping S : H � 2X that will act as a concretization of the

constraints in H :

S(h) :=
�
[B] : B is a basis satisfying h �� V(B)� � �

U � � : h � U �.
Let � be the image of the mapping S taken as a multiset:

� :=
�
S(h) : h � H �.

Thus, S is a bijection between H and � . Let σ be the induced bijection of 2H

and 2H defined as σ(G) := �S(h) : h � G� for G � H .

Let � be an arbitrary linear ordering on X such that all elements of � are less
than all elements of �/� , on � the ordering � respects inclusion, and on �/� it

respects �
1 (which is an ordering since (H,V,� ) is acyclic).

We claim that (X, �,� ,� ) is a concrete LP-type problem with �� represented

by a list. The existence of a minimum element in every nonempty intersection � �
for

�
� � is guaranteed by finiteness of X and the linearity of �; the condition

y � x for y � Y and x � X � Y is guaranteed by the construction of �.
It remains to prove the basis-equivalence.

First we prove that G � H is unbounded in the violator space if and only if
σ(G) is unbounded in the concrete LP-type problem. First assume that G � � .
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Now for every g � G we have G � S(g), hence G � �g∈G S(g)  � . Therefore

w(σ(G)) = �
� . In the other direction, let w(σ(G)) = �

� ; then there exists
F � � with F � �g∈G S(g). Therefore for every g � G we have F � S(g), i.e.,

F � �U � � : g � U �, therefore g � F . We infer that G � F , and since F � � , we
have G � � .

To prove that B is a basis of G in the violator space if and only if σ(B) is a
basis of σ(G) in the concrete LP-type problem, we use the following two lemmas.

Lemma 2.15. Let B be a bounded basis of G � H in the violator space. Then
w(σ(B)) = w(σ(G)) in the concrete LP-type problem.

Proof. We certainly have [B] � � σ(G). We claim that [B] is actually the minimum

in � σ(G). To prove this, consider a basis C with [C] �0 [B]; i.e., [C] � � σ(G),

and C  V(B) = �. Since [C] � � σ(G), we have G  V(C) = �, which is equivalent
to (G

�
C)  V(C) = �, and C  V(B) = � is equivalent to (G

�
C)  V(B) = �. By

applying locality in (H,V,� ) to these two equations, we get V(C) = V(G
�
C) =

V(B), i.e., [C] = [B]. Therefore [B] = min � σ(G) as claimed. Since B is a basis of

itself, we can use the just proved result to obtain [B] = min � σ(B). The equality
w(σ(G)) = [B] = w(σ(B)) follows.

Lemma 2.16. Let B and G be subsets of H such that σ(B) is a bounded basis

of σ(G) in the concrete LP-type problem. Then V(B) = V(G) in the violator space.

Proof. Since σ(B) is bounded, B is bounded too. Let A be a basis of B, so V(A) =

V(B). Note that [A] � � σ(B). Let [C] := min � σ(B). Then B  V(C) = �, thus
AV(C) = �. This means that [A] �0 [C], hence [A] = [C]. From min � σ(G) = [C]

we get G  V(C) = �, therefore G  V(B) = �. Since σ(B) � σ(G) if and only if
B � G, we can apply locality, which gives V(B) = V(G).

Now we are ready to finish the proof of the basis-equivalence of the violator space
and the concrete LP-type problem. Let B be a basis of G in the violator space. First

assume that B,G are bounded. By the first lemma we have w(σ(B)) = w(σ(G)).
Then for every proper subset A � B we have w(σ(A)) < w(σ(G)); otherwise the

second lemma yields a contradiction to the minimality of B. Hence σ(B) is indeed
a basis of σ(G). If B,G are unbounded then σ(G) is unbounded, B = �, and

σ(B) = � is obviously a basis of σ(G). The reasoning that a basis in the concrete
LP-type problem gives a basis in the violator space is analogous. This concludes

the proof of Proposition 2.14.

We conclude with summing up the equivalence of the models.

Theorem 2.17. The axioms of abstract LP-type problems, of concrete LP-type

problems with minus infinity, and of acyclic violator spaces with minus infinity are
equivalent. More precisely, every problem in one of the three classes has a basis-

equivalent problem in each of the other two classes.

Proof. This follows by combination of Propositions 2.9, 2.13, and 2.14.
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Many descriptions of algorithms in computational geometry and in geometric op-
timization, as well as numerous proofs in discrete geometry, start with a sentence

similar to “Let us assume that the given points are in general position.” General
position may mean that no three among the points are collinear, or we may also

require than no four are cocircular, etc., depending on the considered problem.
Violations of general positions, such as three points on a line, are referred to as

degeneracies.

Assuming the input to be nondegenerate (i.e., in general position) usually sim-
plifies the description, analysis, and implementation of a geometric algorithm signif-

icantly. For many algorithms, this assumption can be avoided with some extra work
and careful attention to detail. However, for some algorithms, the nondegeneracy

assumption is not only a convenient simplification, but rather an essential condition
for correctness and/or for running time analysis, that seems difficult to circumvent.

General methods have been developed for removing degeneracies in geometric
algorithms, based on infinitesimal perturbations of the input. Roughly speaking,

the coordinates of each input object are changed by a suitable function of a real
parameter ε > 0, and the considered algorithm is executed with these new input

objects, treating ε as a formal quantity smaller than any concrete nonzero number
occurring in the algorithm. These methods can actually be implemented, but they

have several drawbacks: They slow down the computations significantly (typically
by a large constant factor, but sometimes even much more), they increase space

requirements, and sometimes it may be difficult or impossible to reconstruct the

correct result for the original input from the result for the perturbed input.
Removing degeneracies means “breaking ties” in some sense. Of course, the

ties cannot be broken arbitrarily, since geometric algorithms almost always depend
on some kind of global consistency of the input. Still, one might hope for some

simpler, perhaps combinatorial, way of removing degeneracies. The present chapter
was motivated by this question, and its results can be regarded as an indication

that a simple, general, and efficient combinatorial method is unlikely to exist.

Degeneracy in LP-type problems. In the setting of LP-type problems, degener-
acy can be an issue too. In particular, Matoušek [Mat95] described an algorithm for
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Figure 3.1. A degenerate LP-type problem
where removing degeneracy increases dimension

finding the optimum solution satisfying all but at most k of the given constraints.
However, for degenerate LP-type problems the algorithm can give a wrong answer.

Recall that an LP-type problem (H,w) is denegerate if we have w(B1) = w(B2)

for some distinct bases B1, B2 (see Definition 1.4). Furthermore we remind that in
a nondegenerate LP-type problem, every G � H has exactly one basis.

To remove degeneracies from an LP-type problem, we want to break the ties
w(B1) = w(B2) by slightly modifying the values of w, while retaining all strict

inequalities between the original values.

Definition 3.1. An LP-type problem (H,w′) is a refinement of an LP-type

problem (H,w) on the same set of constraints if for all F,G � H with w(F ) < w(G)
we have w′(F ) < w′(G).

We thus formalize removing degeneracies from an LP-type problem (H,w) as

the question of finding a nondegenerate refinement of (H,w).

Observe that a basis in (H,w) is a basis in any refinement (H,w′) as well.
Indeed, if B is a basis in (H,w), then for every proper subset F � B we have

w(F ) < w(B), hence w′(F ) < w′(B). Note that this implies that refining the
problem does not decrease the dimension. More formally, for a problem (H,w) and

its refinement (H,w′) we have dim(H,w) � dim(H,w′).
At first sight it might seem that in order to produce a nondegenerate refinement,

it should suffice to impose some suitable linear ordering on every group of bases
sharing the same value of w—perhaps one could even take an arbitrary ordering.

However, some thought reveals that things are not that simple. As was observed by
Matoušek [Mat95], sometimes we also have to create new bases, and even larger ones

than those present in (H,w). Namely, consider the problem of the smallest enclosing
ball for points H = �a, b, c, d� forming the vertices of a square; see Figure 3.1. The

set H has two bases B1 = �a, c� and B2 = �b, d�, and the combinatorial dimension
of the problem is 2. We will refer to this particular 2-dimensional LP-type problem

as the square example denoted by (H0, w0). Any nondegenerate refinement has
dimension at least 3, as we check in Section 3.1 below.

The main result of this chapter is that we exhibit LP-type problems where

removing degeneracies requires arbitrarily large increase of the dimension; see Sec-
tions 3.1–3.3.

Theorem 3.2. There exists a positive constant ε > 0 such that for infinitely many

values of D, there is a D-dimensional LP-type problem without �� for which every

nondegenerate refinement has combinatorial dimension at least (1 + ε)D.

The example of an LP-type problem as in the theorem is obtained by an “it-
erated join” of the square example. We also show that an essentially equivalent
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example can be represented as a (highly degenerate) linear program in the usual

sense; see Section 3.5.
The result can also be understood as telling us that for degenerate LP-type

problems, the combinatorial dimension doesn’t convey a full “dimensionality” in-
formation about the problem. An alternative dimension parameter might be the

smallest possible dimension of a nondegenerate refinement; however, this appears
quite hard to determine. In actual geometric problems, we can resort to the di-

mension of the ambient space, which doesn’t grow when degeneracies are removed
by perturbation methods. But this brings us back to our initial point—geometric

perturbations are not easy to deal with.
The main open question is, can the smallest possible dimension of a nondegener-

ate refinement be bounded by some function of the dimension of the original degen-
erate LP-type problem? In particular, does every 2-dimensional LP-type problem

have a nondegenerate refinement of dimension bounded by a universal constant?

We present some observations about the structure of 2-dimensional degenerate LP-
type problems in Section 3.7, but it seems that our methods are not sufficient to

give a final answer.
Actually, constructing a D-dimensional LP-type problem with �

� that does

not have a nondegenerate refinement of dimension 2D�1 is not hard; see Section 3.6.
But we feel that here the growth of dimension is caused primarily by the presence

of �� . We therefore focus on LP-type problems without �� in the remainder of
this chapter.

� ��� ��������	  � ���	�	�	�
�	 ��	�
� 	 ����	� �

Let (H,w) be an LP-type problem with w : 2H � �
. We consider the partially

ordered set (poset) (2H , �) of all subsets of H ordered by inclusion. For every

x � �
, the system

�
x := �G � H : w(G) = x� is a subposet of (2H , �), and these

subposets for all x � �
form a disjoint cover of 2H . Monotonicity implies that a

poset
�

x has no “holes”: If F � M � G and w(F ) = w(G) = x, then w(M) = x as
well. The following lemma states that for nondegenerate LP-type problems, each

�
x

is actually a copy of a Boolean algebra.

Lemma 3.3 (Cube lemma). Let (H,w) be a nondegenerate LP-type problem

without �� . For every x � �
with

�
x �= � there exist two (uniquely determined)

sets B,C � H such that
�

x = �F � H : B � F � C �. The set B is the basis of all

F � �x.

We call the set [B,C] := �F � H : B � F � C � a cube with the bottom

vertex B and the top vertex C. By dimension of the cube we mean
�
C � B �

.

Proof. Let G be an arbitrary set in
�

x. Let B be the basis of G and let C be the

set of constraints that may be added to B without changing the value of w:

C :=
�
h � H : w(B) = w(B

� �h�)� = H � V(B).

We claim that this choice of B and C satisfies the desired conditions. First we note
that Proposition 1.5 readily implies that w(B) = w(C). Therefore [B,C] � �x.
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Figure 3.2. The poset
�

w0(H0) for the square example

Now let us assume that w(F ) = w(B) for some F � H . Let B′ be a basis

of F ; we have w(B′) = w(F ) = w(B), and thus B = B′ by nondegeneracy. In

particular, B � F . For every f � F we have w(B) � w(B
� �f �) � w(F ) = w(B),

so w(B) = w(B
� �f �), and hence f � C. Thus

�
x � [B,C]. The lemma is proved.

To see how this lemma can be used, let us check that every nondegenerate
refinement of the square example (H0, w0) has dimension at least 3. The poset
�

w0(H0) of all subsets of H0 with the same smallest enclosing circle as that of H0

consists of all subsets of �a, b, c, d� containing �a, c� or �b, d�; see Figure 3.2.

In any nondegenerate refinement,
�

w0(H0) has to be expressed as a disjoint
union of cubes. If the dimension of the refinement was 2, all of these cubes would

have to have a 2-element set as the bottom vertex. Such a covering is obviously

impossible, since in order to cover �a, b, c, d�, we have to use a 2-dimensional cube,
say [�a, c�, �a, b, c, d�], and any covering of the remaining sets �b, d�, �a, b, d�, and�b, c, d� by disjoint cubes must use at least one of the 0-dimensional (single-vertex)
cubes [�a, b, d�, �a, b, d�] and [�b, c, d�, �b, c, d�].
� �� � ��	 �������� ��

We begin by defining a binary operation on LP-type problems.

Definition 3.4. Let (H1, w1) and (H2, w2) be LP-type problems with weights

in
�
, and assume that H1  H2 = �. We define a new LP-type problem denoted

by (H,w) = (H1, w1) � (H2, w2) and called the join of (H1, w1) and (H2, w2), by

setting H := H1
�
H2 and w(G) := w1(G  H1) + w2(G  H2) for all G � H .

Lemma 3.5. The join (H,w) = (H1, w1) � (H2, w2) is indeed an LP-type problem,

and dim(H,w) = dim(H1, w1) + dim(H2, w2).

Proof. First note that if F � G and w(F ) = w(G), then wi(F  Hi) = wi(G  Hi)

for i = 1, 2. Indeed, since F  Hi � G  Hi, we have wi(F  Hi)
� wi(G  Hi), and

to get equality of the sum, equality must hold in both summands.

Now we verify the axioms for (H,w). Monotonicity is obvious, and for locality,
let F � G � H and h � H satisfy w(F ) = w(G) = w(F

� �h�). Supposing h � H1,

we have w1(F H1) = w1(G H1) = w1((F H1)
� �h�) by the observation above,

and locality in (H1, w1) yields w1((G  H1)
� �h�) = w1(G). Then w(G

� �h�) =



26 REMOVING DEGENERACY MAY NEED TO INCREASE DIMENSION

w1((G  H1)
� �h�) + w2(G  H2) = w1(G  H1) + w2(G  H2) = w(G). Therefore

(H,w) is indeed an LP-type problem.

Now we check that dim(H,w) � dim(H1, w1) + dim(H2, w2). Let Bi be a basis
in (Hi, wi) witnessing dim(Hi, wi). It suffices to check that B = B1

�
B2 is a basis

in (H,w); that is, w(A) < w(B) for every proper subset of B. Letting Ai := AHi,

we have Ai � Bi with at least one of the inclusions proper, say A1 � B1. Since
B1 is a basis, we have w1(A1) < w1(B1), and w(A) < w(B) follows.

To prove the opposite inequality dim(H,w) � dim(H1, w1) + dim(H2, w2), we
choose a basis B in (H,w) with

�
B
�
= dim(H,w) and we set Bi := B Hi. It suffices

to check that Bi is a basis in (Hi, wi). Let us consider a proper subset A1 � B1;
then w1(B1) +w2(B2) = w(B1

�
B2) > w(A1

�
B2) = w1(A1) +w2(B2), and we get

w1(A1) < w1(B1) as needed. The lemma is proved.

The example. For the proof of Theorem 3.2 we define, for a positive integer m, an
LP-type problem �m = (H,w) as the m-fold join of the square example (H0, w0).

More formally, we choose distinct elements a1, a2, . . . , am, b1, . . . , bm, c1, . . . , cm,

d1, . . . , dm, we let Hi := �ai, bi, ci, di�, and we let wi : Hi � �
be a copy of the

value function w0 from the square example, defined on Hi. We let �m = (H,w) :=

(H1, w1) � (H2, w2) � � � � � (Hm, wm). We have
�
H
�
= 4m and by the above lemma,

�m is an LP-type problem of combinatorial dimension D = 2m.

We want to bound from below the dimension of any nondegenerate refinement
of �m. Similar to the warm-up argument for (H0, w0), any nondegenerate refinement

� ′ = (H,w′) of �m of dimension D′ yields a covering of the poset

�
w(H) =

�
G � H : w(G) = w(H)�

by disjoint cubes [Bj , Cj ], where each bottom vertex Bj satisfies
�
Bj

� � D′. We

deal with this combinatorial problem in the next section.

The case � = 2. We analyze the 4-dimensional LP-type problem �2 in Section 3.4
below. We prove by a case analysis that every nondegenerate refinement has di-

mension at least 6. The corresponding poset
�

w(H) is illustrated in Figure 3.3.
Interestingly, this

�
w(H) does admit a cover by disjoint cubes with bottom vertices

of cardinality at most 5; see Figure 3.4. However, covers corresponding to nonde-
generate LP-type problems have to satisfy an additional condition, analogous to

acyclicity in violator spaces. The proof in Section 3.4 verifies that every acyclic
cover has a bottom vertex of cardinality 6 or larger. On the other hand, arbitrary

covers by disjoint cubes correspond to nondegenerate violator spaces. One can thus

say that �2 has a 5-dimensional nondegenerate refinement in the realm of violator
spaces, but not in the realm of LP-type problems. However, the subsequent proof

of Theorem 3.2 doesn’t use acyclicity in any way and thus it applies equally well to
violator spaces.
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Figure 3.3. The poset
�

w(H) for m = 2

Figure 3.4. A covering of
�

w(H) by disjoint cubes; a

4-dimensional cube is marked by circles around its vertices

� �� � � �� 	�� �� �

 �		� � ��� �
 
�

∆

The basic strategy for the proof of Theorem 3.2 is simple. We suppose that the LP-
type problem described above has a nondegenerate refinement of a small dimension

and we want to arrive at a contradiction. The existence of the refinement implies

that the poset
�

w(H) can be covered by disjoint cubes. We count the number F`

of vertices of the poset that have cardinality `. We compare F` with the number

of vertices of cardinality ` contained in the covering cubes. This gives a system of
linear equations with variables corresponding to the numbers of cubes [B,C] with

given
�
B
�
and

�
C
�
. Then we prove that this system of equations has no nonnegative

real solution, therefore obtaining the contradiction.

Setting up the linear system. Let �m = (H,w) be the join of m copies of

the square example, as constructed above. Let us suppose that the poset
�

:=
�

w(H) � 2H can be covered by disjoint cubes [Bj , Cj ] with bottom vertices of size
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Bj

� � D′; here D′ represents the combinatorial dimension of the refinement. Since

dim(H,w) = D = 2m, we have 2m � �
Bj

� � �
Cj

� � �
H
�
= 4m for all j. Let xd,k

be the number of cubes with
�
Bj

�
= 2m+ d and

�
Cj

�
= 2m+ k, where d, k satisfy

d � ∆ := D′
� 2m and d � k � 2m. A cube [Bj , Cj ] with

�
Bj

�
= 2m + d and�

Cj
�
= 2m + k contains sets of cardinality 2m + ` for d � ` � k, and the number

of sets of this cardinality in [Bj , Cj ] equals (k−d
`−d) (this formula is actually valid for

every ` if we adopt the convention that (ab) = 0 for b < 0 or b > a). If we let

F (m, `) := ��
�
G � � :

�
G
�
= 2m+ `� ��,

we get that the values xk,d have to satisfy the following system of linear equations:

∆�
d=0

2m�
k=d

�
k � d

` � d	xd,k = F (m, `), ` = 0, 1, . . . , 2m. (3.1)

We are going to prove that with ∆ = �εD�, where ε is a sufficiently small

positive constant, this system of equations for variables xk,d has no nonnegative real
solution, provided that m is sufficiently large.

Now we evaluate F (m, `).

Lemma 3.6. We have

F (m, `) =
�
s

�
m

s, ` � 2s,m � `+ s	2m+`−3s,

with the sum being over all s with 0 � 2s � ` and s � `�m (here ( n
k1,k2,k3

) = n!
k1!k2!k3!

is the multinomial coefficient, k1 + k2 + k3 = n).

Proof. We count the number of sets G � � of cardinality 2m+`. First we observe,

reasoning as in the proof of Lemma 3.5, that a set B � H is a basis of H in �m

if and only if each Bi = B  Hi is a basis of Hi in (Hi, wi). Hence the bases of H

are the sets B with B  Hi = �ai, ci� or B  Hi = �bi, di� for all i = 1, 2, . . . ,m.
A set G � H is in

�
if and only if it contains at least one of these bases; i.e., if it

contains at least one of the pairs �ai, ci�, �bi, di� for every i.
For G � � of cardinality 2m+ ` let

sr := ��
�
i � �1, 2, . . . ,m� :

�
G  Hi

�
= r� ��

for r = 2, 3, 4. We have s2 + s3 + s4 = m and 2s2 + 3s3 + 4s4 =
�
G
�
= 2m + `.

Calculation shows that s2 = m � `+ s4 and s3 = ` � 2s4.

For counting the number of possible ways of choosing G, we first fix s = s4.
Then s2 and s3 are fixed as well, and there are ( m

s2,s3,s4
) ways to choose the indices i

contributing to each sr (in other words, to choose for which sets Hi does G take 2, 3,
or 4 elements, respectively). Knowing that

�
G  Hi

�
= 2, there are two possibilities

for G  Hi, for
�
G  Hi

�
= 3 we have 4 possibilities, and for

�
G  Hi

�
there is

just one possibility. Therefore, once
�
G  Hi

�
has been fixed for all i, there are

2s2 �4s3 = 2m+`−3s4 possibilities for G. Summation over s = s4 yields the statement
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of the lemma; the conditions on the range of s in the summation correspond to the

obvious restrictions s2, s3, s4 � 0.

Unsolvability of the linear system. We recall that for finishing the proof of

Theorem 3.2, it suffices to prove that for ∆ := �2εm� and m sufficiently large, the

linear system (3.1) has no nonnegative solution x = (xd,k)∆d=0
2m
k=d.

Before starting with the formal proof, which is a sequence of somewhat fright-

ening calculations, we say a few words about how it was found. We started by
testing the solvability for concrete values of parameters via linear programming.

We used the function LinearProgramming in Mathematica, which uses arbitrary
precision arithmetic and computes the solution exactly; this allowed us to deal with

m up to about 1000 (other LP solvers we tried failed for large instances because of
insufficient precision). By the Farkas lemma, the unsolvability is always witnessed

by a linear combination of the equations that has nonnegative coefficients on the
left-hand side and negative right-hand side. By minimizing the sum of absolute

values of (suitably normalized) coefficients providing such a linear combination, we
found that the unsolvability was witnessed, in all examples we tried, by a linear

combination of only 3 of the equations. For simplifying the analytic approach, we
then tried 3 consecutive equations, and found that such combinations work as well,

provided that the index of the middle equation is chosen in a suitable range. These

numerical results encouraged us to try finer and finer estimates, until we finally
reached the following proof.

Proof of the unsolvability of (3.1). We set, somewhat arbitrarily, t := 1
2m,

assuming m even (we suspect that t = τm for any fixed τ � (0, 1) would work, but
we haven’t checked). We prove that for sufficiently large m already the system of

the three consecutive equations with ` = t � 1, t, and t + 1 has no nonnegative
solution. To this end, we find a linear combination of these three equations with

suitable coefficients α, β, γ, such that the resulting equation has all coefficients on
the left-hand side nonnegative, while the right-hand side is strictly negative. We

normalize the coefficients so that β = �1. Then, explicitly, we need

α

�
k � d

t � d � 1	 �

�
k � d

t � d	 + γ

�
k � d

t � d+ 1	 � 0 for all 0 � d � ∆ (3.2)

and
αF (m, t � 1) � F (m, t) + γF (m, t+ 1) < 0. (3.3)

The choice of suitable α and γ turns out to be surprisingly subtle. Namely, we

need to choose α = α0 + α1/t and γ = γ0 + γ1/t, where

α0 :=

�
10 + 2

4

 1.29057, γ0 :=

�
10 � 2

6

 0.193713

are uniquely determined real constants and α1, γ1 are constants in certain ranges.
For concreteness we set α1 := 1 and γ1 := 1

8 .

We get (3.2) from the following lemma:
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Lemma 3.7. There is a positive constant ε > 0 such that, with this choice of t,

α, and γ, Equation (3.2) holds for all d � ∆ = �2εm� and k � d, provided that m,
and hence t, are sufficiently large.

Proof. We use the substitution x := t � d and y := k � d. We thus want to prove

α

�
y

x � 1	 �

�
y

x	 + γ

�
y

x+ 1	 � 0.

For y < x � 1 all three terms are 0, therefore we may assume y � x � 1. We

rewrite the left-hand side to

y!

(x+ 1)!(y � x+ 1)!

�
αx(x+ 1) � (x+ 1)(y � x+ 1) + γ(y � x+ 1)(y � x)�.

Let f(α, γ, x, y) be the expression in parentheses; we want to prove that it is non-

negative.
Let us choose constants α′

1 < α1 and γ′1 < γ1. Assuming that ε in the lemma

is sufficiently small, we have d sufficiently small compared to x, and hence α =
α0 + α1/(x+ d) � α0 + α′

1/x and γ = γ0 + γ1/(x+ d) � γ0 + γ′1/x.

Since f is increasing in α and in γ (for the relevant x and y), it suffices to check
that

f(α0 +
α′

1

x
, γ0 +

γ′1
x
, x, y) � 0,

and we will verify this for all sufficiently large real x and all real y. One of the
properties of α0 and γ0 needed here is α0γ0 = 1

4 . Things can be simplified a little

by the substitution y = x(z + 1). Then f(α0 + α′
1/x, γ0 + γ′1/x, x, x(z + 1)) is

a polynomial in x and z. For x fixed it is a quadratic polynomial in z, and the

coefficient of z2 is x2/4α0 + γ′1x > 0 (this calculation and the subsequent ones were
done using Mathematica). Therefore it has a unique minimum, which can be found

by setting the first derivative according to z to 0. This minimum occurs at

z0 = z0(x) =
x2 + (1 � γ0)x � γ

′
1

2x(γ0x+ γ′1)

(the expression was simplified using the property α0γ0 = 1
4). Substituting this into

f(α0 + α′
1/x, γ0 + γ′1/x, x, z(x + 1)) yields a function of x of the form

�γ0 � 2γ2
0 + 4α′

1γ
2
0 + γ′1

4γ2
0

x+O(1),

with the O( �) notation referring to x � � . Calculation checks that the coefficient

of x is a positive real number (for α′
1 and γ′1 sufficiently close to α1 and γ1, re-

spectively). Hence f is indeed positive for the considered values of the variables.

Remark. It is easy to check that if α, γ are positive constants, then the inequality
f(α, γ, x, y) � 0 holds for all y and all sufficiently large x if and only if αγ > 1

4 .

However, for such α and γ the equation (3.3) fails. We are thus forced to choose α
and γ depending on x so that αγ � 1

4 as x � � .
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We now proceed to establish (3.3). We set

Q(m, t, s) :=

�
m

s, t � 2s,m � t+ s	2m+t−3s,

so that F (m, t) = � sQ(m, t, s). First we look for the s maximizing Q(m, t, s). Let

r(m, t, s) :=
Q(m, t, s)

Q(m, t, s � 1)
=

(t � 2s+ 1)(t � 2s+ 2)

8s(m � t+ s)

be the ratio of two consecutive terms. As a function of s it is decreasing, hence
Q(m, t, s) is maximum for the largest s with r(m, t, s) � 1.

We stick to our choice t = 1
2m. It is more convenient to use t as a parameter

instead of m. Let us write

r̃(t, s) := r(2t, t, s) and Q̃(t, s) := Q(2t, t, s),

and let us note that m � t = t. Let σ := (
�

10 � 3)/2 
 0.0811388 be the positive
root of the equation (1 � 2σ)2 = 8σ(1 + σ), which is an asymptotic version of

the equality r̃(t, σt) = 1. Now for s0 := �σt� the maximum of r̃(t, s) is attained,
and r̃(t, s0) = 1 + O(t−1). Next, we need an estimate on the rate of decrease of

Q̃(t, s0 + a) as
�
a
�
increases.

Lemma 3.8. Let c0 := 4
1−2σ + 1

σ + 1
1+σ 
 18.0244. Suppose that a = o(t2/3).

Then
Q̃(t, s0 + a)

Q̃(t, s0)
= (1 + o(1))e−c0a2/2t,

where o(.) refers to t � � and the convergence is uniform in a.

Proof. We will be summing over j = 1, 2, . . . , a in the proof. Let us write ξ = j/t;

thus ξ = o(1). We have

r̃(t, s0+j) = (1+O(t−1))
r̃(t, s0 + j)

r̃(t, s0)
= (1+O(t−1))

�
1 � 2j

t−2s0+1� �
1 � 2j

t−2s0+2��
1 + j

s0
� �

1 + j
t+s0

� =

= (1 +O(t−1))
�1 � 2

1−2σ ξ�2
�1 + 1

σ ξ� �1 + 1
1+σξ�

= (1 +O(t−1) +O(ξ2))e−c0ξ.

Then

ln
Q̃(t, s0 + a)

Q̃(t, s0)
=

a�
j=1

ln r̃(t, s0 + j) =
� a�
j=1

�
c0j

t
� +O

�a
t
� +O

�
a3

t2 	 =

= �
c0a

2

2t
+O

�
a

t
+
a3

t2 	 .
By exponentiation we get the statement of the lemma.
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Next, we consider the expression

D̃(t, s) := αQ(m, t � 1, s) � Q(m, t, s) + γQ(m, t+ 1, s)

with m = 2t, α = α0 + α1/t, and γ = γ0 + γ1/t as above. The idea is to show

that for s close to s0 we have D̃(t, s) negative, while for s further from s0 it can be
positive but it is sufficiently small compared to

�
D̃(t, s0)

�
. Again, the calculation

has to be done rather precisely in order to work.

Lemma 3.9. Let us suppose that a = o(t), and let s0 = �σt� be as above. Then

D̃(t, s0 + a) = Q̃(t, s0 + a) � (1 + o(1))
C

t

�c1
t
a2
� 1 + o(1)� ,

where C is a certain positive constant whose value will not be important, c1 :=

(14584
�

10 + 46192)/5877 
 15.7071, the o( �) notation refers to t � � , and the
convergence is uniform in a.

Proof. Similar to the proof of Lemma 3.7 we rewrite

D̃(t, s) = Q̃(t, s) � 1

2(t+ 1 � 2s)(t+ s+ 1)
g(α, γ, t, s),

with g(α, γ, t, s) := α(t�2s+1)(t�2s)�2(t�2s+1)(t+s+1)+4γ(t+s)(t+s+1). With

the constant σ as above, g̃(t) := g(α0 +α1/t, γ0 +γ1/t, t, σt) becomes a polynomial,
which is a priori quadratic, but we chose α0 and γ0 so that the coefficient at t2,

which equals 14 � 5
�

10+(26 � 8
�

10)α0 +(11 � 2
�

10)γ0, vanishes. (This, together
with α0γ0 = 1

4 , are the two conditions that uniquely determine α0 and γ0.) The

coefficient of the linear term equals �c2 := (191 � 62
�

10)/8 
 �0.632652, hence
g(α, γ, t, s) is indeed negative and of order t for s sufficiently near to σt.

More quantitatively, expanding and simplifying gives

g
�
α0 +

α1

t
, γ0 +

γ1

t
, t, σt+ b� = �c2t+ c3b

2 +O
�b2
t

+ b+ 1�
with c3 := (14 + 5

�
10)/3 
 9.93712. For a = b + σt � s0 = b + σt � �σt� � b + 1

we then obtain

g
�
α0 +

α1

t
, γ0 +

γ1

t
, t, s0 + a� = �c2t+ c3a

2 +O
�a2

t
+ a+ 1�.

Therefore, using a = o(t), we arrive at

D̃(t, s0 + a) = Q̃(t, s0 + a) � �c2t+ c3a
2 +O(a2/t+ a+ 1)

2(t+ 1 � 2s)(t+ s+ 1)

= Q̃(t, s0 + a) � C
t

�
c3a

2

c2t
� 1 + o(1)	

as required.
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We are ready to prove (3.3). For our choice of α, γ, and t we have

αF (m, t � 1) � F (m, t) + γF (m, t+ 1) =
�
a

D̃(t, s0 + a).

For concreteness let us set a0 := t3/5. We will show that

�
|a|≤a0

D̃(t, s0 + a) � �
δ
�
t
Q̃(t, s0)

for a constant δ > 0. Now for a > a0 we have
�
D̃(t, s0 + a)

� � 3Q̃(t, s0 + a) �
3Q̃(t, s0+a0), and the last expression is smaller that Q̃(t, s0) by a factor exponential
in t. A similar argument applies for a < �a0 and thus the sum over

�
a
�
> a0 is

negligible.
Combining Lemmas 3.8 and 3.9, we get that for

�
a
� � a0 we have

D̃(t, s0 + a) = Q̃(t, s0)
C

t
(1 + ϕt(a))e

−c0a2/2t

�
c1a

2

t
� 1 + ψt(a)	 ,

where ϕt(a) and ψt(a) are some functions converging to 0 as t � � , uniformly in a.
We prove that

�
|a|≤a0

(1 + ϕt(a))e
−c0a2/2t

�
1 �

c1a
2

t
� ψt(a)	 = Ω(

�
t ). (3.4)

Let us fix an arbitrarily small ν > 0 and let us assume that t has been chosen so

large that
�
ϕt(a)

� � ν and
�
ψt(a)

� � ν for all a. Then the left-hand side of (3.4) is
bounded from below by

�
|a|≤a0

e−c0a2/2t(1 � c1a
2/t) �

�
|a|≤a0

(1+
�
ϕt(a)

�
)e−c0a2/2t �ψt(a)

�
�

�
|a|≤a0

�
ϕt(a)

�
e−c0a2/2t

�
�

|a|≤a0

e−c0a2/2t

�
1 �

c1a
2

t 	 � 3ν
�

|a|≤a0

e−c0a2/2t.

By basic properties of Riemann integration and uniform continuity arguments it is

routine to check that both of these sums converge to the corresponding integrals as
t � � . So it suffices to bound from below

(1 � 3ν)

� a0

−a0

e−c0a2/2t da �
c1
t

� a0

−a0

a2e−c0a2/2t da.

Since a2
0/t = t1/5 � � as t � � and the integrands decrease exponentially in a2/t,

we make only a negligible error by taking both integrals from �
� to � . We have
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(1 � 3ν)

� ∞

−∞
e−c0a2/2t da = (1 � 3ν)�2πt/c0 
 0.590419

�
t,

while
c1
t

� ∞

−∞
a2e−c0a2/2t da = c1

�
2πc

−3/2
0

�
t 
 0.514513

�
t.

This finally proves (3.3) and concludes the proof of Theorem 3.2.

� �� � � �� 	�� �� �

 �		� � ��� �
 �

In this section we examine �2, i.e., the join of m = 2 copies of the square example.
We prove that already for this case, the growth of dimension when removing de-

generacy must be at least 2. This result is quantitatively better than what is given
by Theorem 3.2 for the case ∆ = 2, since Theorem 3.2 does not say anything about

the value of m.

The proof consists of tedious case analysis.

Proposition 3.10. Let (H,w) := �2 = (H1, w1) � (H2, w2) be the join of two
copies of the square example. Then (H,w) is an LP-type problem of dimension 4

and every its nondegenerate refinement (H,w′) is of dimension at least 6.

Proof. Proposition 3.5 readily confirms that (H,w) is an LP-type problem of

dimension 4. To prove that there exists no nondegenerate refinement of (H,w)
of dimension at most 5 we proceed by contradiction. Let us assume that such a

nondegenerate refinement (H,w′) does exist and let us see what happens.
We assume that H1 = �a, b, c, d� and H2 = �t, x, y, z�.
We are going to analyze the possibilities how the poset

�
w(H) can be covered

by disjoint cubes. We will have to employ monotonicity in some places in the proof.

The poset
�

w(H) is displayed in Figure 3.3.

In the subsequent discussion we distinguish whether the basis B of H in the
hypothesized refinement (H,w′) has four or five elements. Note that since B is an

element of
�

w(H), it has at least four elements.

Case I: The basis of � has four elements.
There is quite a lot of symmetry in our poset

�
w(H). Without loss of generality

we can assume that the basis ofH in (H,w′) is the set �a, b, t, x�. The parts of
�

w(H)

with w′(G) = w′(H) and w′(G) �= w′(H) are then displayed in Figure 3.5.

We focus on the sets G with w′(G) �= w′(H). Figure 3.6 depicts them after
rearranging. For the sake of brevity let us omit the braces and commas when

enumerating sets. From the sets bcdyz, acdyz, cdxyz, cdtyz choose the one with the

biggest value of w′; again there is enough symmetry to safely assume this is bcdyz.
Now we claim that w′(bcdyz) > w′(cdyz). To prove it, assume for contradiction

that w′(bcdyz) = w′(cdyz). From maximality of bcdyz and monotonicity of w′ we
get w′(acdyz) � w′(bcdyz) = w′(cdyz) � w′(acdyz), that is, w′(acdyz) = w′(bcdyz).

In the same way we show that w′(cdxyz) = w′(cdtyz) = w′(bcdyz). From the Cube
lemma follows that w′(cdyz) = w′(abcdtxyz), which contradicts the fact that the
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Figure 3.5. Sets G with w′(G) = w′(H) (left) and w′(G) �= w′(H) (right)

abcdxyz abcdtyz bcdtxyz acdtxyz

abdxyz abcxyz abdtyz abctyz abcdyz bcdxyz acdxyz bcdtyz acdtyz cdtxyz bcdtxz bcdtxy acdtxz acdtxy

abxyz abtyz abdyz abcyz bcdyz acdyz cdxyz cdtyz cdtxz cdtxy bcdtx acdtx

abyz cdyz cdtx

Figure 3.6. Sets G with w′(G) �= w′(H)

Figure 3.7. w′(bcdyz) = w′(bcdtxyz)

only basis of H = abcdtxyz is abtx. Therefore w′(bcdyz) is indeed strictly greater
than w′(cdyz).

Now, bcdxyz is not a basis, since it has six elements; hence w′(bcdxyz) is equal
to the greatest w′(G) of a proper subset G of bcdxyz. From the previous discussion

follows that this maximum occurs for bcdyz; so w′(bcdyz) = w′(bcdxyz). Similarly
we get w′(bcdyz) = w′(bcdtyz) and by the Cube lemma w′(bcdyz) = w′(bcdtxyz).

The present situation is demonstrated in Figure 3.7. The bold lines connect the

sets with the same value of w.
Now from the sets cdtxz, cdtxy, bcdtx, acdtx we choose Y to be the one with

the greatest w′(Y ). We claim that Y = acdtx. Otherwise, if Y = bcdtx, from
maximality we get w′(bcdtx) = w′(bcdtxy) = w′(bcdtxz) and from the Cube lemma
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Figure 3.8. w′(acdyz) = w′(acdtxyz)

Figure 3.9. The part interesting for further steps

acdxyz acdtyz cdtxyz bcdtxz bcdtxy

acdyz cdxyz cdtyz cdtxz cdtxy bcdtx

cdyz cdtx

Figure 3.10. The part interesting for further steps, zoomed in

w′(bcdtx) = w′(bcdtxyz), but we already have w′(bcdtxyz) = w′(bcdyz), which is
not possible. If on the other hand Y = cdtxy, we similarly obtain w′(cdtxy) =

w′(acdtxy) = w′(bcdtxy) = w′(abcdtxy) = w′(abtx), which is a contradiction. For
cdtxz, we proceed analogously. Hence the greatest w′ among the four sets is indeed

attained by acdtx. By a similar reasoning as for cdyz we prove that w′(cdtx) <
w′(acdtx), and from this we get that w′(acdtx) = w′(acdtxyz). The current state

of affairs is demonstrated in Figure 3.8.
Now we consider the poset

�
′ marked in bold in Figure 3.9. Note that no two

maximal vertices of the poset have a common dominating vertex not yet assigned

to any cube. Thus we can restrict our attention to the marked part. For reference,
we show the labels of the vertices in Figure 3.10.

Now we are again in a situation where we can enjoy symmetry. Consider the
basis Z of cdtxyz. Without loss of generality assume that Z is some of the sets in
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Figure 3.11. The basis of cdtxyz has 4 elements (left), 5 elements (right)

Figure 3.12. Sets G with w′(G) = w′(H) (left) and w′(G) �= w′(H) (right)

the left part of the picture. We distinguish two cases depending on the number of

elements of the basis.
If the basis is four-element (let us assume that it is cdyz), both the sets acdxyz

and acdtyz have acdyz as the basis, which is not possible. See the left part of
Figure 3.11.

If the basis of cdtxyz is five-element (without loss of generality cdtyz), we get
that the basis of acdtyz is acdyz and now the basis of acdxyz is cdxyz; see the right

part of Figure 3.11. Now by repeated use of monotonicity we get

w(acdtyz) = w(acdyz) < w(acdxyz) = w(cdxyz) <

< w(cdtxyz) = w(cdtyz) < w(acdtyz),

which is a contradiction.

So we checked that all the possibilities inevitably lead to a contradiction.

Case II: The basis of � has five elements.

There is enough symmetry that we do not lose generality if we assume that the
basis of H in (H,w′) is the set abdtx. The parts of

�

w(H) with w′(G) = w′(H) and

w′(G) �= w′(H) are as in Figure 3.12.
Again we focus on the vertices G with w′(G) �= w′(H). We get Figure 3.13,

which is the union of Figure 3.6 with the cube [abtx, abctxyz].
Choose X to be the one of the sets bcdyz, acdyz, cdxyz, cdtyz attaining the

greatest value of w′. If X = bcdyz or X = acdyz, we proceed exactly as we did
in Case I. However, if X = cdxyz or X = cdtyz, we have to analyze some new

possibilities, since the new cube [abtx, abctxyz] comes into play. Without loss of
generality we assume that X = cdtyz.

For a while we argue as in Case I. We claim that w′(cdyz) < w′(cdtyz); oth-
erwise we get that w′(cdyz) = w′(abcdtxyz), contradicting the assumption that

w′(abcdtxyz) = w′(abdtx). Furthermore w′(cdtyz) = w′(bcdtyz) and w′(cdtyz) =
w′(acdtyz), and this implies that w′(cdtyz) = w′(abcdtyz).
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abctxyz abcdxyz abcdtyz bcdtxyz acdtxyz

abctxy abctxz abtxyz abdxyz abcxyz abdtyz abctyz abcdyz bcdxyz acdxyz bcdtyz acdtyz cdtxyz bcdtxz bcdtxy acdtxz acdtxy

abctx abtxy abtxz abxyz abtyz abdyz abcyz bcdyz acdyz cdxyz cdtyz cdtxz cdtxy bcdtx acdtx

abtx abyz cdyz cdtx

Figure 3.13. Sets G with w′(G) �= w′(H)

Figure 3.14. w′(cdtyz) = w′(abcdtyz) and w′(abxyz) = w′(abcdxyz)

Now we consider the sets abxyz, abtyz, abdyz, abcyz. We conclude that abxyz

has the greatest w′ of them, therefore w′(abxyz) = w′(abcdxyz). The proof of this
mimics the proof leading to Figure 3.8; now we yield Figure 3.14.

Here we leave the similarities to the Case I and we enter the Unknown. We
distinguish what is the basis B of the set abctxyz. Employing the Cube lemma and

recalling that the combinatorial dimension is 5, we see that only a few possibilities

arise: abtyz, abtx, abtxz, abtxy and abctx.
If B = abtyz (see Figure 3.15), we get w′(abctxyz) = w′(abtyz) < w′(abxyz) <

w′(abctxyz) (the first inequality follows from maximality of abxyz), which is not
possible. If B = abtx, B = abtxy, or B = abtxz (see Figure 3.16), we get the same

configuration as in Figure 3.10, which leads to a contradiction, as we already know.
Therefore the basis of abctxyz is abctx; see the left part of Figure 3.17.

Now we consider the basis C of abtxyz: if C �= abtyz, we again refer to the
configuration of Figure 3.10. If C = abtyz, we get w′(abdtyz) = w′(abdyz) and

w′(abctyz) = w′(abcyz). Now we get the marked configuration in the right part of
Figure 3.17; one can easily check that it is not possible to cover it by the cubes

without breaking monotonicity.
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Figure 3.15. w′(abctxyz) = w′(bcdtyz)

Figure 3.16. The basis of abctxyz is abtx or abtxy

Figure 3.17. The last steps

So neither in Case II we managed to cover the poset
�

w(H) by cubes with

the bottom vertices of cardinality at most five in a way satisfying monotonicity.
Thus we can conclude that no nondegenerate refinement of (H,w) of combinatorial

dimension at most 5 exists.

We remark that a 6-dimensional refinement can be constructed easily by cov-

ering the poset
�

w(H) by cubes, or, more systematically, by joining two copies of
3-dimensional refinement of the square example.
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x

y

z

0

a
c

d
b a

d

c

b

xcd

xbc

xab

xabcd

xad

Figure 3.18. A linear program in
� 3

essentially representing the square example

� �� � � �	� 	���� �	��	�	��
� �� �
 
 ���	
� ����
�

It turns out that an LP-type problem �̂m = (H, ŵ) similar to �m that can also
be used as an example establishing Theorem 3.2, can be represented as a linear

program. To see that our proof of Theorem 3.2 works for �̂m as well, it suffices to
verify that its poset

�

ŵ(H) of maximum-weight sets is isomorphic to
�

w(H) of �m.

This follows from the discussion below.
We begin by setting up the following linear program with variables x, y, z (ε > 0

is a very small positive real number):

minimize z + εy + ε2x subject to

a : x+ 4y � 2z � 1

b : 3x+ 8y + 2z � 5
c : 3x � 8y + 2z �

�3

d : �x � 4y � 2z �
�3

x, y, z � 0.

The corresponding LP-type problem (H0, ŵ0) has the set H0 = �a, b, c, d� of
four constraints corresponding to the four inequalities of the linear program. The

value ŵ0(G) of a subset G � H0 is the minimum of the linear program where the
constraints of H0 � G have been deleted (we stress that the implicit nonnegativity

constraints x, y, z � 0 are always present, even for G = �). In this way, ŵ0(G) is
well defined for every G.

The linear program is illustrated in Figure 3.18. For better visualization, the
picture shows the unit cube [0, 1]3 and intersections of the bounding planes of the

constraints with the planes x = 0 and x = 1. The minimum of the linear programs
containing both the constraints a and c or both the constraints b and d is attained

at the point xabcd = (0, 1
2 ,

1
2); thus, ŵ0(H0) = 1

2 . It can be checked that for every
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subset G of constraints containing neither �a, c� nor �b, d�, the minimum is attained

at a point with z = 0, and thus with ŵ0 <
1
2 (the picture shows the minima for

all G of cardinality 2). Thus �̂ is an LP-type problem of combinatorial dimension 2
with the poset

�
ŵ0(H0) isomorphic to

�
w0(H0) of the square example.

Next, we observe that if (H,w) is an LP-type problem corresponding to a linear
program with variables x1, . . . , xn and with objective min� cixi, and (H ′, w′) is

an LP-type problem corresponding to a linear program with variables x′1, . . . , x
′
m

and with objective min� c′ix
′
i, then the join (H,w) � (H ′, w′) corresponds to the

linear program obtained by putting the constraints of both linear programs aside
and setting the objective min(� cixi + � c′ix

′
i). Indeed, it suffices to check that

the value function in (H,w) � (H ′, w′) coincides with the value function obtained
from the combined linear program, and this is immediate. In particular, the m-fold

join �̂m of m disjoint copies of (H0, ŵ0) corresponds to the following linear program
in 3m variables:

minimize �m
i=1(zi + εyi + ε2xi) subject to

xi + 4yi � 2zi
� 1

3xi + 8yi + 2zi
� 5

3xi � 8yi + 2zi
�
�3

�xi � 4yi � 2zi
�
�3

xi, yi, zi � 0

��������
�������

i = 1, 2, . . . ,m.

We could have presented the example for Theorem 3.2 in this form, but we find

the abstract construction of join more transparent.

� �� � � 	�� ��� �	�	�	�
�
 �� ��	�	��	  � � ���� ������


In this section we examine the role of minus infinity in the context of removing
degeneracy. We present a very simple proof of �� version of Theorem 3.2. On

the other hand we argue that allowing for �� has a considerable influence on
the dimension; more precisely, removing �

� from LP-type problems may require

unbounded dimension growth.

Proposition 3.11. For every D � 2 there exists a D-dimensional degenerate

LP-type problem (H,w) that does not have any nondegenerate refinement of com-
binatorial dimension smaller than 2D � 1.

Proof. Let D � 2 be a fixed positive integer. To construct the LP-type problem
(H,w), we put H := �a1, . . . , aD, b1, . . . , bD � and we define

w(G) :=

�
0 if �a1, . . . , aD � � G or �b1, . . . , bD � � G,
�
� otherwise.

It is straightforward to check that (H,w) is an LP-type problem. Its bases are �,
Ā := �a1, . . . , aD �, and B̄ := �b1, . . . , bD �, hence dim(H,w) = D.
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G1 G2

F0

B

Ā B̄

H

Figure 3.19. The proof of Proposition 3.11

Let (H,w′) be some nondegenerate refinement of (H,w) and for contradiction

let us assume that dim(H,w′) � 2D � 2. Let B be the basis of H in the refined
problem. We have w(H) = w(B), therefore Ā � B or B̄ � B; without loss of

generality we assume the latter. Let

M := max
�
w′(F ) : F � H, Ā � F, �F �

= 2D � 2�
and let F0 be a set where this maximum is attained; see Figure 3.19. We have

F0 = H � �bk, b`� for some k, `. Consider the sets G1 := F0
� �bk � and G2 :=

F0
� �b`�; note that G1

�
G2 = H . Since we assume dim(H,w′) � 2D � 2, we

have w′(Gi) = max�w′(F ) : F � Gi,
�
F
� � 2D � 2� = M . This gives w′(F0) =

w′(G1) = w′(G2) = M . Using locality we get w′(H) = M . On the other hand, from

nondegeneracy we have w′(H) > M , which is a contradiction.

It is not clear whether the construction above can be modified to work without
�
� , since removing �

� may be comparably hard to removing degeneracy. This

claim is justified by the following proposition demonstrating that removing �
�

even from 2-dimensional problems may need large dimension.

Proposition 3.12. There are 2-dimensional LP-type problems with �
� that do

not have (possibly degenerate) refinements without �� in any fixed dimension.

Proof. Let D � 2 be a fixed positive integer. We construct an LP-type problem
(H,w) with dim(H,w) = 2 such that any its refinement without �� has dimension

at least D.
Put H := �a1, . . . , aD, b1, . . . , bD � and define

w(G) :=

�
0 if ai, bi � G for some i � �1, . . . ,D�,
�
� otherwise.

This (H,w) is an LP-type problem. Its bases are � and �ai, bi� for i = 1, . . . ,D,
hence dim(H,w) = 2.

Now let (H,w′) be any refinement of (H,w) with w′(�) �= �
� . We prove that

dim(H,w′) � D. We proceed by contradiction. Assume that dim(H,w′) � D � 1.

Let

M := max
�
w′(F ) : F � H, �F �

= D � 1, w(F ) = �
� �



3.7. DEGENERACY IN 2-DIMENSIONAL PROBLEMS 43

and let F0 be a set where this maximum is attained. Since
�
F0

�
= D � 1, there

is some k such that both ak, bk are missing in F0. Let Ga := F0
� �ak � and

Gb := F0
� �bk �. Since

�
Ga

�
=

�
Gb

�
= D, the sets Ga and Gb are not bases in

(H,w′), hence w′(Ga) = max�w′(F ) : F � Ga,
�
F
� � D � 1� = M , and the same

holds for Gb. Now locality for F0, Ga, and bk gives w′(F0
� �ak, bk �) = w′(F0). On

the other hand, w(F0
� �ak, bk �) = 0 > �

� = w(F0), which contradicts the fact
that w′ refines w.

� �� � � 	�	�	�
�
 �� �	� �� 	�� ��
 � ����	� �

As we mentioned above, we do not know whether every 2-dimensional LP-type

problem has a nondegenerate refinement of dimension bounded by a universal con-
stant. In this section we study degeneracy of 2-dimensional problems. The results

presented here form a bunch of observations and examples rather than a compact
theory.

We have seen that the problem of removing degeneracy is closely related to
properties of certain posets. Here we investigate what do the posets look like for

2-dimensional LP-type problems. We describe a connection of these posets and
graphs. We give some results stating what graphs we get.

Basis graphs. Let (H,w) be a degenerate 2-dimensional LP-type problem without

�
� . For simplicity assume that its degeneracy is caused by H having more than

one basis. Furthermore assume that the empty set and all single-element sets have
smaller values of w than every two-element set. Under these conditions, every basis

of H has size exactly 2. We want to describe the poset
�

w(H), i.e., to characterize
sets G � H with w(G) = w(H). Since dim(H,w) = 2, we have

w(G) = max
�
w(F ) : F � G, �F � � 2� for every G � H .

This implies that w(G) = w(H) if and only if G has some two-element subset F

such that w(F ) = w(H). This leads us to constructing a graph � = (H,E) whose
vertices are the constraints of the LP-type problem, and where the vertices g, h � H
are connected by an edge if and only if w(g, h) = w(H). Now we can distinguish

the sets G � H with w(G) = w(H) using only the graph � : we have w(G) = w(H)
if and only if the subgraph induced by G contains an edge. Note that E �= � (this

is an easy consequence of the trivial equality w(H) = w(H)).
The graph � is meaningful for degenerate LP-type problems where H has more

than one basis, but its construction does make sense for other 2-dimensional LP-type
problems as well; � then contains exactly one edge.

We call � the basis graph of (H,w). We say that a graph (V,E) is a basis graph,
if it is isomorphic to a basis graph of some 2-dimensional LP-type problem. If a

graph (V,E) is not a basis graph, we call it nonbasis.
Observe that given the basis graph � of an LP-type problem (H,w), we can

determine the number F (k) of k-element sets G � H with w(G) = w(H). In total
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there are (|H |
k ) sets of size k, and the sets G with w(G) = w(H) are exactly those

containing an edge. This gives

F (k) =

��
H
�

k 	 � ind(� , k),

where ind(� , k) stands for the number of independent sets of size k in the graph � .
If it is the case that removing degeneracy in 2-dimensional LP-type problems

may require unbounded dimension, we believe that the following method might

help to prove it. We suggest an approach similar to the proof of Theorem 3.2
above. We try to find a degenerate LP-type problem (H,w) that does not admit

any nondegenerate refinement of combinatorial dimension 2 + ∆. To prove that
such a refinement does not exist, we would construct a system of equations and

then prove that it has no solutions. We get the system as follows: according to the
Cube lemma 3.3, the refinement gives a partitioning of the poset

�
w(H) into disjoint

cubes. We compare the number of sets of size 2 + ` covered by the cubes with the
total number F (2 + `) of the sets of this size contained in

�
w(H). This gives the

system of equations

∆�
d=0

|H |−2�
k=d

�
k � d

` � d	xd,k = F (2 + `), ` = 0, 1, . . . ,∆,

with nonnegative variables xd,k corresponding to the number of cubes [B,C] with�
B
�
= 2 + d and

�
C
�
= 2 + k.

To proceed in the described way, we would like to be able to construct examples

of basis graphs, in particular such ones for which we can exactly determine the
number of independent sets of each size.

Equivalent description of basis graphs. We present an alternate definition

of basis graphs without the terminology of LP-type problems. It is based on a
characterization of mappings w̄ : (H2 ) � � � �� � that can be obtained by restricting

the weight mapping of some LP-type problem (H,w) to the family of 2-element
subsets of H .

Let V be a finite set. Let a mapping w̄ : (V2 ) � � � �� � assign real or infinite

weights to pairs of elements of V . For simplicity of notation we write w̄(a, b) for
w̄(�a, b�). Let us agree on putting x < � for all x � �

.

We say that the mapping w̄ is good if both of the following conditions are
satisfied:

(i) In any four-element subset of V , if there is a strictly maximal value of w̄, the
second greatest value is not attained on the pair consisting of the two remaining

elements. More formally, for every a, b, c, d � V and T � �
with w̄(a, b) � T ,

w̄(a, c) � T , w̄(a, d) � T , w̄(b, c) � T , w̄(b, d) � T , and w̄(c, d) > T , we

have a strict inequality w̄(a, b) < T . In yet other words, the ordering others �
w̄(a, b) < w̄(c, d) is prohibited.

(ii) For some a, b � V we have w̄(a, b) = � .
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With this, we can give the following characterization of basis graphs:

Proposition 3.13. A graph G = (V,E) is a basis graph if and only if there exists

a good mapping w̄ such that the edges connect exactly the pairs of vertices with
infinite value of w̄:

E =
��a, b� : w̄(a, b) = � �.

Proof. Given a good mapping w̄, let m,M be numbers satisfying m < w̄(f, g) < M
for all f, g � G with a finite value of w(f, g). For G � H we define

w(G) := max
�
w(F ) : F � G, �F �

= 2� if
�
G
� � 2 and the maximum is finite,

w(G) := M if the maximum is � , w(�) := m � 1, and w(�g�) := m for every single-
element set. We claim that (V,w) is an LP-type problem; then it is straightforward

to see that its basis graph is exactly G. Monotonicity follows from the definition
of w. To get locality we proceed by contradiction: assume that for F � G we have

w(F ) = w(G) = w(F
� �h�) �= w(G

� �h�). First notice that
�
F
� � 2, otherwise

we cannot achieve w(F ) = w(G). By the definition of w, we have some f, f ′ � F
with w(f, f ′) = w(F ), and some g � G with w(g, h) = w(G

� �h�). These vertices
f, f ′, g, h break the condition (i) in the definition of a good mapping.

In the other direction assume that (H,w) is a 2-dimensional LP-type problem.
We claim that w̄ defined as

w̄(f, g) :=

�
w(�f, g�) if w(�f, g�) �= w(H),
� if w(�f, g�) = w(H)

is a good mapping. The condition (ii) is satisfied since dim(H,w) = 2. To prove (i),
let F := �a, b�, G := �a, b, c�, and h := d, and invoke locality.

Independent sets. For a graph G, let α(G) be the size of the largest independent
set. The following observation asserts that in our quest we are interested in graphs

with large α.

Observation 3.14. Let (H,w) be an LP-type problem with a basis graph

� = (H,E). Then there exists a nondegenerate refinement (H,w′) of (H,w) of
combinatorial dimension at most α(� ) + 1.

Proof. First observe that every set G � H of size larger than α(�) contains an
edge, hence w(G) = w(H). To each set of size at most α(�) we assign its own

weight; then we need to break the ties for sets of size α(�)+1. Essentially, we order
these sets lexicographically.

Formally, assume that H = �h1, . . . , hn� and let ε represent a suitable positive
real number. We define

w′(G) := max
� �

hi∈P

εi : P � G, �P � � α(� ) + 1�.
Now for every proper subset F of some G, we have w′(F ) < w′(G) whenever�

F
� � α(�). On the other hand, if

�
F
�
> α(�), we have w(F ) = w(H) = w(G).

This proves that w′ refines w.
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Figure 3.20. Nonbasis graphs with
�
V
�
= 6 and

�
V
�
= 7

Figure 3.21. Nonbasis graphs with
�
V
�
= 8

To prove nondegeneracy of (H,w′), assume that all the expressions � hi∈P ε
i

are distinct for distinct sets P of size at most α(�) + 1; we can achieve this by

setting ε to be transcendent.
Every G � H has a basis in (H,w′) of size at most α(� ) + 1: take a set where

the maximum in the definition of w′ is attained. Hence dim(H,w′) � α(�) + 1.

Monotonicity of w′ is straightforward from its definition. To prove locality
we again use that ε is transcendent. Now if w(F ) = w(F

� �hk �) = w(G) with

hk �� F , the set P achieving the maximum in the definition of w(F ) achieves the
maximum for F

� �hk � and w(G) as well, therefore εk < εi and εj < εi for every

i � P and j � G � P . Therefore P achieves the maximum for G
� �hk � too, hence

w(G
� �hk �) = w(G), which proves locality.

Examples of basis and nonbasis graphs. As we observed above, a graph with

no edges is not a basis graph. However, we consider this to be a trivial case.
An induced subgraph G′ = (H ′, E′) of a basis graph � = (H,E) with E′ �= � is

a basis graph. This follows easily from the definition of basis graph by restricting
w to 2H ′

. This means that if a graph G contains a nontrivial nonbasis graph as an

induced subgraph, G is not a basis graph.

The graphs in Figures 3.20 and 3.21 are nontrivial examples of nonbasis graphs.
A computer check has shown that there are no more minimal nonbasis graphs with

8 or fewer vertices.
A nontrivial infinite class of basis graphs is formed by complete multipartite

graphs. Let H = H1
.� � � � .�Hk with k � 2. For a, b � H define w(a, b) := �

when a � Hi, b � Hj for some i �= j, and w(a, b) := 0 when a, b � Hi for some i.

One can easily check that such a w is a good mapping. Unfortunately, this class of
graphs does not help in our quest, since the corresponding LP-type problems have

2-dimensional nondegenerate refinements. We can obtain them by a lexicographic
perturbation: we define

w′(G) := �max
�� hj∈P ε

j : P � G, �P � � 2� for G � Hi for some i,

max
�� hj∈P ε

j : P � G, �P � � 2�+ 100 otherwise.
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It is routine to check that under suitable restrictions on ε, the problem (H,w′) is

indeed a 2-dimensional nondegenerate refinement of (H,w). We proceed along the
lines of the proof of Observation 3.14, and when checking locality we distinguish

whether F � Hi for some i. We omit the details.

Adding edges to a basis graph. If we take a basis graph arising from a good
mapping w and we add edges connecting pairs of vertices with high values of w, we

get again a basis graph. More precisely, if we have a good mapping w and l � �
,

the mapping w(l) given as follows is good:

w(l)(G) :=

�
w(G) if w(G) < l,
� if w(G) � l.

The condition (ii) in the definition of good mapping is clearly satisfied. To prove

the condition (i) we assume for contradiction that w(l)(c, d) > w(l)(a, b) � others;
this implies the same relations for w, which is not possible.

A necessary condition for basis graphs. Let w be a good mapping giving rise

to a basis graph � = (V,E). Assume that � is not a complete graph. Let M be the
maximum finite value of w:

M := max
�
w(a, b) : a, b � V,w(a, b) < � �.

Let a, b be any pair of vertices where M is attained. Consider any edge �x, y� � E
with x, y � V � �a, b�. We have w(x, y) = � , which is certainly the maximum on
the set S = �a, b, x, y�. If this maximum is unique, in other words if there is no

other edge in S, we break the first rule in the definition of a good mapping w.
This proves that in every good graph � = (V,E) that is not complete, there

exists a pair of vertices �a, b� that does not form an edge, such that for every edge�x, y� � E with a, b, x, y distinct, at least one of �a, x�, �a, y�, �b, x� or �b, y� is an

edge.
Let us say that a pair of vertices �a, b� in a graph (V,E) forms a nonedge, if

it does not form an edge. Furthermore we say that a nonedge �a, b� is close to an
edge �x, y�, if
� either a = x, a = y, b = x, or b = y,� or at least one of �a, x�, �a, y�, �b, x�, or �b, y� is an edge;

in other words, if the graph distance between the sets �a, b� and �x, y� is at most 1.
With this terminology we can summarize the observation proved above as follows:

Proposition 3.15. Let � be a basis graph distinct from a complete graph. Then
� contains a nonedge �a, b� that is close to every edge.

In other words, let G be a noncomplete graph in which for every nonedge �a, b�
we have some edge that is not close to �a, b�; then G is nonbasis. All the examples

of nonbasis graphs presented in Figures 3.20 and 3.21 are of this nature.

An algorithm for finding a mapping � . Actually, the proof of Proposition 3.15
shows a stronger thing: the nonedges close to all edges are the only possible places

where the maximum finite value of w can be attained. With this we get an algorithm
that for a given basis graph G finds an associated good mapping w.
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Figure 3.22. A basis graph where the rule (i) fails
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Figure 3.23. A basis graph where the rule (ii) fails

Algorithm 3.16 (nondeterministic).

Input: Graph G.
Output: Good mapping w such that G is the basis graph arising from (H,w).

For all edges �x, y� put w(x, y) := � . Set M := 1000.
REPEAT

Let S be the set of all nonedges �a, b� that are close to all edges
IF S = � THEN exit unsuccessfully

IF
�
S
�
> 1 THEN wisely choose a nonempty subset S′ � S

FOR �a, b� � S′

Set w(a, b) := M and connect �a, b� by an edge
Set M := M � 1

UNTIL no nonedges remain

RETURN w

Unfortunately, the wisdom required to choose S′ seems to be nontrivial. One
may come up with the following reasonably looking rules:

(i) choose S′ to be a suitable one-element subset of S,
(ii) choose S′ := S.

However, both for (i) and for (ii) we can construct a basis graph for which the rule
fails (that is, it gets stuck so that the algorithm cannot add any more edges and

exits in the very next iteration of the cycle).
First consider the rule (i). Let G be the graph in Figure 3.22. The set S found

in the first iteration of the cycle consists of nonedges ab and a′b′. By choosing

any of these nonedges and converting it into an edge we get a nonbasis graph (see
Figure 3.21), therefore the algorithm gets stuck. However, if we choose both of

these nonedges, we can arrive to a suitable w.
Now consider the rule (ii). Let G be the graph in Figure 3.23. In the first

iteration of the cycle the algorithm finds the nonedges ab and a′b′. After choosing
both of then and converting them to edges, the algorithm gets stuck. However, if

we choose any single one, we can construct a suitable w.
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For some abstract models of optimization problems there are theorems saying that

problems of a very small dimension cannot entail a cyclic structure. Namely, unique
sink orientations of grids of dimension 2 are acyclic [GMR] and oriented matroid

programs of rank 3 are Euclidean [BLVS+99]. Gärtner (personal communication,
June 2004) suggested that a similar result might hold for violator spaces. In this

chapter we present some examples of cyclic violator spaces of combinatorial dimen-

sion 2. However, we conjecture that such examples are always degenerate.

Conjecture 4.1. Let (H,V) be a nondegenerate basis-regular violator space of
combinatorial dimension d � 2. Then (H,V) is acyclic.

However, in higher dimension we can get cyclic violator spaces which are non-
degenerate and basis-regular. We show another example proving this.

The examples presented in this chapter prove the following proposition.

Proposition 4.2. There exists a 2-dimensional cyclic violator space with 4 con-

straints. There exists a 2-dimensional basis-regular cyclic violator space. There
exists a 3-dimensional nondegenerate basis-regular cyclic violator space.

A notation for medium-size violator spaces. We are going to present partic-

ular examples of violator spaces. In doing this, we need to specify the mapping V.
Since giving values of V(G) for all 2|H | subsets G of H is cumbersome, we devise a

more condensed notation.

We use a property of V analogous to the Cube lemma 3.3.

Observation 4.3. Let (H,V) be a violator space and let B be any basis in (H,V).
Then for all sets G with B � G � H � V(B) we have V(G) = V(B).

Proof. We get the statement as an immediate consequence of locality.

Now consider the following game. Suppose that an adversary has a hidden
violator space (H,V) and we are given the list of the values of V(B) for all bases B

in (H,V). The adversary gives us a set G � H and our task is to guess the value

of V(G). If we can find a basis B in the list such that B � G � H � V(B), we win,
since Observation 4.3 guarantees us that V(G) = V(B). On the other hand, if no

such basis exists, the adversary must have cheated: in the hidden violator space,
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G has some basis B, and we have G  V(B) = �, therefore B � G � H � V(B), and

we should have been able to find this basis B in the list.
To summarize, we have proved the following result.

Proposition 4.4. To determine the mapping V in a violator space (H,V), it is

sufficient to specify only the values of V(B) for all bases.

To make simpler to spot a suitable basis for a given set G in the list, we introduce

the following notation. By writing V(B . . . C) = X, where B � C, we mean that
we have V(G) = X for every G with B � G � C. With this notation we give

V(B . . . (H � V(B))) for every basis B in the violator space; from the previous
paragraphs follows that this uniquely determines V. Finally, we omit the commas

and braces in the notation for sets. For instance, if H = �a, b, c, d, e, f � and for a

basis B = �a, b� we have V(B) = �e, f �, we write V(ab . . . abcd) = ef .

We continue with the promised examples of cyclic violator spaces.

A 2-dimensional cyclic violator space with four constraints. We choose

the set of constraints to be H := �a, b, c, d�. Let the mapping V be given by the
following list.

V(�) = abcd, V(a . . . ad) = bc, V(b . . . ab) = cd, V(c . . . bc) = ad,
V(d . . . cd) = ab, V(ac . . . abcd) = �, V(bd . . . abcd) = �.

One can check that the axioms of violator spaces are satisfied. The cycle in the
violator space is given by the sets G1 = �a�, G2 = �b�, G3 = �c�, G4 = �d�. We

have G1  V(G2) = �a�  V(b) = �a�  �c, d� = �, etc., as required by the definition
of a cycle in Definition 1.13.

The bases in (H,V) are the sets �, �a�, �b�, �c�, �d�, �a, c�, �b, d�. We see that
the maximum cardinality of a basis, i.e., the combinatorial dimension of (H,V), is

indeed 2.

A 2-dimensional basis-regular cyclic violator space. The violator space in the
previous example is not basis-regular: we have dim(H,V) = 2, but the two-element

set �a, b� has a single-element basis �a�. However, it turns out that a cyclic violator
space of dimension 2 can be found even if we require it to be basis-regular.

We set H := �a, b, c, d, e, f �. We give the mapping V by the following list.

V(�) = abcdef, V(a) = bcdef, V(b) = acdef, V(c) = abdef,

V(d) = abcef, V(e) = abcdf, V(f) = abcde,

V(ab . . . abf) = cde, V(bc . . . abc) = def, V(cd . . . bcd) = aef, V(de . . . cde) = abf,
V(ef . . . def) = abc, V(af . . . aef) = bcd,

V(ac . . . ace) = bdf, V(ae) = bcdf, V(bd . . . bdf) = ace, V(bf) = acde,
V(ce) = abdf, V(df) = abce,

V(ad . . . abcdef) = �,V(be . . . abcdef) = �, V(cf . . . abcdef) = �.
The two first lines settles the sets of small cardinality; they ensure that the

problem is basis-regular. Sets in the third and fourth line form the desired cycle:
G1 = �a, b�, G2 = �b, c�, G3 = �c, d�, G4 = �d, e�, G5 = �e, f �, G6 = �a, f �.
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The problem is degenerate, since the set H = �a, b, c, d, e, f � has three bases:�a, b�, �c, d� and �e, f �. Note that the sets that account for degeneracy do not
appear in the cycle.

A 3-dimensional basis-regular nondegenerate cyclic violator space. It is

not obvious how to find an example of a cyclic basis-regular nondegenerate violator
space, regardless of the dimension. The following example can be constructed with

help of noneuclidean oriented matroid programs (see Chapter 7) or cyclic unique
sink orientations of cubes [GMRŠ06].

We set H := �a, b, c, d, e, f �. We give the mapping V by the following list.

V(cde . . . bcdef) = a, V(ace . . . acde) = bf , V(aef . . . acdef) = b,

V(abf . . . abef) = cd, V(bdf . . . abdef) = c, V(bcd . . . bcdf) = ae,
V(abd . . . abde) = cf , V(cdf . . . acdf) = be, V(bce . . . bcef) = ad,

V(abc . . . abcdef) = �.
For the sets F not present on the list we define V(F ) := H � F . The cycle is

formed by the sets in the first two lines: G1 = �c, d, e�, G2 = �a, c, e�, G3 = �a, e, f �,
G4 = �a, b, f �, G5 = �b, d, f �, G6 = �b, c, d�.
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In this chapter we prove several bounds on the number of violator spaces of given

parameters.
Let V (n, d) be the number of violator spaces on a fixed set of constraints H with�

H
�
= n and with the combinatorial dimension at most d. Let V (n) be the number

of all violator spaces without the restriction on the dimension. Since the dimension

of a violator space (H,V) is at most
�
H
�
, we have V (n) = V (n, n). Let V ∗

RN(n, d)

be the number of basis-regular nondegenerate violator spaces with
�
H
�
= n and

combinatorial dimension exactly d, and let the number of acyclic ones among them

be V ∗
RNA(n, d). Obviously V ∗

RNA(n, d) � V ∗
RN(n, d) � V (n, d).

The bounds proved in this chapter are summarized in the following theorem.

Theorem 5.1. For the functions V (n), V (n, d), V ∗
RN(n, d), and V ∗

RNA(n, d) the

following bounds hold.
� Equation (5.1): V (n) � exp �n2n−1 ln 2�� Equation (5.2): V (n, d) � exp �(e/d)d nd+1 ln 2�� Equation (5.4): V ∗

RN(n, d) � exp �O �d(e/d)d nd lnn��� Equation (5.5): V ∗
RNA(n, d) � exp �Ω �d−1/2(e/d)d (n � d)d��

The exact values of V and V ∗
RN for small n and d are given in Table 5.1. The

values have been determined by a computer search.

d�n 0 1 2 3 4 5

0 1 1 1 1 1 1
1 2 6 26 150 1082

2 9 183 28732 ?

3 246 265214 ?
4 336852 ?

d�n 0 1 2 3 4 5

0 1 1 1 1 1 1
1 1 2 6 24 120

2 3 12 240 ?

3 51 1844 ?
4 27451 ?

Table 5.1. Exact values of V (n, d) (left) and V ∗
RN(n, d) (right)
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In this section the upper bounds on the number of violator spaces are established.

A simple bound. We establish a simple upper bound on the number of violator

spaces by relating violator spaces to the orientations of edges of a hypercube.
Consider a finite set H with

�
H
�
= n. By an n-dimensional hypercube we mean

a graph whose vertices are subsets of H and whose edges connect sets differing by
presence of exactly one element.

For each violator space (H,V) with the set of constraints H we construct an
orientation � of the edges of the hypercube. We proceed in the following way: for

every G � H and h � H � G, the vertices G and G
� �h� are adjacent in the

hypercube. If h �� V(G), we add into � the oriented edge (G
� �h�, G), otherwise

we add the oriented edge (G,G
� �h�).

From the orientation � we can reconstruct the original violator space: given a
set G of constraints, the set V(G) contains exactly the elements h � H �G satisfying

(G,G
� �h�) � � . Using consistency of violator spaces one can see that for distinct

violator spaces we obtain distinct orientations.

The n-dimensional hypercube has n2n−1 edges, hence the number of its orienta-

tions is 2n2n−1

= exp(n2n−1 ln 2), and from the discussion above we know that the
number of violator spaces on n constraints is bounded from above by this number.

To summarize, we have proved that

V (n) � exp(n2n−1 ln 2). (5.1)

An estimate for violator spaces of a bounded dimension. We proceed
with establishing a bound employing the combinatorial dimension. We use Propo-

sition 4.4 asserting that for determining a violator space it is sufficient to specify
the values of V(B) for all bases B. In a violator space of combinatorial dimension

bounded by d, the possible bases are only sets of cardinality at most d. The number
of violator spaces is bounded by the number of possible mappings V

′ :
� � 2H ,

where
�

= �G � H :
�
G
� � d� is the set of prospective bases, since every such

mapping V
′ can be extended to a full violator mapping V : 2H � 2H in at most one

way.
For a n-element set H , the number of possible bases is�� �

=

�
n

0	 +

�
n

1	 + � � �+
�
n

d	 � �en
d
�d

(for a proof of the inequality see, e.g., [MN98]). This gives

V (n, d) � ���
2H ���

|P| � (2n)(
en
d )d = exp

�
(e/d)dnd+1 ln 2� . (5.2)

It might seem that the knowledge of the set of bases carries quite a lot of

information already, under lucky conditions possibly even enough as to completely
determine the violator space. If this was true, this might give a better bound on
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V (n, d). Unfortunately, this is not the case. In particular, in basis-regular violator

spaces of combinatorial dimension d, every set of d elements is a basis, and no set
with more than d elements is a basis. Yet, basis-regular violator spaces of fixed

dimension abound.

A bound for nondegenerate basis-regular violator spaces. In the next bound
we employ nondegeneracy and basis-regularity.

First we prove a useful lemma concerning the structure of nondegenerate basis-
regular violator spaces. The lemma was originally proved by Clarkson [Cla93] for

linear programming problems. An LP-type version was formulated by Gärtner and
Welzl [GW01]. The proof presented here is a straightforward generalization of the

previous proofs.

Lemma 5.2. A basis-regular nondegenerate violator space (H,V) of combina-

torial dimension d has exactly (d+k−1
d−1 ) bases B with exactly k violators (i.e., with�

V(B)
�
= k), for k = 0, . . . , n � d.

Proof. Let bk be the number of bases with exactly k violators.
Since a basis B is a basis of G if and only if B � G � H �V(B), a d-element basis

with k violators is a (unique) basis of exactly (n−d−k
r−d ) sets of size r. By considering

all sets of size r for d � r � n we get

n−d�
k=0

bk

�
n � d � k

r � d 	 =

�
n

r	 . (5.3)

Regarding the values bk as unknowns, this gives a system of n � d+1 equations

with n � d+1 unknowns. The last r � d coefficients in the equation (5.3), i.e., those
with k � n � r + 1, are 0, and the preceding one, i.e., the one with k = n � r, is

equal to 1. Therefore the matrix of the system is triangular and all elements on
the diagonal are 1, hence the system has a unique solution. One can check that

the claimed solution bk = (d+k−1
d−1 ) works by substituting it into the equation (5.3),

getting
n−d�
k=0

�
d � 1 + k

d � 1 	 �
n � d � k

r � d 	 =

�
n

r	 .
This identity can be proved by standard manipulations of binomial coefficients; see
Equation (5.26) in [GKP89].

This completes the proof of the lemma.

Now we describe how to encode a violator space into a series of choices. For

each set we determine its basis, beginning with large sets. We count the number of
choices in each step; then by multiplying we get an upper bound on the number of

all basis-regular nondegenerate violator spaces.
We start with the whole of H . We choose any d-element subset BH of H to

become the basis of H . We have (nd) possible choices. Note that besides H , this
also fixes the basis for all sets G with BH � G � H , which are exactly the sets with

V(G) = �.
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Now we proceed with sets of size n � 1. For each of these sets whose basis

remains unknown after the previous step, we want to pick the basis now. For each
of them, we have at most (n−1

d ) < (nd) choices. The sets in question are exactly those

that will have exactly one violator in the resulting violator space; to see this, note
that a (n � 1)-element set has at most one violator, and the sets F with V(F ) = �
have their bases determined in the previous step. Therefore Lemma 5.2 asserts that
there are exactly (d+1−1

d−1 ) sets to process in this step. We stick to any suitable choice

of bases for these sets and we proceed to sets of smaller size.
In the s-th step, we consider all sets of size r := n � s + 1 that do not have a

basis determined in the previous steps. We claim that the sets in question are those
with exactly k := n � r violators in the resulting violator space. To see this, note

that a set with more than k violators must have fewer than r elements to satisfy
consistency. On the other hand, choose an r-element set F with the number of

violators
�
V(F )

�
< k; we claim that its basis is already known from previous steps.

Let BF be the basis of F and put G := H � V(F ) � F . From locality we get
V(G) = V(F ) = V(BF ) and from nondegeneracy BF = BG, therefore the basis of F

is known since we have picked BG to be the basis of G.
Now, from Lemma 5.2 follows that there are exactly (d+k−1

d−1 ) sets for which the

basis has to be determined in this step. For each of them we choose its basis to be
some of its (rd)

� (nd) subsets.

The number N of choices we were allowed to take up until now is

N � n−d�
k=0

�
n

d	(d+k−1

d−1 )

=

�
n

d	
n−d
P

k=0

(d+k−1

d−1 )

=

�
n

d	(n
d)

.

When all sets G of size
�
G
� � d have been processed, the description of the

violator space is nearly complete. It remains only to decide about the values of
V(F ) for sets F of size

�
F
�
< d; for a while, call these sets small. The number of

small sets is

S =

�
n

0	 +

�
n

1	 + � � �+
�

n

d � 1	 � �en
d
�d
.

For each small set F we need H � V(F ) to be a small set, for otherwise we lose

basis-regularity. Therefore the number of ways to define the mapping V on small

sets is bounded by SS.
At the end the violator space is completely determined, and we get that the

number of violator spaces is

V ∗
RN(n, d) � N � SS � �

n

d	(n
d) �en

d
�d( en

d )
d � ��en

d
�d( en

d )
d�2

=

= exp �(ln e + lnn � ln d) 2d
�en
d
�d�

= exp �O �d �e

d
�d
nd lnn

��
. (5.4)
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To get a lower bound on V ∗

RNA, we present a recursive construction of nondegenerate
basis-regular acyclic violator spaces.

We start with small cases. For any n, there is exactly one violator space of
dimension 0, namely V(G) = � for all G, and it is basis-regular, nondegenerate and

acyclic. Therefore V ∗
RNA(n, 0) = 1.

Now we consider d = 1. We choose any linear ordering < of H and we put

V(G) := �h � H : h > g for all g � G�.
Here (H,V) is a violator space, and since every nonempty set G has its largest
element as a basis, (H,V) is a basis-regular nondegenerate acyclic violator space

of dimension 1. For various choices of the ordering < we obtain distinct violator
spaces, so V ∗

RNA(n, 1) � n!.

For a given d � 0, the following construction gives a basis-regular nondegenerate
acyclic violator space on n = d constraints. Let H be a d-element set, and set

V(G) := H �G for every G � H . Then H is a basis of itself, therefore the dimension
of the violator space is exactly d. This proves that V ∗

RNA(d, d) � 1 for every d � 0.

We continue with a construction that allows us to glue two violator spaces
together.

Proposition 5.3. Consider two violator spaces (H,V1), (H,V2) on the same set
of constraints. Let di be the combinatorial dimension of (H,Vi) for i = 1, 2. Let

h �� H be a new constraint; set H ′ := H
� �h�. We define a mapping V : 2H ′ � 2H ′

as

V(G) :=

�
V1(G)

� �h� if h �� G,
V2(G � �h�) if h � G.

Then (H ′,V) is a violator space. Its combinatorial dimension d is max(d1, d2+1). If
both of the spaces (H,Vi) are basis-regular then (H ′,V) is basis-regular. If both of

the spaces (H,Vi) are nondegenerate and d1 = d2+1 then (H ′,V) is nondegenerate.
If both of the spaces (H,Vi) are acyclic then (H ′,V) is acyclic.

Proof. The proof consist of a technical reduction of the claimed statements to
the corresponding statements in the original violator spaces, branching to cases

depending on whether h � F,G.

Consistency. If h �� G, we have V(G)  G = (V1(G)
� �h�)  G = (V1(G)  G)

�
(�h�  G) = �. If h � G, we have V(G)  G = V2(G � �h�)  G = V2(G � �h�) 
�(G � �h�) � �h�� = �V2(G � �h�)  (G � �h�)� � �V2(G � �h�)  �h�� = �.
Locality. Assume that F � G and G  V(F ) = �; we want to check that V(G) =

V(F ). In the following paragraphs we distinguish three cases.
If h �� F and h �� G then V(G) = V1(G)

� �h� and V(F ) = V1(F )
� �h�. Thus

G  V1(F ) � G  (V1(F )
� �h�) = G  V(F ) = �, so locality for V1 applies. We get

V1(F ) = V1(G), and V(F ) = V(G) follows.

If h �� F and h � G then h � V(F ) = V1(F )
� �h�, so the intersection G  V(F )

contains h, therefore it is nonempty. So this case does not occur.
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If h � F and h � G, we have V(G) = V2(G � �h�) and V(F ) = V2(F � �h�).
Thus (G � �h�)  V2(F � �h�) � G  V2(F � �h�) = F  V(F ) = �, so locality for V2

applies. We get V2(F ) = V2(G), and V(F ) = V(G) follows.

Dimension. For a basis of one of (H,Vi) we construct a basis of (H ′,V) and vice

versa. The constructions are straightforward but tedious. This will however proof
the desired equality for dimensions.

Consider a basis B of (H,V1). We claim that B is a basis of (H ′,V). For a
proper subset F � B we have B  V(F ) = B  (V1(F )

� �h�) � B  V1(F ) which

is nonempty since B is a basis for V1. So the claim holds. This proves that d1
� d.

Consider a basis B of (H,V2). We claim that B
� �h� is a basis of (H ′,V).

For a proper subset F � B
� �h� we distinguish two cases. If h �� F , we have

h � (B
��h�)(V1(F )

��h�) = (B
��h�)V(F ). If h � F , we have (B

��h�)V(F ) �
B  V2(F � �h�), which is nonempty since B is a basis for V2. In both cases we

proved that (B
� �h�)V(F ) is nonempty, so the claim holds. Therefore d2 +1 � d.

Finally, consider a basis B of (H ′,V). We claim that if h �� B then B is a basis

in (H,V1), and if h � B then B � �h� is a basis in (H,V2). In the first case, for
F � B we have B  V1(F ) = B  V(F ) �= �; in the second case, for F � B � h (i.e.,

F
� �h� � B), we have B  V2(F ) = B  V(F

� �h�) �= �. So the claim holds and
this proves that d � max(d1, d2 + 1).

Basis-regularity. Assume that the violator spaces (H,V1) and (H,V2) are basis-

regular. Consider a set G � H ′; we claim that its basis B in (H ′,V) is unique.

Again, the proof depends on whether h � G.
If h �� G, we have V(G) = V1(G)

� �h�. Assume that B � G is a basis of G

in (H ′,V); we have h �� G, therefore V(B) = V1(B)
� �h�, and from the discussion

regarding the dimension, B is a basis in (H,V1). Since V(B) = V(G), we have

V1(B) = V1(G), therefore B is a basis of G in the basis-regular violator space
(H,V1), which determines B uniquely.

If h � G, we have V(B) = V2(G � �h�). Assume that B � G is a basis of G
in (H ′,V). Note that h � B, since otherwise h � V(B) � V(G), i.e., V(B) �= V(G).

Now we have V(B) = V2(B � �h�) and from the discussion of the dimension, B � �h�
is a basis in (H,V2). Since V(B) = V(G), we have V2(B � �h�) = V2(G � �h�),
therefore B � �h� is a basis of G � �h� in the basis-regular violator space (H,V2),
which determines B uniquely.

Nondegeneracy. Assume that the violator spaces (H,V1) and (H,V2) are nonde-
generate and d1 = d2 + 1 = d. Consider a set G � H ′ with

�
G
� � d; we claim that

for its basis B in (H ′,V) we have
�
B
�
= d. Again, we distinguish the cases h � G

and h �� G.

If h �� G, from the previous parts of the proof we know that B is a basis in
(H,V1). Since (H,V1) is nondegenerate, and

�
G
� � d = d1, we have

�
B
�
= d1 = d.

If h � G, we have h � B and we know that B � �h� is a basis of G � �h� in
(H,V2). Since

�
G � �h� � � d � 1 = d2, we have

�
B � �h� �= d2, i.e.,

�
B
�
= d2 +1 = d.
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Acyclicity. Assume that (H ′,V) is cyclic. By definition, this means that for some

G1, . . . , Gk � H ′ we have Gi  V(Gi+1) = � for all i = 1, . . . , k (for simplicity we set
Gk+1 := G1), and V(G1) �= V(G2). We distinguish three cases depending on how

many of the sets Gi contain h.
If h �� Gi for all i, we have a cycle G1, . . . , Gk in H1. If h � Gi for all i, we

have a cycle G1 � �h�, . . . , Gk � �h� in H2. If h is contained in some of the sets Gi

but not in all of them, there is certainly some ` such that h � G` but h �� G`+1.

However, now h � V(G`+1) by definition of V. Hence h � G`  V(G`+1), therefore
the intersection is nonempty, and the witness G1, . . . , Gk for cyclicity is bogus.

This completes the proof of Proposition 5.3.

From the construction one can see that for distinct choices of V1 and V2 we get
distinct resulting mappings V. Therefore the proposition gives the recursive bound

V ∗
RNA(n, d) � V ∗

RNA(n � 1, d) � V ∗
RNA(n � 1, d � 1) for n, d � 1.

For logarithms L(n, d) := lnV ∗
RNA(n, d) we get the recurrence

L(n, d) � L(n � 1, d) + L(n � 1, d � 1).

The examples of violator spaces preceding the statement of Proposition 5.3 prove

that L(n, 1) � lnn! � n � 2 and L(d, d) � ln 1 = 0 for every n, d � 1. Us-
ing Lemma 5.4 below, the recurrence implies that L(n, d) is bounded from below

by (n−2
d ). By Stirling’s approximation of the factorial (see, e.g., Equation (4.23)

in [GKP89]) we have�
n � 2

d 	 � (n � 2 � d)d

d! � (n � 2 � d)d

C(d/e)d
�
d

= Ω �d−1/2(e/d)d (n � d)d�,

where C is a constant slightly greater than
�

2π. Therefore we conclude with the

bound

V ∗
RNA(n, d) � exp

�
Ω �d−1/2(e/d)d (n � d)d�� . (5.5)

It remains to state and prove the lemma concerning the recurrence.

Lemma 5.4. Let L(n, d) be a function of two integer variables satisfying
� L(d, d) � 0 for all d � 1,� L(n, 1) � n � 2 for all n � 1,� L(n, d) � L(n � 1, d) + L(n � 1, d � 1) for all n, d � 2.

Then we have

L(n, d) �
�
n � 2

d 	 (5.6)

for all n � d � 1.

Proof. We proceed by double induction. For d = 1 we have L(n, 1) � n�2 = (n−2
1 ),

hence the inequality (5.6) holds.
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For an induction step let d be fixed. To prove (5.6) for all n, let us assume that

it holds for d � 1 for every n. We have L(d, d) � 0 = (d−2
d ), and induction on n gives

L(n, d) � L(n � 1, d) + L(n � 1, d � 1) �
�
n � 3

d 	 +

�
n � 3

d � 1	 =

�
n � 2

d 	 ,
as claimed.

Conclusion. The described construction for the lower bound gives violator spaces

of a very specific structure, so I believe that the actual value of V ∗
RNA is closer to

the upper bound from Equation (5.4).
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Clarkson [Cla95] developed an elaborate randomized algorithm for solving linear
programs with few variables and many constraints. The expected running time of

the algorithm in fixed dimension is linear in the number of constraints.

Gärtner and Welzl [GW96] noted that the algorithm works for abstract LP-type
problems. Chazelle and Matoušek [CM96] presented a derandomized version of the

algorithm. We can use the equivalence of violator spaces and LP-type problems
(Theorem 1.14) to conclude that these algorithms can be used for acyclic violator

spaces.
In this chapter we prove that Clarkson’s algorithm works for violator spaces

with �
� even without assuming acyclicity. The analysis we give is almost iden-

tical on the abstract level to the analysis of the LP-type version of the algorithm.

Furthermore we prove that the class of violator spaces in a certain sense coincides
with the class of problems solvable by Clarkson’s algorithm (Proposition 6.14).

� ��� �
�� ���� �	��


Expected number of violators. The analysis of the running time of Clarkson’s

algorithm relies on a bound on the expected number of violators of a random set of

constraints. Before presenting the algorithm, let us derive the bound.
We can talk about some kind of monotonicity in violator spaces, even if the

order is absent here. The following is an easy consequence of Definition 2.6.

Lemma 6.1 (Monotonicity for violator spaces). Let (H,V,� ) be a violator
space with �

� . Let F � E � G � H and let F �� � . Then

V(F ) = V(G) implies V(F ) = V(E) = V(G).

Proof. We have E  V(F ) � G  V(G) = �, so locality yields V(E) = V(F ).

The definition of basis can be used to prove the following observation, well-

known to hold for LP-type problems [GW96].

Observation 6.2. Let (H,V) be a violator space. For R � H with R �� � and all
h � H , we have the following equivalences:
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(i) V(R) �= V(R
� �h�) if and only if h � V(R);

(ii) V(R) �= V(R � �h�) if and only if h is contained in every basis of R.

We say that a constraint h is extreme in R if the conditions of the equivalence (ii)
hold.

Proof. The equivalence (i). If h �� V(R), we get (R
� �h�)  V(R) = � and

by locality V(R) = V(R
� �h�). On the other hand, if h � V(R) then we get

V(R) �= V(R
� �h�) from consistency applied to R

� �h�.
The equivalence (ii). First assume that R � �h� �� � . If V(R) = V(R � �h�),

there exists a basis B of R � �h�, and this B is also a basis of R that does not
contain h. Conversely, if there is some basis B of R that does not contain h, then

V(R) = V(R � �h�) follows from monotonicity.
Now assume that R � �h� � � . We claim that in this case h is extreme,

i.e., that both sides of the equivalence to prove are true. Since R �� � , we have
h � V(R � �h�) from relation between V and � (Definition 2.6). Consistency gives

V(R) �= V(R � �h�), which is the left-hand side of the equivalence. Now let B be
any basis of R. If h �� B, we have B � R � �h�, hence B � � , which is not possible.

Therefore h is contained in every basis of R, and this is the right-hand side of the
equivalence.

Observation 6.2 implies that in a violator space of combinatorial dimension d,

every bounded set has at most d extreme elements. This in turn yields a bound
for the expected number of violators of a random subset of constraints. To prove

the bound we use a general lemma due to Gärtner and Welzl [GW01]. For the
reader’s convenience and for sake of completeness, we present the lemma including

the original proof.

Lemma 6.3 (Sampling lemma). Consider arbitrary sets H and M and a

mapping ψ : 2H � M . Let n =
�
H
�
. For Q,R � H we define

�
(R) :=

�
h � H � R : ψ(R) �= ψ(R

� �h�)�,�
(Q) :=

�
h � Q : ψ(Q) �= ψ(Q � �h�)�.

For 0 � r � �
H
�
, let vr be the expected value of

��
(R)

�
for R chosen uniformly at

random among all subsets of H with r elements. Let xr be defined as the expected

value of
��

(R)
�
under the same conditions. Then for every r = 0, . . . , n we have

vr =
n � r

r + 1
xr+1.

Proof. By definitions of
�

and
�

we have for every s � H � R
s � �

(R) if and only if s � �
(R

� �s�).
Therefore we get�

n

r	vr =
�

R∈(H
r )

�
s∈H\R

�
s � �

(R)� =
�

R∈(H
r )

�
s∈H\R

�
s � �

(R
� �s�)� =
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=
�

Q∈( H
r+1)

�
s∈Q

�
s � �

(Q)� =

�
n

r + 1	xr+1 =

�
n

r	 n � rr + 1
xr+1.

For our situation we have the following corollary.

Corollary 6.4. Let (H,V,� ) be a violator space with �
� of combinatorial

dimension d with
�
H
�
= n. Fix a set W � H with W �� � . For r = 0, . . . , n �

�
W

�
,

let vr be the expected number of violators of the set W
�
R, where R is uniformly

random subset of H �W of size r. Then

vr
� d

n � r

r + 1
.

Proof. We use the Sampling lemma for random subsets of H � W . We define

ψ(R) := V(W
�
R). Then the set

�
(R) contains exactly the extreme elements of

W
�
R; hence

�
X(R)

� � d for all R. The bound on vr follows.

� �� � � �	�� ��� �� ��	 
 �������
Let (H,V,� ) be a violator space with �

� of combinatorial dimension d. The

violator space is given implicitly by the following primitive operations:

Primitive 6.5 (Violation test). Given F � H with
�
F
� � d and h � H � F ,

decide whether h � V(F ).

Primitive 6.6 (Boundedness test). Given F � H with
�
F
� � d, decide whether

F � � .

We assume that an initial bounded basis B0 � H , B0 �� � is provided. If we
have a violator space without �� , i.e., � = �, we can safely set B0 := �.

Our goal is to find a basis of H . We build the algorithms so that they can find
a basis of G0

�
B0 for any given G0 � H . Let the size of G := G0 � B0 be denoted

by n.

� �� � ��	 ���� �
 � 
 �������
With Primitives 6.5 and 6.6, the problem can be solved in a brute-force manner by

going through all sets of size at most d, testing each of them for being a basis of

G′ := G
�
B0. A set B � G′ is a basis of G′ if and only if B �� � and

h � V(B � �h�) for every h � B,
h �� V(B) for every h � G′ � B.

Consequently, the number of invocations of the primitive tests carried out in order

to find a basis of G′ is at most

(1 + n+ d)

d�
i=0

�
n

i	 = O(nd+1),
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where in the parentheses the 1 accounts for the boundedness test and the n+ d for

the violator tests. In the next three sections we show that this can be substantially
improved.

� �� � � �
���� �� ���� 
 �������
Clarkson’s first algorithm calls Clarkson’s second algorithm (Basis2) as a subrou-
tine. Given an initial bounded basis B0 in H and a set G � H with G  B0 = �,
both algorithms compute a basis of G

�
B0.

Algorithm 6.7 (������).
Input: a set G � H , a basis B0 in H with B0  G = � and B0 �� � .
Output: a basis of G

�
B0.

n :=
�
G
�

IF n � 9d2 THEN RETURN Basis2(G,B0)

ELSE

r := �d�n�
W := �
REPEAT

choose uniformly random R � G �W with
�
R
�
= r

C := Basis2(W
�
R,B0)

V := G  V(C)

IF
�
V
� � 2

�
n THEN

W := W
�
V

UNTIL V = �
RETURN C

Assuming Basis2 is correct, this algorithm is correct as well: if B is a basis of
F � G �

B0 with F �� � and in addition B has no violators in G
�
B0, then B is a

basis of G
�
B0.

The algorithm augments the working setW at most d times, which is guaranteed

by the following observation.

Observation 6.8. Let (H,V,� ) be a violator space with �
� . Let G′ � H . Let

F � G′ with F �� � and G′  V(F ) �= �. Then every basis B of G′ contains at least
one element from G′  V(F ).

Proof. Let B be a basis of G′ such that B  G′  V(F ) = �; we want to prove that

this leads to a contradiction.

Since B � G′, we have B  V(F ) = �. From consistency applied to the set F
we get (B

�
F )  V(F ) = �. Now locality gives V(F ) = V(B

�
F ). Monotonicity

for sets B � B
�
F � G′ gives V(B

�
F ) = V(G′), hence V(F ) = V(G′). Therefore

G′  V(F ) = G′  V(G′) = �, which contradicts the condition imposed on F .

Since the set W always grows at most by 2
�
n elements, we see that the size

of W does not exceed 2d
�
n. Therefore the first argument for every invocation of

Basis2 is of size at most 3d
�
n.



66 CLARKSON’S ALGORITHM

The set V can be computed as G  V(C) = �h � G � C : h � V(C)�. Hence in

every iteration of the REPEAT loop we invoke the violation test at most n times.
Now we determine the expected number of iterations through the loop. Corol-

lary 6.4 applied to (G,V
�
G,�  2G) bounds the expected number v of violators of

W
�
R
�
B0 with uniformly random set R of r = �d�n� elements:

v � d
n � r

r + 1
� dn

�d�n� + 1
� �

n.

The Markov inequality implies that the expected number of calls to Basis2 before
we next augment W is at most 2. Therefore the expected number of iterations of

the loop is bounded by 2d.

Lemma 6.9. Algorithm Basis1 computes a basis of G with
�
G
�
= n using an

expected number of at most 2dn calls to Primitive 6.5, and an expected number of
at most 2d calls to Basis2 with sets of size at most 3d

�
n.

� �� � � �
���� �� �	��� 
 �������
This algorithm calls the trivial algorithm as a subroutine. Instead of adding vio-
lated constraints to a working set, it increases their probability of being selected in

further iterations. Technically this is done by maintaining G as a multiset, where
µ(h) denotes the multiplicity of h. For a set F � G we define µ(F ) := �h∈F µ(h)

to be the compound multiplicity of all elements of F . Sampling from G is done as
before, imagining that G contains µ(h) copies of every element h.

Algorithm 6.10 (������).
Input: a set G � H , a basis B0 in H with B0  G = � and B0 �� � .

Output: a basis of G
�
B0.

n :=
�
G
�

IF n � 6d2 THEN

RETURN Trivial(G
�
B0)

ELSE

r := 6d2

REPEAT

choose µ-distributed random R � G with
�
R
�
= r

replace repeated elements of R by a single instance

C := Trivial(R
�
B0)

V := G  V(C)

IF µ(V ) � µ(G)/3d THEN

for every h � V set µ(h) := 2µ(h)

UNTIL V = �
RETURN C

Again we see that the algorithm Basis2 is correct, provided that Trivial is
correct.

We say that an iteration of the loop is successful if we change the weights of
elements. To estimate how many unsuccessful iterations pass between two successful
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ones we again use Corollary 6.4. To make its application formally correct for the

case of multisets, we assume that G = �g1, . . . , gn�, and we sample from the set

Ĝ =
�
g
(1)
1 , . . . , g

(µ(g1))
1 , . . . , g

(1)
n , . . . , g

(µ(gn))
n �.

For the expected value v of number µ(V ) of elements of Ĝ that violate the random
set R of r = 6d2 elements, Corollary 6.4 gives

v � d
µ(G) � r

r + 1
<
dµ(G)

6d2 =
µ(G)

6d
.

From the Markov inequality we get that the expected number of calls to Trivial

before the next successful iteration is at most 2.

It remains to bound the number of successful iterations.

Lemma 6.11. Let k be a positive integer. After kd successful iterations, we have

2k � µ(B) � µ(G) � nek/3

for every basis B of G. In particular, k < 3 lnn.

Proof. Every successful iteration multiplies the total weight of elements in G by
at most (1 + 1/3d), which gives the upper bound. For the lower bound, we use

Observation 6.8 to argue that each successful iteration doubles the weight of some
element in B, meaning that after kd successful iterations, some element has been

doubled at least k times. Because the left-hand side exceeds the right-hand side for
k � 3 lnn, the bound on k follows.

Summarizing, we get the following lemma.

Lemma 6.12. Algorithm Basis2 computes a basis of G with an expected number
of at most 6dn lnn calls to Primitive 6.5, and an expected number of at most 6d lnn

calls to Trivial with sets of size at most 6d2 + d.

� �� � ��� �� ��� ��	 �������� �

Theorem 6.13. Let (H,V,� ) be a violator space with �
� of combinatorial

dimension d. Let n :=
�
H
�
. Using a combination of the above algorithms, a basis

of H can be found using expected number of

O
�
dn+ dO(d)�

calls to the primitive tests, provided that an initial basis B0 �� � is available.

Proof. Using the bound for the trivial algorithm, Basis2(G,B0) can be imple-
mented to require an expected number of at most

O
�
d log

�
G
�
(
�
G
�
+ dO(d))�
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calls to the primitive tests. Applying this as a subroutine in Basis1(H �B0, B0), size

of G is bounded by 3d
�
n, and we get an overall number of calls to the primitives

at most

O
�
dn+ d2(log n(d

�
n+ dO(d)))�

The terms d2 lognd
�
n and d2 log ndO(d) are asymptotically dominated either by dn

or by dO(d), and we get the simplified bound of O
�
dn+ dO(d)�.

� �� � � 		� �� ��	 �� 	� �
 � �
�	  � ��� ���	� �	��

We feel that one thing concerning a behavior of unbounded sets deserves explicit

mentioning.
Recall that we stop the algorithm when we find a set F with V(F ) = �. If F �� �

then locality implies that every basis of F is a basis of H . However, for F � � this
does not need to hold. In particular, we can construct LP-type problems of small

fixed dimension with very large unbounded sets F with no violators.
For a positive integer n let

H := �a1, . . . , an, b1, . . . , bn, c1, . . . , cn�.
Define the weight mapping w as follows:

w(G) :=

�
0 if there exists i with all ai, bi, ci � G,

�
� otherwise.

One can easily verify that (H,w) is an LP-type problem by checking the conditions
of Definition 1.1. Bases in this problem are the empty set and the sets Bi :=�ai, bi, ci� for i = 1, . . . , n, therefore dim(H,w) = 3. However, the n-element set�a1, . . . , an� has no violators.

� �� � �� � �
���� �� 
 ������� ���� � �	 �
�	 
 � � �
�� ��
�	

One can ask whether one can invent yet another framework, possibly more general

than violator spaces, for which the Clarkson’s algorithm works and which admits an
analysis of the running time similar to the one presented above. In this section we

show that in a well-defined sense this is not possible. We identify a property that
any abstract structure needs to satisfy if the analysis of the algorithm is applicable.

Then we prove that this property already implies that we have a violator space.
For simplicity let us assume that all subproblems are bounded. Let us consider

algorithm schemes that represent constraints by an abstract finite set and that use
the violation test as a subroutine to access to the structure of the problem. We

retain the notation H for the set of constraints and V(G) for the set of constraints
violating the optimum solution with respect to G. Let us admit that the condition

of consistency is justified by its own.
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Now note that in the analysis of Basis1 (Algorithm 6.7) we needed to bound

the number of iterations of the loop, which we did using Observation 6.8. Gärtner
(personal communication, June 2004) suggested to take the property resulting from

Observation 6.8 as an axiom, and he conjectured that a pair (H,V) that satisfies
consistency and this special axiom is necessarily a violator space. In this section we

prove this conjecture.

Proposition 6.14. Consider a set H and a mapping V : 2H � 2H satisfying the

following properties:
�

V(G)  G = � for every G � H (consistency);� if a set C � G satisfies G  V(C) �= �, then every B � G with V(B) = V(G)
contains at least one element from V(C) (Gärtner’s condition).

Then (H,V) is a violator space.

We prove the proposition using a series of lemmas. First we give a slight refor-
mulation of the Gärtner’s condition that is more convenient to work with. Note that

for the proof of Lemma 6.16 below we need both implications of the equivalence.

Lemma 6.15. Let H be a finite set and let V be a mapping 2H � 2H . Assume

that the pair (H,V) satisfies consistency. Then the Gärtner’s condition is equivalent
to the following statement:

Let G be a subset of H and let F,C be subsets of G. Suppose that V(F ) =
V(G) and F  V(C) = �. Then G  V(C) = �.

Proof. Both implications of the equivalence follow easily by contradiction.

From now on, whenever we refer to Gärtner’s condition, we actually use the
condition of Lemma 6.15. We continue with proving that a certain way of deriving

subproblems preserves consistency and the Gärtner’s condition.

Lemma 6.16. Let a pair (H,V) satisfy consistency and the Gärtner’s condition.
For a fixed set M � H we consider a problem in which the constraints of M

are enforced. More precisely, we set H ′ := H � M and for G � H ′ we define

V
′(G) := V(G

�
M). Then the pair (H ′,V′) satisfies consistency and the Gärtner’s

condition.

Proof. Consistency is immediate from the definition of V
′ and consistency of V:

we have V
′(G)  G = V(G

�
M)  G = �.

We proceed by establishing the Gärtner’s condition. Let C,F,G satisfy the

hypotheses, i.e., C,F � G � H with V
′(F ) = V

′(G) and F  V
′(C) = �; we want to

deduce that G  V
′(C) = �. We have

(F
�
M)  V(C

�
M) = (F  V(C

�
M))

�
(M  V(C

�
M)) = F  V

′(C) = �;
V(F

�
M) = V

′(F ) = V
′(G) = V(G

�
M).

By using the Gärtner’s condition for V with the sets C
�
M , F

�
M , G

�
M we get

(G
�
M)  V(C

�
M) = �,

therefore G  V
′(C) = �.
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Lemma 6.17. Let (H,V) be a pair satisfying consistency and the Gärtner’s

condition. Then for every C � H we have

V(C) = V(H � V(C)).

Consequently, if V(C) �= H �C then V(C) = V(D) for some proper superset D of C.

Proof. We proceed by induction on
�
H
�
. If H = �, the statement of the lemma

trivially holds.
Now let

�
H
�
= n and assume that for sets smaller than n the statement holds.

Let C � H and put F := H � V(C). We want to deduce that V(F ) = V(C).
From consistency we have V(F )  (H � V(C)) = �, hence V(F ) � V(C). Let

us assume that the inclusion is proper; i.e., V(F ) � V(C). We want to arrive at a
contradiction.

We have C � F from consistency, and since V(F ) �= V(C), the inclusion is
proper. In particular we get

�
F
�
> 0. We define V

′ by putting V
′(X) := V(X

�
F )

for every X � H �F . From Lemma 6.16 we infer that (H �F,V′) satisfies consistency

and the Gärtner’s condition. Therefore we can use the induction hypothesis to get

V
′(�) = V

′ �(H � F ) � V
′(�)�.

We set D := (H � F ) � V
′(�). We claim that D �= �; otherwise we had V(F ) =

V
′(�) = H � F = V(C), which is not the case. Now we set G := D

�
F . We have

V(F ) = V
′(�) = V

′(D) = V(G), moreover C,F � G, and finally F  V(C) = � by
definition of F . Therefore the Gärtner’s condition applies and gives G  V(C) = �.
On the other hand, we have D � G by definition of G, and D � H � F = V(C);
therefore D � G  V(C) = �. This is a contradiction with D �= �.

Now we are finally ready to prove that a pair (H,V) satisfying consistency and

the Gärtner’s condition is a violator space.

Proof of Proposition 6.14. It is sufficient to check that (H,V) satisfies locality.

We assume that sets P,Q � H satisfy P � Q and Q  V(P ) = �, and we want to
deduce that V(P ) = V(Q).

First we set C := Q, F := P , and G := H � V(P ). We are going to use the
Gärtner’s condition. We have F � G from consistency, furthermore C � G from

the assumption Q  V(P ) = �, moreover V(F ) = V(G) by Lemma 6.17, and finally
F  V(C) = � from P � Q and consistency. Therefore the assumptions of the

Gärtner’s condition are satisfied, and we infer

(H � V(P ))  V(Q) = �,
therefore V(Q) � V(P ).

Now we use Gärtner’s condition with C := P , F := Q, and G := H � V(Q). We
have F � G from consistency; C � G from P � Q and consistency; V(F ) = V(G)

by Lemma 6.17; and F  V(C) = Q  V(P ) = �. Therefore we obtain

(H � V(Q))  V(P ) = �,
hence V(P ) � V(Q).

Since we proved both inclusions between V(P ) and V(Q), we have the equality.

Therefore locality holds.
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In this chapter we introduce oriented matroids and oriented matroid programming

(often abbreviated to OM programming). Oriented matroids are a mathematical
abstraction arising among others in studies of convexity, point configurations, topol-

ogy, and theoretical chemistry. OM programming captures properties of oriented

matroids related to optimization. Linear complementarity problems, some convex
programming problems, etc., may be expressed in terms of oriented matroid pro-

gramming.
We prove that a wide class of OM programs gives rise to violator spaces with

minus infinity in such a way that solving an OM program corresponds to finding a
basis of the related violator space. In particular, Clarkson’s algorithm is applicable

and for OM programs of fixed rank runs in expected linear time.
We present only the part of the oriented matroid theory relevant to OM pro-

gramming and its relation to models studied in this thesis. We deliberately omit
other aspects and applications of the theory. In particular, we present only one of

the many axiomatic systems. We encourage a reader interested in more informa-
tion to read the introduction chapter [RGZ97] in a handbook, or the monograph

[BLVS+99].
We start with a particular simple linear program and we transform it, step by

step, into an OM program. We try to keep the number of definitions as small as

possible and we illustrate most of the definitions on the linear program. We show
how OM programming encompasses some terms familiar from linear programming,

like bounding cones or duality. In this part we omit all proofs; the reader can find
them in [BLVS+99].

The model linear program is given geometrically by Figure 7.1. The set of
constraints is H = �a, b, c, d�. We are to optimize the value of w :

� 2 � �
given by

the arrow representing the direction of improving1 w.
Note that the arrangement is in a general position, in particular, no two bound-

ary lines are parallel to each other and no boundary line is orthogonal to the opti-
mization direction. This is not necessary to construct the OM program. However,

degeneracy causes some problems when creating the related violator space.

1 ����� ��� �	
� �� � ��	��
� � ��� �� ���
��� � 
��� ����� � ����
� �� ������ � � 	����
� ���� ����� � �� ��	�	����� ��� �����
� �	��� ���� ��� ��	���� � 	� �	���� ��� � 
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a b

c d

Figure 7.1. The model linear program

A

BC

a b

c d

Figure 7.2. Faces of the arrangement

� ��� ���	��	� �
�� ���
First we neglect the optimization nature of the problem and we keep only the
arrangement of the constraints. We introduce oriented matroids as a combinatorial

structure to model the arrangement.

Sign patterns. Every constraint h in the linear program corresponds to a hyper-

plane h0 dividing the plane into two open halfspaces: the one where the constraint
is satisfied and the one where the constraint is violated. Let us call the former one

the positive side of the hyperplane and the latter one the negative side, denoted by
h+ and h− respectively. Furthermore, let h+

0 and h−0 be the corresponding closed

halfspaces.
The central idea is to identify every face of the arrangement by saying for

each hyperplane which of the two halfspaces does contain the face or whether it is
contained in the boundary hyperplane.

For instance, the face A in Figure 7.2 is on the positive side of the constraints c
and d and on the negative side of the constraints a and b. We record this information

by a sign pattern2 whose components encode position of the face A with respect to a,
b, c, and d, respectively. Thus the face A is represented by the pattern (�, �,+,+),

the edge B (which is a face as well) by the pattern (+, 0,+,+), the vertex C by the
pattern (0,+, 0,+), etc. For a face X and a constraint h � H , let Xh denote the

h-component of the pattern representing X.

2 �� 
 ���� �
����� �� � �
� 
 ����� �������� � �	�� ���� ���� 
�� � � � � 
�� �  ��
�������	�
��� 
�	�� �
����� ���� 
 ���� ����	� �� 	���� �	 ������� 
 �	� ����	� �
���  
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D ED∞

a b

c d

Figure 7.3. Unbounded and infinite faces

Extended sign patterns. The oriented matroid theory requires the following
subtle modification. At first we present an informal description valid only for an

arrangement in general position, and then we present a more precise description
working in degenerate positions as well.

We extend the sign pattern of every face by one component, corresponding to
a mythical constraint that we call g. For all faces of the arrangement, we set this

component to +. Thus the face A will actually by represented by the extended

pattern (�, �,+,+,+) rather than by (�, �,+,+).
Furthermore, for every unbounded face X of the arrangement we add a pattern

having the last component 0. We interpret these patterns as faces in the infinity
and we call them infinite faces (not to be confused with unbounded faces of the

arrangement). For instance, the “very distant edge” of the face D is represented by
the pattern D∞ = (�,+, �,+, 0); see Figure 7.3.

Finally, we admit the existence of an “antiworld” containing the negative version
of every face; for instance �A = (+,+, �, �, �).

Note that the negative of an infinite face is an actual infinite face; for example,
�D∞ = (+, �,+, �, 0) = E∞.

By convention, we define one more face consisting of all zeros, i.e., (0, 0, 0, 0, 0).

Formally we introduce the additional constraint g in a way connected to pro-

jective geometry. Let us identify
� d with the affine subspace of

� d+1 given by the
equation xd+1 = 1. Now every constraint h determines a hyperplane h̄0 in

� d+1

given as the affine span of h0
� �0�. This h̄0 divides

� d+1 into halfspaces h̄+

and h̄− containing the “halfhyperplanes” h+ and h− respectively. For the mythical

constraint g we define

ḡ+ :=
�
(x1, . . . , xd+1) : xd+1 > 0�.

By extended sign patterns of the original arrangement we mean the sign patterns of

faces of the new arrangement. In the new arrangement all the boundary hyperplanes
intersect (in the point 0), which explains why we accept the all-zero pattern as a

face.

For the two-dimensional case we can provide the following intuitive interpre-

tation. We embed the plane carrying the arrangement into a three-dimensional
space and we consider a sphere touching the plane by its north pole. We map every

point X in the plane to a pair of antipodal points ψN(X), ψS(X) on the sphere: we
draw a line ` determined by X and the center of the sphere, and we define ψN(X)
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and ψS(X) as intersections of ` with the northern and the southern hemisphere

respectively. As an image of a line in the arrangement we get a great circle. To a
halfplane containing a point X we assign the hemisphere containing ψN(X). We

obtained an arrangement of hemispheres; the mythical constraint g corresponds to

the northern hemisphere.

We call the extended sign patterns of faces the covectors. Note that not all sign
patterns are covectors. For instance (+, �, �,+,+) is not a covector, since the open

hyperplanes a+, b−, c−, and d+ have empty intersection. Similarly, (0, 0, 0,+,+) is
not a covector, since the lines a0, b0, and c0 do not meet in a single point.

All the covectors of the model example are listed here:

++�++, +++++, +++�+, �+�++, �++++, +�+++, +�+�+,

���++, ��+++, ��+�+, ����+, 0+�++, ++0++, 0++++,

+0+++, +++0+, +0+�+, � 0 �++, �+0++, � 0+++, 0 �+++,
+�+0+, 0 �+�+, �� 0++, ��+0+, �� 0 �+, ��� 0+, 0+0++,

+0+0+, 0 0+++, � 0 0++, 0 �+0+, �� 0 0+, ++�+0, ++0+0,
++++0, +++0 0 , +++� 0 , +0+� 0 , +�+� 0 , 0 �+� 0 , ��+� 0 ,

�� 0 � 0 , ���� 0 , ��� 0 0 , ���+0, � 0 �+0, �+�+0, 0+�+0,
��+��, �����, ���+�, +�+��, +����, �+���, �+�+�,

+++��, ++���, ++�+�, ++++�, 0 �+��, �� 0 ��, 0 ����,
� 0 ���, ��� 0 �, � 0 �+�, +0+��, +� 0 ��, +0 ���, 0+���,

�+� 0 �, 0+�+�, ++0 ��, ++� 0 �, ++0+�, +++0 �, 0 � 0 ��,
� 0 � 0 �, 0 0 ���, +0 0 ��, 0+� 0 �, ++0 0 �, 0 0 0 0 0 .

Axioms for oriented matroids. The extended sign patterns of faces satisfy

some important properties that are taken as axioms in the definition of oriented

matroids. In the following, we state the properties and we give an interpretation
for the nontrivial ones.

Axiom (A0). The pattern (0, . . . , 0) is a covector.

Axiom (A1). If X is a covector then its negative �X is a covector.

These two properties are trivial, they reflect the conventions mentioned above.

Axiom (A2). If X,Y are covectors, X � Y defined as follows is also a covector:

(X � Y )h =

�
Xh if Xh �= 0,

Yh if Xh = 0.

In other words, if we replace zero components in a covector by the corresponding
components from another covector, we get a covector.

To interpret (A2), we consider a face X that is not of a full dimension (i.e., it
is contained in some of the boundary hyperplanes, namely these corresponding to

zero components of X), and we make a tiny step in the direction of a face Y ; see
Figure 7.4. The property (A2) guarantees that we enter a valid face Z.
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Y

ZX

Figure 7.4. Interpretation of Axiom (A2)

Y

X

Z

e

Figure 7.5. Interpretation of Axiom (A3)

Axiom (A3). Let X,Y be covectors and let e � H be an index such that Xe = +,
Ye = �. Then there exists a covector Z such that
� Ze = 0,� for every h � H with Zh �= 0 we have Zh = Xh or Zh = Yh,� for every h � H with Zh = 0 we have Xh = �Yh.

The axiom (A3) applies in a situation when two faces X,Y are separated by a

constraint e; that is, the face X is on the positive side of the boundary hyperplane
and the face Y on the negative side. The axiom asserts that there exists a face Z

contained in the boundary hyperplane (this is guaranteed by the condition Ze = 0)
and lying between X and Y . The exact meaning of “between” is specified in the

statement.
Geometrically we can find a suitable face Z as follows. We connect any point

in X with any point in Y with a straight line `. We let Z be the face of the
arrangement containing the intersection of ` with e0; see Figure 7.5. Note that

sometimes we can get different faces for different choices of points in X and Y .

In the theory of oriented matroids, there are several equivalent variants for the
axiom (A3). The version presented here is called covector elimination.

We conclude with the formal definition of oriented matroid.

Definition 7.1. Let E be a finite set. By a sign pattern over E we mean a mapping
F : E � �+, �, 0�. Let � be a set of sign patterns over E called covectors. If the

axioms (A0), (A1), (A2), and (A3) are satisfied then we call the pair (E,� ) an

oriented matroid.

We remark that there is a wide class of oriented matroids called non-realizable
that cannot be represented by an arrangement of oriented hyperplanes.
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�−�−

�
+

a b

c d

Figure 7.6. Minimum nonintersecting system of

halfspaces representing the vector (0,+, �, �,+)

Dual oriented matroid. For every oriented matroid M there exists a dual ori-
ented matroid M∗. This duality is related to the linear programming duality and

it provides a background for some terminology useful for discussing oriented ma-
troid programming. Our presentation introduces the duality as a tool for describing

nonintersecting sets of halfspaces.
In our model example we see that the closed halfspaces b+0 , c−0 , and d−0 do not

intersect; see Figure 7.6. This means that the arrangement does not contain a face

contained in all of b+0 , c−0 , and d−0 . In other words, every face of the arrangement
is contained in at least one of b−, c+, or d+. In the oriented matroid language we

can say that every covector F corresponding to an actual face (i.e., with Fg = +)
satisfies Fb = � or Fc = + or Fd = +.

We represent the nonintersecting configuration by a sign pattern W . We set
the components corresponding to the individual halfspaces in the configuration to +

or � depending on which of the two halfspaces we have. In the components corre-
sponding to hyperplanes absent in the configuration we take 0. In the last compo-

nent we take +. For the our configuration we get W = (0,+, �, �,+).
Now we can say that for every covector F with Fg = + there exists a compo-

nent h with Wh �= 0 and Fh = �Wh. If we have a covector F with Fg = �, by
negating F and referring to the previous case we can see that there exists a compo-

nent h with Wh �= 0 and Fh = Wh. We call such patterns F and W orthogonal. A
pattern W orthogonal to all covectors is called a vector, and the vectors of M form

the dual oriented matroid.

Definition 7.2. We say that the sign patterns F,W are orthogonal if one of the

following holds:
� there exists a component h with Fh = Wh �= 0 and a component h′ with

Fh′ = �Wh′ �= 0; or� for every component h, either Fh = 0 or Wh = 0.

By vectors of an oriented matroid M we mean sign patterns orthogonal to all
covectors of M . The dual oriented matroid M∗ is the oriented matroid whose

covectors are the vectors of M .

In our example, the vectors of the oriented matroid are the following:

++��+, +��++, +���+, �++�+, �+��+, 0+��+, +0 ��+,
�+0 �+, +�� 0+, ��++�, �++��, �+++�, +��+�, +�++�,

0 �++�, � 0++�, +� 0+�, �++0 �, +��+0, �++� 0 , 0 0 0 0 0 .
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Rank. Consider an oriented matroid corresponding to an arrangement of at least

d halfspaces in d-dimensional space. Let W be a nonzero vector with the minimum
number k of nonzero components. For simplicity assume that Wg = +. Consider

the set � of open halfspaces corresponding to the remaining nonzero components
of W . We have

�� �
= k � 1. Since W is a vector, the intersection of the halfspaces

is empty. On the other hand, from minimality of W we get that after removing any
single halfspace, the remaining k � 2 have some point in common; see Figure 7.6. In

this situation the famous Helly theorem from combinatorial geometry implies that
k � 2 � d. This relates the dimension of the arrangement to the number of nonzero

components in vectors, and justifies the following definition.

Definition 7.3. The rank of an oriented matroid M is k � 1, where k is the

minimum number of nonzero components of a nonzero vector of M .

In particular, the oriented matroid representing an arrangement of many half-

spaces in
� d in general position has rank d+ 1.

Uniform oriented matroids. The oriented matroids corresponding to arrange-
ments in general position are called uniform. Geometrically, in an arrangement of

hyperplanes in
� d in general position at most d hyperplanes meet in a single point.

Formally, we say that an oriented matroid M = (E,� ) is uniform if every nonzero

covector has fewer than rank(M) zero components. From the theory of nonoriented
matroids then follows that every nonzero vector has at least (rank(M)+1) nonzero

components; that is, at most (
�
E
�
� rank(M) � 1) zero components. The oriented

matroid corresponding to our model example is uniform.

� �� � ���	��	� �
���� ����
�� ���

Now when we know how to translate some basic geometric terms to the oriented

matroid language, let us proceed with showing how are oriented matroids related
to optimization. Recall that our optimization problem is to find a feasible point x

for which the value of w(x) is optimized.
It is quite obvious how we can define the feasible region of the problem. Geo-

metrically, it is the area contained in all of the closed halfspaces corresponding to
the constraints in question. If a face is not contained in some halfspace, we have

some � component in the corresponding sign pattern. We therefore say that a cov-

ector is feasible if it does not contain any �. We are interested in the actual faces
only, not in the antifaces or the infinite faces, so the extra g-th component in the

extended sign pattern has to be +. If we want to admit the infinite faces, we allow
the g-component to be 0.

Now we continue with the less obvious part. We need to express the opti-
mization direction. To do this, we add a suitable auxiliary constraint f to the

arrangement; see Figure 7.7. We choose f0 to be orthogonal to the optimization
direction, and we orient f so that the positive side corresponds to improving of w:
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f

a b

c d

Figure 7.7. Auxiliary hyperplane representing the optimization direction

f0 := �x : w(x) = 0�,
f+ := �x : w(x) is better than 0�, f− := �x : w(x) is worse than 0�.

We do not consider f when we determine feasibility of faces. We claim that com-
binatorial properties of the oriented hyperplane f carry enough information about

the optimization direction so that we can identify the optimum solution.
Every line not parallel to f0 has one “end” in f+ (the positive end) and the

other “end” in f− (the negative end). Formally we can represent an end of a line
by a suitable covector Z with Zg = 0. The value of a point on the line improves as

it moves towards the positive end. Thus having for instance two adjacent vertices
of the arrangement, we can compare their value by considering the line determined

by the vertices and favoring the vertex closer to the positive end of the line. If the
value of w in a vertex is better than the values in all of its neighbors, we can say

that the vertex represents the optimum solution.
More generally, we say that a covector Z is an improving direction for a face X

if Zg = 0, Zf = +, and after making a small step from X in the direction of Z we
still remain feasible; i.e., X � Z is feasible. A covector X represents an optimum

solution if it is feasible and does not have an improving direction. The problem is
unbounded if there exists an infinite face Z on the positive side of f satisfying all

constraints.

We formulate the following formal definition in a way that makes convenient to
talk about solving problems determined by a subset of constraints.

Definition 7.4. Let M = (E, � ) be an oriented matroid. Fix two elements

f, g � E. We call the elements of the set H := E � �f, g� constraints. To avoid

trivialities, we assume that there exist some covector X of M with Xg �= 0, and
some vector W of M with Wf �= 0. Then the triple (M,g, f) is called an oriented

matroid program.
We say that a covector X is a feasible solution with respect to constraints

G � H , if Xg = + and Xh � 0 for all h � G. We say that a covector Z is an
improving direction for a feasible solution X with respect to constraints G � H if

Zg = 0, Zf = +, and Zh � 0 for all h � G with Xh = 0. We say that a covector X
optimizes f with respect to constraints G � H , if X is feasible and admits no

improving direction with respect to G.
We say that a set of constraints G � H is feasible if there exists a covector X

feasible with respect to G. We say that a covector Z is an unbounded direction
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Figure 7.8. Bounding cones represented by vectors

(+, 0, 0,+,+,+) (left) and (0, 0,+,+, �,+) (right)

with respect to constraints G � H if Zg = 0, Zf = +, and Zh � 0 for all h � G.
The goal of the OM program is to find a covector X optimizing f with respect

to E � �f, g�, or to exhibit an unbounded direction, or to determine that H is
infeasible.

We say that the OM program (M,g, f) is nondegenerate if M is uniform.
By an OM program dual to P = (M,g, f) we mean the OM program P ∗ =

(M∗, f, g).

Bounding cones. An important role in the theory of duality in OM programming

is played by bounding cones. These essentially correspond to dual feasible bases in
linear programming. We think of a bounding cone as an inclusion-minimal system

of constraints that does not admit any infinite face X with Xf = +. We represent
bounding cones by vectors of the OM program.

For instance in our model problem, the constraints a and d form a bounding
cone; see Figure 7.8 left. Since the intersection a+  d+  f+ is empty, every face X

with Xa � 0 and Xd � 0 has Xf = �. We represent this bounding cone by the
vector (+, 0, 0,+,+,+).

As another example take the bounding cone formed by the constraints c and d;
see Figure 7.8 right. The representation of this cone by a vector is more complicated

than in the previous example, since we need a suitable intersection to be empty,

and here c+  d+  f+ is nonempty. Fortunately, the intersection of the opposite
halfspaces, that is c−  d−  f−, is empty. The oriented matroid program therefore

possesses a vector W = (0, 0, �, �,+, �). By convention, we represent the bounding
cone by �W = (0, 0,+,+, �,+).

Formally, in an OM program (M,g, f) we define a bounding cone with respect
to a set of constraints G as a vector W with inclusion-minimal set of nonzero

components for which Wh � 0 for every h � H , moreover Wh = 0 for every h �
H � G, and finally Wf = +.

Note that in a nondegenerate OM program, every bounding cone W has exactly
(rank(M) + 1) nonzero elements, two of them being Wf and Wg.

We say that an OM program is bounded if there is a bounding cone containing
all feasible faces. We remark that an infeasible OM program is bounded if there

exists some bounding cone at all; there are examples of both bounded infeasible
and unbounded infeasible OM programs.

Note that the bounding cones in an OM program are exactly feasible solutions

to the dual OM program.
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Using bounding cones to prove optimality. Let W be a bounding cone and

let X be the “tip” of the cone, that is, the face contained in all of the bounding
hyperplanes of the cone. We can prove that if X is a feasible solution then it is the

optimum. Formally, suppose that we have a feasible solution X and a bounding
cone W such that for every h � H either Xh or Wh is 0; then X is an optimum

solution. To prove this, we assume for contradiction that X has an improving
direction, i.e., a covector Z with Zg = 0, Zf = +, and Zh � 0 for all h � H with

Xh = 0. Since W is a vector, it is orthogonal to Z; in particular, Zh = �Wh �= 0
for some h � H (note that Zf = + = Wf and Zg = 0). Because W is nonnegative,

we have Zh = � and Wh = +. Since Wh = +, the relation of W and X implies
that Xh = 0, hence the properties of Z give Zh = +, which is a contradiction.

Infeasible and unbounded OM programs. The OM program (M,g, f) is in-
feasible if for some set of constraints G � H the intersection of closed halfspaces

corresponding to G is empty. We know that such a situation is described by some
vector W with Wg = +, furthermore Wh = + for every constraint h � G, and

Wh = 0 for the remaining constraints h. Since the auxiliary hyperplane f is not
involved in the nonintersecting system, we have Wf = 0. More formally, we have

the following equivalence:
The OM program (M,g, f) is infeasible if and only if it has some vector W with

all components nonnegative, Wg = +, and Wf = 0.
Note how infeasibility is dual to unboundedness. The OM program is un-

bounded if and only if it has some feasible infinite face with “infinitely good” value,
in other words, if there exists a covector X with all components nonnegative and

furthermore Xf = + and Xg = 0.

Theorems on OM programming. Now we state two important theorems con-

cerning OM programming.

Theorem 7.5 (Main theorem of OM programming). For every OM program

(M,g, f) exactly one of these conditions holds:

(i) (M,g, f) has an optimum solution,
(ii) (M,g, f) has an unbounded direction,

(iii) (M,g, f) is not feasible.

Theorem 7.6 (Duality theorem for OM programming). Let P = (M,g, f)

be an OM program. Then exactly one of the following two statements holds.

(i) The program P is infeasible, because there is a nonnegative vector W with

Wg = +, Wf = 0; or the program P is unbounded, because there is a nonnega-
tive covector X with Xf = +, Xg = 0; or both.

(ii) There exists a feasible solution X and a bounding cone W such that for every
h � E(M) � �f, g� we have Xh = 0 or Wh = 0, implying that X is an optimum

solution to P and W is an optimum solution to P ∗. If (M,g, f) is nondegenerate
then X and W are determined uniquely.
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In this section we show how we can use Clarkson’s algorithm for violator spaces to
solve nondegenerate oriented matroid programs. In particular, for a given nonde-

generate OM program (M,g, f) we construct a violator space (H,V), we determine
its combinatorial dimension, we present a relation between the basis of H in the

violator space and the optimum solution to the OM program, and we show how to
implement the computational Primitives 6.5 and 6.6.

We start with the construction of the violator space.

Definition 7.7. Consider a nondegenerate oriented matroid program (M,g, f),

where M = (E,� ). We define a violator space with minus infinity Vio(M,g, f) :=
(H,V,� ) by setting H := E � �f, g� and defining � and V as follows:

� := �G � H : G has an unbounded direction�,
V(G) :=

��
�
� if G is not feasible,�
h � H : G

� �h� �� � � if G � � ,�h � H : Xh = � � if the optimum solution X wrt. G exists.

Note that in the last case the optimum X is determined uniquely, since we
assume nondegeneracy.

We continue with a series of lemmas describing the relations between the violator

space and the OM program.

Lemma 7.8. The structure (H,V,� ) defined above is indeed a violator space

with minus infinity.

Proof. Of the conditions in the definition of violator space with �
� we imme-

diately see that V matches � . It remains to prove consistency, monotonicity, and
locality.

First let us prove consistency, that is, G  V(G) = � for every G � H . If G is
unbounded, this follows from definition of V. IfG is infeasible, GV(G) � V(G) = �.
If G has an optimum solution X then Xh � 0 for every h � G from feasibility of X,
and G  V(G) = � follows from definition of V.

To prove monotonicity, consider a set G � H admitting an unbounded direc-
tion Z, and a subset F � G. We have Zg = 0, Zf = +, and Zh � 0 for all

h � F � G, therefore Z is an unbounded direction for F as well.

Now it remains to prove locality. Let F � G � H with F bounded. We want
to deduce that V(F ) = V(G). By monotonicity, G is bounded. The further action

depends on the feasibility of F .
First let F be infeasible. In this case, a solution X feasible with respect to G

would be feasible for F too. Therefore G is infeasible too. The definition of V now
gives V(F ) = � = V(G).

Now let F be feasible. Let X be the optimum solution with respect to F . The
assumption GV(F ) = � together with feasibility with respect to F imply that X is

feasible with respect to G. From the assumption F � G we infer that the bounding
cone Y associated to X for F works as a bounding cone for G too. Therefore X is
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the optimum solution with respect to G. Since the definition of V depends only on

the optimum solution X, we get V(F ) = V(G) as desired.

Lemma 7.9. If (M,g, f) is a nondegenerate OM program then the combinatorial
dimension of Vio(M,g, f) is (rank(M) � 1) if (M,g, f) is bounded and feasible,

and rank(M) if (M,g, f) is infeasible. Moreover, in the latter case we have
�
B
�
=

rank(M) only for infeasible bases.

Proof. First we prove that every bounded feasible basis has (rank(M)�1) elements.
Let B be such a basis. Let X denote the optimum solution with respect to B.

We claim that B is the inclusion-minimal system for which X is the optimum
solution. Let C be a proper subset of B. Let Y by the optimum solution determined

by C. By properties of bases in violator spaces we have B  V(C) �= �, therefore
there is a constraint h � B with Yh = �. This means that X �= Y , which proves

the claim in the beginning of this paragraph.
Now let W be the bounding cone proving optimality ofX with respect to B. We

have h � B for every h � H with Wh = +. We claim that B = �h � H : Wh = +�.
The inclusion � follows from the definition of bounding cone. To prove the inclu-
sion � we proceed by contradiction. Assume that C := �h � H : Wh = +� � B.

Since B is a basis, we have B  V(C) �= �, hence there is a constraint h � B with
Xh = �. However, this contradicts feasibility of X with respect to B.

We therefore have B = �h � H : Wh = +�. Moreover Wf = + since W is a
bounding cone, and Wg �= 0 from uniformity. This gives

�
B
�
= rank(M) � 1.

Now we prove that every infeasible basis has rank(M) elements. Let B be such a
basis. By properties of bases in violator spaces, B is an inclusion-minimal infeasible

system of constraints. We define a sign pattern W as Wh := + for all h � B,
furthermore Wh := 0 for all h � H � B, and finally Wf := 0 and Wg := +. Now

W is a vector with an inclusion-minimal set of nonzero components; their number
is
�
B
�
+ 1 by definition of W and uniformity, and on the other hand (rank(M) + 1)

from properties of the rank. Therefore
�
B
�
= rank(M).

Lemma 7.10. Let (M,g, f) be a nondegenerate OM program. Let B be a basis
of H in the violator space (H,V,� ) = Vio(M,g, f). Then B is related to the

solution to the OM program in the following way:
� B � � if and only if the OM program is unbounded;� B �� � and B is infeasible if and only if the OM program is infeasible;� B �� � and B is feasible if and only if the program has the optimum solution. In

this case, the optimum with respect to B is the optimum for the whole program.

Proof. If the problem is unbounded then B � � , and vice versa, by the definition

of � .
In the remaining cases, we have V(B) = V(H) = �.
First let us examine the infeasible case. If B is infeasible then the whole OM

program is clearly infeasible. In the other direction we proceed indirectly. If B is

feasible, let X be the optimum with respect to B. Since V(B) = �, the face X is
feasible with respect to H , which proves that the OM program is feasible.
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The case of bounded feasible program remains. We need to prove that the

optimum for B is optimum for the whole program. Let X denote the optimum with
respect to B. As before, we have V(B) = �, hence X is feasible with respect to H .

The duality theorem asserts the existence of a bounding cone W that proves the
optimality of X with respect to B. Then W is a bounding cone for H since B � H .

This concludes the proof of optimality of X.

Implementing the primitives. To be able to use Clarkson’s algorithm for viola-
tor spaces as described in Chapter 6, we need to implement violation and bounded-

ness test. We show how to do this if the OM program is specified by the following
subroutine.

Primitive 7.11. For a given G � H and h � H such that
�
G
� � rank(M), solve

the OM program with respect to G. If the problem is infeasible or unbounded,

return this information. Otherwise return the h-th component of the optimum
solution.

To implement the boundedness test, i.e., to determine whether a set F � H

with
�
F
� � d is bounded, we simply invoke Primitive 7.11 with G := F and arbitrary

h � H .
To implement the violation test, i.e., to determine whether a set F � H with�

F
� � d is violated by e � H � F , we invoke Primitive 7.11 with G := F and h := e.

If the problem with respect to F is unbounded, we call Primitive 7.11 once more

with G := F
� �e� and arbitrary h � H ; we have e � V(F ) if and only if the problem

is bounded. If the problem with respect to F is infeasible, we have V(F ) = �, hence

e �� V(F ). If the problem is bounded and feasible, we have e � V(F ) if and only if
Xe = � (where Xe is returned by Primitive 7.11).

Note that from Lemma 7.9 follows that we call Primitive 7.11 with sets G of
size at most rank(M).

Algorithm. Now we can apply Theorem 6.13 to the violator space corresponding

to the oriented matroid program.

Proposition 7.12. Let (M,g, f) be a nondegenerate OM program. Clarkson’s

algorithm can solve (M,g, f) using expected number of O(dn+dO(d)) calls to Prim-
itive 7.11, provided that an initial bounded basis is available.

Proof. Clarkson’s algorithm finds the basis B of H in Vio(M,g, f) in the stated
time. By calling Primitive 7.11 once more with G := B we determine whether

(M,g, f) with respect to B is infeasible or we find the optimum solution. Note
that the problem is not unbounded, since it possesses an initial bounded basis. By

Lemma 7.10, the result with respect to B is correct for the whole OM program.

Degenerate OM programs. We conjecture that the above result can be modified

to work for degenerate OM programs. Fukuda (personal communication, May 2007)
suggested using the method of lexicographic perturbations [FLN97].

Moreover we believe that if every bounded feasible set G � H has a unique
optimum then the definition of the violator space Vio(M,g, f) and the algorithm
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do not need to be modified at all, just the proofs of the Lemmas 7.8, 7.9 and 7.10

have to be changed.

Acyclicity. In some oriented matroid programs we can construct cyclic sequences
of vertices with improving values. This is essentially the same phenomenon as

cyclicity in violator spaces. OM programs that admit such cyclic sequences are
called noneuclidean. An example of a noneuclidean oriented matroid program

�

was first exhibited by Fukuda [Fuk82] and Mandel [Man82]. We omit the formal
definition needing some preparatory work.

The example of basis-regular nondegenerate cyclic violator space in Chapter 4
was obtained by a slight modification of Vio(

� ∗), where
� ∗ is the dual of the

Fukuda’s and Mandel’s noneuclidean OM program
�

. The small modification was

necessary to remove the �� .
We conjecture that if an OM program (M,g, f) is Euclidean then the violator

space Vio(M,g, f) is acyclic. The converse statement does not hold; as an coun-
terexample one can take the primal Fukuda’s and Mandel’s problem

�
.

This is the end of the thesis. Thank you for reading it. I am pleased if you liked it.
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