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118 00 Praha 1, Czech Republic, and

Institute of Theoretical Computer Science
ETH Zurich, 8092 Zurich, Switzerland

Rev. 23/VI/09 JM

Abstract

For a finite set P in the plane, let b(P ) be the smallest possible size of a set Q,
Q∩P = ∅, such that every segment with both endpoints in P contains at least one point
of Q. We raise the problem of estimating b(n), the minimum of b(P ) over all n-point
sets P with no three points collinear. We review results providing bounds on b(n) and
mention some additional observations.

Let P be an n-point set in the plane (or, more generally, in Rd). We define a visibility-
blocking set for P as a set Q that is disjoint from P and such that every segment with
endpoints in P contains at least one point of Q.

If the points of P are all collinear, then there is a visibility blocking set with n−1 points.
The question raised in this note is, what is the smallest possible size of a visibility-blocking
set for P having no three points collinear? That is, we let

b(P ) := min{|Q| : Q a visibility-blocking set for P}
b(n) := min{b(P ) : P ⊂ R2 with no three points collinear, |P | = n},

and we would like to estimate the asymptotics of b(n) for large n.
I arrived at this question arose in an (unsuccessful) attempt at proving the following nice

conjecture of Kára, Pór, and Wood [7, Conjecture 2]: For all integers k, ` ≥ 2 there is an

integer n such that every n-point set in the plane contains ` collinear points or k pairwise

visible points.

I obtained Theorem 1 and Theorem 3 below, but after this note was accepted for publica-
tion in the Klee Festschrift, it turned out that both of these results had been known earlier in
somewhat different contexts. Moreover, I’ve learned that other people have been considering
the asymptotics of b(n) independently (a group of researchers at the Courant Institute in
New York including Andreas Holmsen, János Pach, Radoš Radoičić, and Gábor Tardos [6])
and have also re-discovered some of these results. Thus, the present note mostly reviews
known results and adds some observations, which haven’t appeared in print as far as I know,
and which illustrate some of the difficulties inherent in the problem.

I still believe that the inclusion of this note in the Festschrift is warranted by beauty of
the problem—I think Vic Klee would like it.

Midpoints and an upper bound. For a point set P , let µ(P ) be the cardinality of the
set {1

2 (p + q) : p, q ∈ P, p 6= q} of midpoints of all pairs of points of P . Clearly b(P ) ≤ µ(P ).
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The problem of estimating µ(n) := minµ(P ), where the minimum is over all n-point planar
sets P in general position, was raised, according to Pach [10], by F. Hurtado. Earlier Erdös,
Fishburn, and Füredi [4] studied the problem of estimating minµ(P ) over all n-point planar
sets P in convex position, and established the (surprising) lower and upper bounds of 0.40n2

and 0.45n2, respectively.
Now we recall an upper bound on µ(n) (and b(n)) due to Pach [10] (based on Erdős

et al. [5]). For an integer N , let ν(N) be the maximum number of elements of a set A ⊆
{1, 2, . . . , N} that contains no 3-term arithmetic progression. Behrend [3], improving on a

construction by Salem and Spencer, proved that ν(N) ≥ N 1−O(1/
√

log N ). The following
theorem, whose proof we recall, is based on Behrend’s construction.

Theorem 1 (Pach [10]) There is a constant C such that

b(n) ≤ µ(n) ≤ neC
√

log n

for all sufficiently large n.

Proof. Let n be given and large, and let m and s be integer parameters to be specified
later. Let G := {0, 1, . . . , s − 1}m ⊂ Rm, and let Sk := {x ∈ G : ‖x‖2 = k}, where ‖.‖ is the
Euclidean norm.

As in Behrend’s argument, G =
⋃m(s−1)2

k=0 Sk, and thus by the pigeonhole principle there
exists k with |Sk| ≥ sm−2/m. We let P := Sk for some such k.

Since the points of P lie on a sphere, no three of them are collinear. The midpoint of
every two points p, q ∈ G lies in G′ := {0, 1

2 , 1, 3
2 , . . . , s − 1}m, and thus Q := G′ \ P is a

visibility-blocking set for P .
We let m := b

√
lnnc, and let s be the smallest integer with sm−2/m ≥ n. Then |P | ≥ n,

(s − 1)m−2 < mn, and

|Q| ≤ |G′| = (2s − 1)m ≤ (3(s − 1))m ≤ 3m(s − 1)2mn ≤ neO(
√

log n ),

as can easily be calculated (using (s − 1)2 ≤ (mn)2/(m−2) ≤ (n2)4/m, say). The implicit
constant in the exponent can be improved by a more careful choice of m and by more precise
calculations.

The bound in the theorem follows by projecting P and Q to a generic 2-dimensional
subspace of Rm. 2

Lower bounds. I’m aware only of the following rather trivial lower bound for b(n):

Observation 2 If P is an n-point planar set with no three points collinear and with conv(P )
having p vertices, then b(P ) ≥ 3n − p − 3. In particular, b(n) ≥ 2n − 3.

Proof. A triangulation of P has 3n − p − 3 edges, and each point of a visibility-blocking
set covers at most one of these. 2

For point sets in convex position, a slightly superlinear lower bound can be given. The
result is implicitly contained in Araujo et al. [1] and the argument goes back (at least) to
Kostochka and Kratochv́ıl [8].
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Figure 1: Upper bound examples for small n.

Theorem 3 For every n-point planar set P in (strictly) convex position we have

b(P ) ≥
{

n
∑m

k=1 1/k for n = 2m + 1 odd,

1 + n
∑m−1

k=1 1/k for n = 2m even.

Thus, b(P ) = Ω(n log n).

Proof. Let p1, p2, . . . , pn be the points of P numbered along the circumference of conv(P ).
We define the length `(pipj) of the segment pipj, i < j, as the number of convex hull edges
between pi and pj , i.e., min(j − i, n + i − j).

Let us suppose that Q is a visibility-blocking set for P , and let q ∈ Q. The key observation
is that if ` is the smallest of the lengths of the segments pipj incident to q, then q is incident
to at most ` segments.

Thus, if we give the segment pipj weight 1/`(pipj), no q ∈ Q is incident to segments of
total weight more than 1. The theorem follows by summing the weights of all segments. 2

For the case where P is the vertex set of a regular convex n-gon, Poonen and Rubinstein
[13] show that, apart from the center, no point is the intersection of 8 or more of the diagonals
of the n-gon, and thus b(P ) = Ω(n2) in this case.

Small cases. Now we return to arbitrary sets (not necessarily in convex position). The
first few values of b(n) are b(2) = 1, b(3) = 3, b(4) = 5, b(5) = 8, b(6) = 10. The upper
bounds are witnessed by Fig. 1. The lower bounds for n ≤ 4 are trivial (or follow from
Observation 2). For n = 5, 6, we distinguish two cases: If all vertices of P are on the
convex hull, then the lower bound follows from Theorem 3, and otherwise, it is given by
Observation 2. Determining the exact value gets more complicated for larger n and I’m not
aware of a reasonably clean argument for any n ≥ 7. Interesting upper bound constructions
for several small cases, to be reported elsewhere, were given by Snoeyink and Speckmann
(private communication).

Additional remarks.

1. A possibly easier version of the problem deals with pseudosegments instead of straight
segments. That is, for a given point set P , we want to construct an arrangement A of
pseudolines and a subset Q of its vertices such that P ∩ Q = ∅, each p ∈ P is a vertex
of A, no three points of P lie on a common pseudoline, and every two points of P lie
on a common pseudoline ` and have a point of Q on the segment of ` between them.

The lower bound of Theorem 3 still applies in this setting (with “convex position”
interpreted appropriately in terms of the arrangement A), and here it is easy to provide
an O(n log n) upper bound.

Is there a linear upper bound for some P , not in “convex position”, in the pseudoline
setting?
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Another variant of the problem, asked by Pach, is partitioning all the
(n
2

)

straight
segments defined by the points into a small number of crossing families, i.e., families
in which every two segments cross. Is a superlinear number of such families always
necessary? (Also see Pach et al. [11] for some related blocking-type questions.)

2. Here is another variation of the problem: Instead of requiring that each segment de-
termined by two points of P contains a point of Q, it now suffices that each line
determined by two points of P contains a point of Q. Perhaps surprisingly, there are
examples showing that O(n) points suffice to block all lines.

One such example can be constructed using integer points on the curve y = x3 (a sim-
ilar construction was used, e.g., for the orchard problem; see [9]). A simpler example,
inspired by a relation of the problem to Ungar’s theorem (see [9] again), was commu-
nicated to me by Pinchasi [12]: Take the vertex set of a regular 2n-gon centered at the
origin and apply a projective transform that sends the line at infinity to the x-axis,
obtaining a 2n-point set P (the points of P lie on a hyperbola). Since the vertices of
the regular 2n-gon determine only 2n distinct directions, there is a (2n)-point set Q on
the x-axis that intersects all the lines determined by P .

3. The set P in the example just mentioned can also be partitioned into two n-point
subset P1 and P2 (namely, the points above and below the x-axis) in such a way that
every segment p1p2, p1 ∈ P1, p2 ∈ P2, contains a point of Q. This shows that a natural
bipartite version of the original visibility-blocking problem has a linear upper bound.

Pach [10] proves a superlinear lower bound for µ(n), the minimum cardinality of the
set of all midpoints for n points in general position, using Freiman’s theorem on set
addition. This argument can be adapted to give a superlinear lower bound for the
midpoints in the bipartite setting as well. Indeed, let P1, P2 be disjoint n-point sets
with P := P1 ∪ P2 in general position, and suppose that the set P1 + P2 = {p1 + p2 :
p1 ∈ P1, p2 ∈ P2} has cardinality O(n). Then P has Ω(n3) additive four-tuples, i.e.,
four-tuples (p1, p2, p3, p4) with p1 + p2 = p3 + p4, and by the Balog–Szemerédi theorem
[2] there is a subset P ′ ⊆ P of size Ω(n) with |P ′ + P ′| = O(|P ′|). Then, as in Pach’s
argument, Freiman’s theorem implies that for a sufficiently large n, the set P ′ contains
three collinear points—a contradiction. This shows that Pach’s lower bound idea for
µ(n) is not directly applicable to b(n).
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[5] P. Erdős, Z. Füredi, J. Pach, I. Ruzsa. The grid revisited. Discrete Math. 111,1–3(1993)
189–196.

[6] A. Holmsen, e-mail communication, October 2008.
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