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Length Bounded Flow Problem

L-bounded flow
a flow decomposable into flow paths of length at most L

Input

graph G = (V ,E)

source-sink pair s, t ∈ V
integer parameter L

Output and Objective

find an L-bounded flow of maximum size
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Example of a Length Bounded Flow
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Example of a Length Bounded Flow
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Example of a Maximum Length Bounded Flow
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Observe
every L-bounded path has to use at least two bottom edges
three bottom edges⇒ max L-bounded flow at most 3

2

Takeaway

The maximum L-bounded flow need not be integral,
even on graphs with unit capacities.
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Example of a Maximum Length Bounded Flow
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Non-Example of a Length Bounded Flow
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4-bounded flow?
No - it’s bigger than the maximum 4-bounded flow.

5-bounded flow?
Yes - decompose into two paths of length 4 and 5.
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Length Bounded Cut Problem

Input

graph G = (V ,E)

source-sink pair s, t ∈ V
integer parameter L

Output and Objective

a subset of edges F ⊆ E such that in G \ F ,
the distance between s and t is at least L + 1
find an L-bounded cut of minimum size

Also known as
Short paths interdiction problem, and
Most vital edges for shortest paths problem
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Related Results

Length Bounded Flows and Cuts

1971 - Adámek and Koubek - introduction of L-bounded flows
and cuts; duality does not hold
1981 - Koubek and Říha - combinatorial algorithm for the
maximum length bounded flow flawed
1995 - Bar-Noy et al. - L-bounded cut NP-hard
2002 - K. and Scheideler - L-bounded flow in P, by poly-size LP
2003 - Baier - FPTAS for L-bounded flow with edge lengths,
using the ellipsoid algorithm
2010 - Baier et al. - L-bounded flow with edge lengths NP hard
2010 - Baier et al. - Θ(n2/3)-gap between maximum L- bounded
flow and minimum L-bounded cut
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1981 - Koubek and Říha - combinatorial algorithm for the
maximum length bounded flow flawed
1995 - Bar-Noy et al. - L-bounded cut NP-hard
2002 - K. and Scheideler - L-bounded flow in P, by poly-size LP
2003 - Baier - FPTAS for L-bounded flow with edge lengths,
using the ellipsoid algorithm
2010 - Baier et al. - L-bounded flow with edge lengths NP hard
2010 - Baier et al. - Θ(n2/3)-gap between maximum L- bounded
flow and minimum L-bounded cut

Petr Kolman On Combinatorial Algorithms for L-Bounded Flow



Related Results

Length Bounded Flows and Cuts

1971 - Adámek and Koubek - introduction of L-bounded flows
and cuts; duality does not hold
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Related Problems

Shortest Hop Constrained Path

find the shortest path between two vertices, wrt edge lengths,
with a bounded number of edges (hops)

L-Bounded Disjoint Paths

find the maximum number of disjoint paths between two vertices,
each of a bounded length

Most Vital Edges for Shortest Paths Problem

given an integer k , find a subset of k edges whose removal
maximizes the distance between s and t
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Our Contribution

Length Bounded Flow

The algorithm of Koubek and Říha is not correct
A combinatorial FPTAS for the maximum L-bounded flow, i.e.,
(1 + ε) approximation of OPT in time (ε−2|E |2L log L)

A combinatorial FPTAS for the NP-hard maximum L-bounded
flow with edge lengths

Open Problem

Design a poly-time combinatorial algorithm for the maximum
L-bounded flow

Combinatorial = the algorithm does not explicitely use LP and linear
algebra methods
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The Algorithm of Koubek and Říha

L = 3

s t
c
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Example

Not a maximum L-bounded flow.
No space for adding a new L-bounded s − t path.
By diverting the flow on c − t along c − b − t , we obtain space
for a new L-bounded s − t path s − a− c − t .
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The Algorithm of Koubek and Říha, cont’d.

Main Idea
Given an L-bounded flow f and its decomposition, describe by a
tree structure how to combine segments of paths from the flow f
with segments of empty edges into a larger L-bounded flow.

Technical Details
Many ...
Define a tree called increasing L-system - generalization of an
augmenting flow.
Various types of nodes: for diverting flow, for shortening flow,
pointers to other nodes, etc.
Each node has a plenty of attributes to take care about the
length bounds and flow conservation at each vertex.
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The Algorithm of Koubek and Říha, cont’d.

Proof Structure
1 If f is not maximal L-bounded flow, then there exists an

increasing L-system.
2 If there exists an increasing L-system, then it is possible to obtain

a larger L-bounded flow.
⇒ iterative improvements possible

Cf. Ford-Fulkerson alg. for classical flow: if there is an augmenting
path in the residual network, increase the flow along it

Difficulty

The second claim does not hold:
the existence of an increasing L-system does not imply the
possibility to increase the flow!
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The Algorithm of Koubek and Říha, cont’d.

Example:

For the following graph and the maximum L-bounded flow, ...

flow/capacity1/1
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1/∞

1/∞

s t

a

b

Petr Kolman On Combinatorial Algorithms for L-Bounded Flow



The Algorithm of Koubek and Říha, cont’d.

... an increasing L-system exists.

u0 : 1− son
q(u0) = ∅

q(u0) = {s, a, t}
saturated edge = {sa}

u1 : 3− son
q(u1) = ∅
q(u1) = {s, b, t}

saturated edge = {sb}

u2 : 3− son
q(u2) = ∅
q(u0) = {s, a, t}

saturated edge = {sa}

u3 : 4− son

h(u1) = {sa}

h(u2) = {sb}

h(u3) = {sa}
o(u3) = u1

j(u1) = 1

j(u2) = 2

Informally, the pointer nodes in the tree may create a deadlock cycle:
every node is expecting from some other node to do the job
(of diverting some flow) but nobody does it.
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Combinatorial FPTAS for Maximum L-bounded Flow

Part II
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Combinatorial FPTAS for Maximum L-bounded Flow

Notation
PL - the set of simple paths between s and t of length at most L
for P ∈ PL, x(p) - a variable that expresses the flow on P
for e ∈ E , c(e) - the capacity of the edge e

Consider the path based LP formulation of the maximum L-bounded
flow, and its dual:

max
∑

P∈PL

x(P)

s.t.
∑

P∈PL:
e∈P

x(P) ≤ c(e) ∀e ∈ E

x ≥ 0

min
∑
e∈E

c(e)y(e)

s.t.
∑
e∈P

y(e) ≥ 1 ∀P ∈ PL

y ≥ 0
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FPTAS for Maximum L-bounded Flow, cont’d.

Algorithm

iteratively construct (to-be) solutions for both primal and dual:
an L-bounded flow x (may violate the capacities, initially x = 0),
a length y on the edges (initially y(e) = δ(ε) for each e)

In each iteration
find a y -shortest L-bounded path P ∈ PL

route c units of flow on P, where c = min
e∈P

c(e)

for e ∈ P, update the lengths: y(e) := y(e)(1 + ε c
c(e) )

Termination
stop when the y -shortest path P is longer than 1
down-scale x to satisfy all capacity constraints
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FPTAS for Maximum L-bounded Flow, cont’d.

APPROX(ε)

1: y(e)← δ(ε) ∀e ∈ E , x(P)← 0 ∀P ∈ PL
2: while the y -shortest L-bounded s-t path has length < 1 do
3: P ← the y -shortest L-bounded s-t path
4: c ← min

e∈P
c(e)

5: x(P)← x(P) + c
6: y(e)← y(e)(1 + εc/c(e)) ∀e ∈ P
7: end while
8: return x

Intuition
make edges with large flow long
send flow along short paths, i.e., avoid heavily loaded edges

Note: The y -shortest L-bounded s-t path can be computed by
a modification of Dijkstra’s algorithm.
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FPTAS for Maximum L-bounded Flow, cont’d.

Remarks
The same structure as in the algorithm for maximum
multicommodity flow by Garg and Könemann (2007).
Example of the Multiplicative Weights Update Method.
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FPTAS for Maximum L-bounded Flow, cont’d.

Lemma

The flow x scaled down by a factor of log1+ε
1+ε
δ is feasible.

Proof.

Consider an edge e ∈ E and let f (e) be the final flow on e.
Iterations i1, . . . , ir contributed to f (e) by c1, . . . , cr , i.e., f (e) =

∑r
j=1 cj .

At the end: 1 + ε > y(e).
Thus,

1 + ε > y(e) = δ

r∏
j=1

(1 + ε
cj

c(e)
) ≥ δ

r∏
j=1

(1 + ε)
cj

c(e) = δ(1 + ε)
f (e)
c(e) ,

which implies

log1+ε
1 + ε

δ
≥ f (e)

c(e)
.
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FPTAS for Maximum L-bounded Flow, cont’d.

.

.

.

Theorem

For every 0 < ε < 1, the algorithm computes an (1 + ε)-approximation
to the maximum L-bounded flow in time (ε−2m2L log L).
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Extensions

Generalized Setting

With some adjustments, the FPTAS works even in the NP-hard
setting with edge lengths.

Differences
difficulty: finding the y -shortest L-bounded path (a procedure
of the FPTAS) is NP-hard if edges have lengths
use an approximately y -shortest L-bounded path instead
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Conclusion

L-bounded Flow - State of Art
LP algorithm - OPT in poly time
Combinatorial algorithm - (1 + ε) approx. in time (ε−2|E |2L log L)

Open Problem

Design an exact poly-time combinatorial algorithm for the
maximum L-bounded flow.
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Thank you!
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