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Abstract An elementary h-route flow, for an integer h > 1, is a set of h
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h-route cuts for h < 2. A key ingredient of our algorithm is a novel rounding
technique that we call multilevel ball-growing. Though the proof of the duality
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the sparsest multiroute cut problem.

Keywords Multicommodity flow - Approximation algorithms - Duality

* P. Kolman was supported by the Center of Excellence — Institute for Theoretical
Computer Science, Prague, project P202/12/G061 of GA CR. C. Scheideler was supported
by DFG SCHE 1592/1-1.

P. Kolman

Faculty of Mathematics and Physics, Charles University in Prague
Malostranské nam. 25, 118 00 Prague, Czech republic

E-mail: kolman@kam.mff.cuni.cz

C. Scheideler

Dept. of Computer Science, University of Paderborn
Fiirstenallee 11, 33102 Paderborn, Germany

E-mail: scheideler@upb.de



2 P. Kolman and C. Scheideler

1 Introduction

The celebrated maximum-flow minimum-cut theorem of Ford and Fulkerson [9]
is among the most important results in combinatorial optimization. Its impor-
tance has influenced the search for various generalizations. In the mazimum
multicommodity flow problem the goal is to maximize the sum of flows between
given source-sink pairs subject to capacity constraints. In the dual problem,
namely in the minimum multicut problem, the objective is to find a subset
of edges of minimum total capacity whose removal disconnects each of the
given source-sink pairs. Though an exact duality theorem does not apply to
these two problems, Garg et al. [10], building on an earlier work of Leighton
and Rao [15] and of others, proved an approximate max-flow min-cut theo-
rem; the approximation factor is logarithmic in the number of commodities
and is asymptotically optimal. The results are proved using the ball-growing
(also known as region-growing) technique that was introduced in the paper of
Leighton and Rao.

Multi-route flows and multi-route cuts generalize in a natural way the
concept of classical flows and cuts in graphs. An elementary h-route flow, for
an integer h > 1, is a set of h edge-disjoint paths between a source and a
sink, each path carrying a unit of flow, and an h-route flow [12,3] is a non-
negative linear combination of elementary h-route flows. An h-route cut is a
set of edges whose removal disconnects a given source-sink pair with respect to
h-route flows (in the multicommodity setting, it disconnects every source-sink
pair). In other words, an h-route cut is a set of edges whose removal decreases
the edge-connectivity of a given source-sink pair (or of every given source-sink
pair) below h. Note that for h = 1, h-route flows and h-route cuts correspond
to the classical flows and cuts.

The main subject of this paper is the relation between the sizes of maximum
multicommodity multiroute flows and minimum multicommodity multiroute
cuts. Trivially, if f is the size of the maximum such flow, then f/h is a lower
bound on the size of a minimum corresponding h-route cut. The harder part
is to prove a good upper bound on the size of the cut.

For readers that are not familiar with classical multicommodity cuts, we
recommend for background the survey paper by Shmoys [17] or the relevant
chapters of textbooks by Vazirani [18] or Williamson and Shmoys [19].

1.1 Related results

Assume that we are given a graph G = (V, E) with edge capacities ¢ : E — R,..
In a variant of a multicommodity flow, namely in the mazimum concurrent
multicommodity flow, there are k source-sink pair (s;,t;), called commodities,
each of them associated with a certain demand d; € Ry. The objective is
to maximize f such that at least fd; units of flow are simultaneously routed
for every commodity, while obeying all capacity constraints. Its dual problem
is the sparsest cut problem. Again, an approximate duality theorem holds for
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these two problems, as shown by Aumann and Rabani [2] and Linial et al. [16];
the result is a corollary of a general theorem about embedability of metric
spaces. Note that for k = 1, both variants coincide with the classical problem
of single commodity flows and cuts. Using linear programming, both variants
of multicommodity flow are solvable in polynomial time while both variants
of the multicommodity cuts are NP-hard [8].

The concept of multi-route flows was introduced by Kishimoto and Takeuchi [12].
The problem of finding a maximum (multicommodity) multi-route flow can be
formulated using linear programming and is solvable in polynomial time. For
a single commodity, Kishimoto Takeuchi [12] also described a combinatorial
polynomial-time algorithm for the maximum multi-route flow (cf. [1]) and
showed a duality theorem for a non-standard definition of a cut size.

As far as we know, the problem of finding a minimum h-route cut, for h > 1,
was first considered by Bruhn et al. [6] in a paper dealing primarily with single
source multi-route flows on graphs with uniform capacities. In this particular
setting they established an approximate max-flow min-cut theorem and, as
a corollary, described a (2h — 2)-approximation algorithm for the minimum
h-route cut problem, for any h > 1.

For graphs with non-uniform capacities, the first non-trivial approximation
for multi-route cuts was given by Chekuri and Khanna [7]. They dealt with
the special case of h = 2 and provided an O(log? nlog k)-approximation for
the 2-route cut problem where n is the number of vertices in G. For this they
reduced the 2-route cut problem to a l-route cut problem (with a different
set of commodities) and then used a standard rounding algorithm. As their
algorithm is based on an LP relaxation that is dual to the LP for the maximum
2-route flow problem, an implicit corollary of their result is an approximate
duality of 2-route flows and 2-route cuts. The approximation factor for 2-
route cuts was recently improved by Barman and Chawla [5] who described an
O(log2 k)-approximation for the 2-route cut problem. Their algorithm is based
on a different linear programming relaxation that allows them to extend the
classical (discrete) ball-growing (or region-growing) technique (cf. [15,10,17])
to 2-route cuts. A major challenge was to cope with the fact that the balls
constructed by the algorithm may contain other commodities.

1.2 Our results and techniques

The main result of this paper is an approximate duality theorem for multi-
commodity 3-route cuts and flows. In particular, we prove an upper bound of
O(log* k- f) on the size of a minimum 3-route cut where f is the size of a max-
imum 3-route flow and k is the number of source-sink pairs (or commodities).

A major step towards the proof of the duality in this paper is the design and
analysis of an approximation algorithm for the minimum 3-route cut problem.
The approximation ratio of our algorithm is O(log* k). This provides a partial
answer to open problems of several papers (Bruhn et al. [6], Chekuri and
Khanna [7] and Barman and Chawla [5]). The 3-route cut problem is more
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complicated than the 1-route and 2-route cut problems: while 1-route and 2-
route cuts separate the graph into independent parts, h-route cuts do not have
this property for h > 2. For example, when providing a 2-route cut C' for the
commodity (s1,¢1) that partitions the graph into the node sets S; and T with
at most one remaining edge between them (Fig. 1a), then the commodities that
have both nodes in S7 or both in T} can be treated independently because no
simple path can connect two nodes in Sy (resp. T1) via a path through T} (resp.
S1). This is not the case for 3-route cuts where a simple path between two
nodes in S7 may very well pass through T (Fig. 1b). A key ingredient to handle
this problem in our paper is a novel rounding technique, called multilevel ball-
growing, a generalization of the well-known ball growing argument that makes
it possible to control the dependencies between parts of the graph that are
separated by 3-route cuts.

Fig. 1 A figure depicting the difference between 2-route and 3-route cuts.

Though the proof of the duality relies on the approximation algorithm, it is
not a straightforward corollary of it as is the case for classical multicommodity
flows and cuts. For the duality proof we show a tight relationship between two
different linear programming relaxations [5,7] of the h-route cut problem; our
main tool here is the Farkas’ lemma.

In a subsequent work, the techniques from this paper were extended and
applied to the multicommodity multiroute single source cut problem with any
value of the parameter h, yielding a polynomial time algorithm with approx-
imation ratio polylogarithmic in k, and also an approximate duality theorem
in the same setting [14].

A preliminary version of this work was presented at the 28th International
Symposium on Theoretical Aspects of Computer Science [13].

2 Minimum h-Route Cut Problem

Suppose that we are given a minimum h-route cut problem for the graph G =
(V, E) with edge capacities ¢ : E — R and with commodities (s1,%1),. .., (Sk, tk).
If F C FE is an h-route cut for the instance, then for every commodity there
exists a set F; of at most h — 1 edges such that F'U F; is a classical cut for the
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commodity ¢. With this observation, the integer LP for the minimum h-route
cut problem can be stated as follows (by P; we denote the set of all edge-simple
paths in G between s; and t;):

min Z cle)x(e) (1)

Z(x(e) +zi(e)) > 1 Vi € [k],p e P;

ecp

E zi(e) <h-—1 Vi € [k]
ecE
xz(e) € {0,1} Ve e E

z;(e) € {0,1} Vi € [k],Ve € E

In order to find a good approximate solution for this ILP, we will look at its
LP relaxation where the constraint z(e) € {0, 1} is replaced by x(e) > 0 and
x;(e) € {0,1} is replaced by z;(e) > 0. In the following, let the x- and x;-values
represent an optimal solution of this LP relaxation and let ¢ = > _ 5 c(e)z(e).
Our goal is to round these values to an integral solution with cost at most
O((blog4 k) for h = 3. For this we will use a novel rounding technique that we
call multilevel ball-growing. At the heart of this (as well as the classical ball
growing) technique is the following lemma from elementary calculus.

Lemma 1 (Ball Growing) Let [l1,7],[l2, 2], ..., [ls,7.] be internally dis-
joint intervals of real numbers such that l; < lo < .-+ < I, and let R =
Ui [li, ri]. Assume that the following holds:

— f is a nondecreasing function on R and f(l1) > 0,

— [ is differentiable on R, except for finitely many points,

— g is a function on R such that Vr € R, g(r) < f'(r), except for finitely
many points.

Let v = f(r.)/f(ly). Then there exists r € R such that g(r) < ‘—71“ log~y - f(r).

Proof Assume, by contradiction, that for every r € R we have g(r) > i‘ log -

f(r). Then "

1 g(r) f(r) f(r2)
log'yg/ — log~y dr</ dr < dr <log =log~,
rer R rer f(1) rer f(r) f(l)

a contradiction. a

In Section 3 we describe an approximation algorithm for A = 3 for the
single-source case (i.e., s = s1 = s9 = -+ = s;) and in Section 4 we extend
the algorithm to the multiple-source case.
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3 Single Source

At a high level, the structure of our approximation algorithm is the same as
the structure of the approximation algorithm by Garg et al. [10] for classical
multicommodity cuts (cf. [17,5,18,19]): while there exists a vertex ¢; that is
connected by three edge disjoint paths to s, perform a 3-route cut separating
t; and s, charge the 3-route cut to a certain part (volume) of the network
(roughly, to the region that was used to define the cut) and proceed with the
next iteration. The 3-route cut in each iteration is derived from the fractional
solution of the LP relaxation of the minimum 3-route cut problem. These 3-
route cuts are added up to some final cut ' C E. Our goal is to make sure
that Y- pc(e) = O(¢log® k). We first introduce the notation that we use in
the description of iteration 4 of our algorithm.

We define df(u) as the length of the shortest path from ¢; to the node
u in a subgraph H of G, with respect to a length function y : E — Rx.
If the subgraph H is clear from the context or unimportant, we omit the
upper index H. Certainly, z(uv) + x;(uwv) > |dzpta, (V) — dpta, (u)] for every
edge uv € E but for the definition of the J-sets below it will be convenient
to assume equality between the two quantities. To ensure the equality, we
perform a minor temporary modification of the x and z; values: if x(uv) <
|dstz, (V) — dypia, (u)| then we reduce z;(uv) to |detqg, (V) — dpya, (u)| — z(uwv),
otherwise we reduce z(uv) to |dyyz, (V) — deta, (v)| and set ;(uv) = 0. These
adjustments are only valid for the following definitions.

In iteration ¢, for any r € [0, 1] we define the following sets (Fig. 2):

B(r)={ueV |d, () <r} (2)
6(r) = {w € E | dfi, (u) <r <dfi, (v)}

6:(r) = {wv € 6(r) | dS, (w) < r < dSi, (u) +a(uv)}

50,(r) = fuv € 8(r) | S, () — ai(uv) < v < dS, (v)}

where G is the graph that the algorithm works with in iteration 4. Informally,
we view every edge uv € E as a segment consisting of two parts: an z-part
of length z(uv) followed (on the way from ¢;) by an x;-part of length z;(uwv).
Then, the set B(r), called a ball (or region) with center at ¢; and radius r, is
the set of nodes at distance at most r from ¢; (with respect to a + x;); 6(r) is
the set of edges in the cut between B(r) and V' \ B(r), 0, (r) is the subset of
edges from the cut §(r) that are cut in their z-part, and d,, (r) are those from
d(r) that are cut in their z;-part (Fig. 2). Clearly, 6(r) = d,(r) U 4, (r).

We denote by 01(r) the set d(r) without the most expensive edge (i.e.,
61(r) = o(r) \ {argmax,c4(, c(e)}), and for [ > 1 we denote by &(r) the set
61-1(r) without the most expensive edge (i.e., §;(r) = d;—1(r)\{argmax,cs, (- c(€)})-
Note that for every r € (0, 1), the set d,_1(r) is an h-route cut between ¢; and s.

For a set ' C E of edges we define c¢(E') = > .p c(e) and V(E') =
Uwve g tu, v}, that is, ¢(E£’) is the sum of capacities of edges in £’ and V(E’)
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is the set of nodes of the edges in E’. For a graph H, we denote by V(H) the
set of nodes and by E(H) the set of edges in H.

3.1 Approximating 2-Route Cuts

To outline our general approach in a simple setting, we sketch in this subsection
an alternative proof of the known result for 2-route single-source cuts. Assume
that z and z;, for i = 1,...,k, is the optimal fractional solution of the linear
programming relaxation of the 2-route cut problem, and that ¢ is the optimal
objective value of the relaxation.

In iteration ¢ we define R = {r € [0,1] | [0, (r)] < 1}. The constraint
> ecr Ti(e) <1 from the LP(1) implies

2 [ galdez [ Bz 21 [RD,
p€[0,1] p€[0,1\R
that is, the measure of the set R is at least 1/2. For r € [0, 1], let

£y =6kt [ cla(p) dp and

pERN[O,7]
g(r) = ¢(d:(r)) -

Observe that g(r) < ¢(d,(r)) for every r € R. Thus, the functions f (volume)
and g (cut size) satisfy the assumptions of Lemma 1 and there exists 7 € R
such that ¢(d1(r)) = O(log k) f(r). This is the key observation of Barman and
Chawla [5] (proved in a different way). We add the edges from §;(r) to the 2-
route cut that we construct, remove the ball B(r) from the graph (observe that
after the removal of d1(r), no terminal ¢; in B(r) is 2-connected with s) and
proceed with the next iteration. The relationship between c¢(d1(r)) and f(r)
makes it possible to charge the cost of the edges in d1(r) to the volume f(r) of
the ball B(r) (cf. the analysis of the classical 1-route cut algorithm [17]). This

________ “ew

Fig. 2 Assume that a subgraph of a graph G consists of vertices t;, a, b, ¢, u, v, w and edges
tia,t;b, t;c, ab, aw, bc, bv, cu. We depict every edge e by a concatenation of a solid and a
dashed lines such that the length of the solid line is proportional to z(e) and the length of
the dashed line is proportional to z;(e). For a radius r depicted in the picture, the following
sets correspond to the definition (2): B(r) = {t;,a,b,c}, 6(r) = {aw, bv, cu}, d.(r) = {bv},
0z, (r) = {aw, cu}.
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immediately yields the O(log k)-approximation for the 2-route single-source
cut problem and, with some effort, also the O(log? k)-approximation for the
general 2-route cut problem.

3.2 Approximating 3-Route Cuts

In this section, some of the claims hold for any A but some for A < 3 only.
Whenever we have a statement holding for any value of h, we use the letter
h in the statement instead of the number 3 that we use in claims specific for
h = 3. We define L = [log(k +1)].

Given a connected subgraph H of G, we say that a vertex u € V(H) is an
entry node of H with respect to G if there exists a vertex v € V(G) \ V(H)
with wv € E(G). An edge vw € E(H) is an entry edge of H with respect to
G if u,w € V(H) and u or w is an entry node of H with respect to G. If H is
a subgraph of G with two entry nodes v and w, we denote by d, (v, w, H) the
length of the shortest path (with respect to a length function y : E — Rxg)
between v and w in H and by mincut(v,w, H) C E(H) the minimum cut
between v and w in H. We make a simple observation.

Lemma 2 Assume that H is a subgraph of G with two entry nodes v and w. If
dy(v,w, H) > 1/B for some B > 1, then c(mincut(v,w, H)) < -3 c p gy c(€)z(e).

Proof Suppose that d(v;,w;, H) > 1/8 and let v = ¢(mincut(v;, w;, H)).
Then it holds for all p € [0, dy(v;, w;, H)] that ¢(6(v;, p)) > 7 where §(v;, p) =
{ab € E(H) | dy(vi,a) < p and d;(v;,b) > p}. Therefore,

dy (viyw; , H)
> elele)z [ (801, p)) dp = 7 - dy (s, wi, H) = 7/8 .

e€E(H) p=0

Hence, c(mincut(v;, w;, H))< B-3° ¢ gy c(€)z(e), and the proof is completed.

Let us briefly mention an alternative proof of the lemma. The vector 2’ =
0B - x represents a feasible fractional cut between v and w in H. The strong
duality theorem of linear programming and the maximum-flow minimum-cut
theorem imply that there exists an integral cut between v and w in H of the
same size, that is, of size 8-> c ) c(e)z(e). O

As we already pointed out, the algorithm iteratively produces the desired
multiroute multicut. In contrast to the cases h = 1 and h = 2, for h = 3 we will
need to charge more than one cut to some edges. In order to keep track of how
many cuts were already charged to which edge, our algorithm will maintain for
every edge e a counter called the level of an edge, which represents an upper
bound on how many cuts were already charged to the edge e. We denote by
?;(e) the level of the edge e at the end of iteration i. The edges with positive
level are called restricted edges. Initially, £o(e) = 0 of every edge e € E. We
will prove later (Lemma 6) that for every edge e € E and every iteration 4,
é,’ (e) < L.
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Algorithm 3-RouteCutSingleSource(G = (V, E), s, t1,...,tx)
F:=0,F=0,C:=0,D:=0,£e):=0forevery e € E
while there is 3-connected (s, ;) do
Contract all H € D into a set D of super edges
Dy :={uv € D | d(uv) is minimal among all e € D with £(e) = {(uv)
and wv is lex. minimal in case there are multiple edges uv
with same level and minimal distance}

Dy :=D\ Dy

r:=min{p € [0,1] | p is good and ¢(d2(p)) < 6log(2k) - V(p)})
F:=FUds(r)

V=V \B(r)

E:=E\{uw € E|u€B(r)orveB(r)}

D:=DNE

Let H be the extended ball H(r) and v;, w; its entry nodes
if v; # w; then
if c(mincut(vi, ws, H))< 6L - 3° . c pop) cle)z(e) then
F := FU mincut(v;, w;, H)
else
E:=FU {vzwl}
D := DU {v;w;}
D:=DU{H}
z(viw;) 1= dg(vi, ws, H)
2 (viw;) = dgta; (Vi, wi, H) — x(vi, w;), V5 # 4
c(viw;) == c(mincut(v;, w;, H))
L(v;wy) = max{1l + maXee 5(H)NDs L(e), maXeec g(H)ND; £(e)}

else
C:=CUE(H)
E:=FE\ E(H)

Replace the super edges in F and F by their mincuts, remove them from D,
and add the edges of their subgraphs that are outside of H(r) to C
For any entry edge of H(r) that is a super edge e, add the subgraph corresponding
to e to H(r) and choose its outside entry edge as new entry edge for H(r)
Undo the contraction of all other super edges in D
return FU F'

Fig. 3 The 3-Route Cut Algorithm for the single source problem. We use ¢ instead of ¢;
in this description as the indices are used only in the analysis of the algorithm and are not
important for the algorithm itself. Similarly, we overload the symbols V' and E to denote not
only the node and edge sets of the input graph but also the current graph in every iteration.

The algorithm is summarized in Figure 3. At the start of iteration ¢, the al-

gorithm has already produced subsets of edges Fy, Fy, ..., F;_1, F,F,....,F;_1 C

E with the property that U;_l(F U F}) is a single source h-route multicut for
s and t1,...,t;—1. The algorithm has also temporarily pruned away some edge
set C' C F which is initially empty. Hence, at the beginning of iteration ¢ we
are left with the graph

i—1
G; = V,E\(CU U(FJUFJ))

Apart from these sets, also the following objects are given at the start of
iteration i:
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— A collection D of pairwise disjoint, connected induced subgraphs of Gj,
each with two entry nodes, and
— alevel 4;_4(e) for every edge in G.

The key properties maintained by the algorithm at the start of iteration 7 are
the following:

(a) None of the terminals ¢y, ...,t;—1 is h-connected with s in G;.
(b) For all H,H' € D with H # H', E(H)NE(H') = (.
(¢) For all H € D with entry nodes v and w, d,(v,w, H) < 1/(6L).
i—1
(@) 2 Soeror cle) = Ollogh) Sy i1 (e)a(e)e(e).
)

(e) If e € E does not belong to any H € D, then ¢;_1(e) = 0.

We are ready to start the description of the iteration ¢ in which we deal
with the terminal ;. The input for the iteration 7 is the graph G;. We start
the iteration by replacing every subgraph H € D with entry nodes v and w
by a simple edge vw with the following parameters:

z(vw) = dy(v,w, H) (3)
i(v :dz+mi(vywaH)_dm(an7H) )

)
x; (vw)

¢(v,w) = ¢(mincut(v, w, H)),
l (ow)

i = max {;_ .
1(vw cer(i) | 1(€)
Every such edge vw is called a super edge. Let G denote the resulting graph. In
this part of the algorithm it is important that every H € D has just two entry
nodes (and not more), a property following from the value (three) of h. The re-
placement is not substantial for the algorithm but it significantly simplifies the
presentation. Note that the vectors  and z; represent a fractional multiroute
cut for the commodity 7, that is, df}rm (t;) > 1 and ZeeE(G;) xzi(e) <h-—1.

Let D = {e € E(G}) | £i—1(e) > 0}. As we will see later, D is the set of
all super edges in G, and the edges in D correspond exactly to the subgraphs
in D (cf. property (e) above). To undo the contraction of a super edge vw
means to replace it back by H; to cut a super edge vw means to replace it by
H \ mincut(v,w, H).

We are going to describe how to pick a radius of a ball around ¢; for an
h-route cut for ¢;; this is the core part of the algorithm. Once we have the
right radius, we easily obtain everything we need.

For any edge (or super edge) uv € E let the distance of uv from t; be
defined as d;(uv) = min{df}rzi (w), df;x (v)}. We partition the edges from D
into two subsets according to their levels and their distance d from ¢;:

Dy ={e€ D | d;(e) is minimal among all f € D with ¢;_1(f) =¢;_1(e)}
Dy =D\ D,
Ties are broken arbitrarily to ensure that there is at most one edge per level
in Dy. Observe that for every edge f € Ds there exists an edge e € Dy with

di(e) < di(f) and €;—1(e) = £i—1(f).
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A radius r € [0,1] is forbidden if |04, (r)| > h—1 (i.e., we would not obtain
a valid h-route cut by cutting all edges in d,(r) = 6(r) \ d4,(r)) or if there
exists an edge e € Dy such that e € d,(r) (which we do not want to cut). A
radius r € [0, 1] that is not forbidden is good. Let R denote the set of good
radii for the current iteration, that is,

R={re|0,1] | |6:,(r)]<h—1and §.(r)NDy =0} . (4)

Lemma 3 Ifz(e) < 1/(2hL) for every e € Dy and £;_1(e) < L for every edge
e € E(G}), then the measure of the set R of good radii as defined above is at
least 1/(2h).

Proof Let p be the measure of the set {r € [0,1] | |d,,(r)| > h}. Considering
the constraint ) ., xi(e) < h —1 we obtain an upper bound on u: hy <
> ecpile) < h—1, and thus, y < 1 —1/h. Therefore the measure of the set
{r €0,1] | |0,(r)] < h—1}is at least 1/h. Since the number of edges in D
is at most L and since x(e) < 1/(2hL) for every e € Dy, the measure of the
set {r €10,1] | 0,(r) N Dy # (0} is at most 1/(2h). Hence, |[R| > 1/(2h). O

Recall that ¢ is the optimal value of the objective function, that is, ¢ =
> ecr cle)z(e) for the optimal solution 2 of the linear program (1). For r €
[0,1] we define

Vi) =2+ / ) (5)

The value V (r) is called the volume of the ball B(r) with radius . We observe
that ¢/k + pr[O,l] c(0,(p))dp < ¢/k + ¢. Thus, for every r € [0,1], 2¢ is an
upper bound on V(r). Also note that only the z-parts of the edges in the ball
B(r) that are not in D; contribute to the volume V().

IN

Lemma 4 (Radius Choice) Ifz(e) < 1/(2hL) for everye € Dy and £;_1(e)
L for every edge e € E(GY), then there exists r € R such that c(0p—1(r)) <
2hlog(2k)-V(r). Moreover, such a radius can be computed in polynomial time.

Proof We first observe that the function V (r) satisfies the following properties:

— V/(r) is a nondecreasing piece-wise linear function on R and V' (r) > 0 for
all r € R,

V(r) is differentiable on R, except for finitely many points,

— for each r € R, V'(r) > ¢(dp—1(r)), except for finitely many points,

the maximum ratio between two values of the function V(r) on R is at
most 2k.

The first two properties are obvious from the definition of V(r). Concerning
the third property, we note that for every r for which V(r) is differentiable,
V'(r) > ¢(6,4(r)), and since for every r € R it holds ¢(6,(r)) > ¢(dp—1(r)), the
claim follows. The last property follows from the trivial lower bound V(0) >
¢/k, the above mentioned upper bound V(1) < 2¢, and the fact that f is
nondecreasing.
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By Lemma 3, we know that |R| > 1/(2h). The properties of the func-
tion V(r) allow us to apply Lemma 1 to the functions f(r) = V(r) and
g(r) = ¢(0p—1(r)) on R. Thus, there exits an r € R satisfying c¢(dp—1(r)) <
2hlog(2k)V (r).

Since V(r) is a piece-wise linear function on R and ¢(d,—1(r)) is a piece-
wise constant function on R with at most 2m pieces, we can efficiently find
the value r for which ¢(d,—1(7)) \ V(r) is minimal, and by the first part of this
lemma, this ratio is at most 2h log(2k). O

The algorithm computes a radius r according to the previous lemma and
initially sets F; := d5(r), where each super edge in d5(r) is replaced by the
mincut of the subgraph represented by it, and F; := (). Before we proceed, we
need one more definition. We say that the extended ball H(r) with radius r is
the subgraph of the graph G} with its node set X and edge set Y defined as
follows:

X =B(r)uZ and (6)
Y ={zy € E(G}) | z,y € B(r)} U (6(r) \ d2(r)) , where
Z =V(8(r)\ d2(r)) \ B(r) .

Note that the two edges in §(r)\ d2(r) are the entry edges of H (r), with respect
to G; \ F;, and the nodes in the set Z, that is, the endpoints of the entry edges
that are not in B(r), are the entry nodes of H(r)!'. Certainly, the size of Z is
at most two.

The next step of the algorithm depends on the number of entry nodes of
the extended ball H(r). There are two cases to distinguish: |Z| = 1 (Fig. 4a)
and |Z| = 2 (Fig. 4b). I |Z| = 1, we add E(H(r)) to C' and remove from D

(b)

Fig. 4 The set Z has size 1 in the first case (Z = {u}) and size 2 in the second case

(z = {7"'1 U})

1 To be precise, the entry edges of H(r) are a subset of §(r)\ d2(r), and the entry nodes of
H(r) are a subset of Z: it may happen that (some of) the nodes in Z are not connected to
an outside node (see the definition of entry nodes). However, such a pathological case makes
the situation only easier and thus, without loss of generality, we assume that all nodes in Z
are the entry nodes of H(r).
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subgraphs corresponding to the super edges in H(r). The following lemma,
whose proof is obvious, clarifies why we can prune all edges in H(r).

Lemma 5 Let H be any subgraph with at most one entry node. Then any path
P between two vertices v,w & V(H) can be reduced to a path P’ that does not
contain any edge of H. Also, any h-route cut Z between v and w, v,w & V(H),
can be reduced to an h-route cut Z' C Z that does not contain any edge of H.

Hence, H(r) is irrelevant for the connectivity of any terminal outside of
H(r) and the source s (which is by construction outside of H(r)). Thus, we
can remove it from G for the rest of the algorithm by adding its edges to C,
and put it back at the very end without spoiling the multiroute cut.

If | Z| = 2, we distinguish between two further cases. If d,(v;, w;, H(r)) >
1/(6L), we add mincut(v;, w;, H(r)) to F}; by doing so, we cut H(r) into two
subgraphs of just one entry node each. Both of these subgraphs can then be
pruned like for the case |Z| = 1, and all subgraphs from D corresponding to
super edges contained in these two subgraphs of H(r) can be removed from
D.

If dy(vi,w;, H(r)) < 1/(6L), then we add H(r) to D. Also, we set the
level of every edge e € E( (r)) to max{p,q} where p=0if E(H)NDy; =10
and p = maxX.cg(m)np, Li—1(e) otherwise, and ¢ = 0 if E(H) N Dy = () and
q =1+ maX.cp(m)nD, El 1(e) otherwise. All subgraphs from D contained in
H(r) are removed from D. The levels of the edges outside E(H(r)) are left as
they are. Then we proceed with the next iteration.

H(r) H(r) H(r)

(a) (b) ()

Fig. 5 (a) The extended ball H(r) with a super edge vw as its entry edge (the bold closed
curve depicts the boundary of H(r)). (b) H(r) after a plain undo of the super edge vw: the
number of entry edges of H(r) has increased. (¢) H(r) after the undo of the super edge vw
and the local modification of H(r): the number of entry edges of H(r) has not changed.

In all the cases listed above, before we start the next iteration, we undo the
contraction of all remaining super edges in D. A special care is given to super
edges from d(r). If a super edge is cut by da(r), we deal with the remaining
part of it that is outside of H(r) in the same way as we treat H(r) for |Z] = 1,
that is, we remove it from G; and add its edges to C. If a super edge is an entry
edge of H(r) (Fig. 5(a)), then a simple replacement of it by the corresponding
subgraph from D may increase the connectivity between ¢; and s and thus
destroy the h-route cut (Fig. 5(b)). To deal with this issue, we extend H(r) to
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contain the subgraph represented by that super edge which is an entry edge of
H(r) (Fig. 5(c)). This way, the number of entry edges of H(r) does not exceed
two.

Before stating the main result of this section, we state and prove three
auxiliary lemmas.

Lemma 6 For each e € E and each iteration i, {;(e) < L.

Proof We will show by induction on j that ¢;(e) < log(|Tj| + 1) for every e €
E(H), where H; is the extended ball associated with ¢; and T} = {t1,...,¢;}N
V(H;) is the set of terminals belonging to V(H;); as L = [log(k + 1)| and
|T;| < k for every j, this will prove the lemma.

For j = 0 the claim is obvious: at the end of the first iteration, the level of
every edge is at most one.

Consider now some iteration j > 1. Note that ¢; is never an entry node of
Hj, and since the entry nodes of some H; may only be nodes not belonging
to any H;s or entry nodes of other Hj/s, none of the terminals in 7; can be an
entry node of Hj.

The only case when a level of an edge increases is the case that |Z] = 2
with dg(vj, w;, H;) < 1/(6L). Assume that ¢ > p as otherwise there is no level
increase. Note that in this case there are at least two edges ei,es € E(H;)
of level ¢ — 1 > 0. By property (e), these must be super edges representing
subgraphs H;, and H;, that were constructed when dealing with the terminals
t;, and t;,. By property (b), these subgraphs are edge-disjoint, and since none
of the entry nodes can be a terminal in T, the terminal sets T}, and T}, must
be disjoint. On the other hand, T, UT}, C T;. By our induction hypothesis, it
must hold that ¢;_1(e1) < log(|T;, |+ 1) and ¢;,_1(e2) < log(|T},| + 1). Given
that the levels of the edges e; and ey are equal, we can upper bound ¢;_1(eq)
and £;_1(e2) by log((|7;| — 1)/2 + 1). Hence,

ti(e) <log((|T;]+1)/2) + 1 = log(|T;] +1)
which completes the induction. a
Lemma 7 For each e € D, xz(e) < 1/(6L).

Proof Follows from the description of the algorithm: every edge e with strictly
positive level in G’ is a super edge, and by property (c) and the definition of
z(vw) of a super edge vw, x(e) < 1/(6L). O

Lemma 8 If the properties (a)-(e) are satisfied at the beginning of iteration
i, then they are satisfied at the beginning of the next iteration as well.

Proof Properties (a)-(c) and (e) follow directly from the algorithm, and prop-
erty (d) follows from the combination of Lemmas 4, 6 and 7 and our rule of
increasing the level of the edges. O

Theorem 1 The approximation ratio of the algorithm for the 3-route single-
source cut problem is O(log® k).
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Proof The correctness of the algorithm follows from the property (a) and
Lemma 5. Concerning the approximation ratio, from the property (d) and from
the upper bound on ¢;(e) < L from Lemma 6 we know that the cost of the
multiroute multicut constructed by the algorithm is O(log? k) Y ecr zle)c(e).
As the sum in the previous expression is a lower bound on the cost of any
solution, the proof of the theorem is completed. O

4 Multiple Sources

The algorithm for multiple sources is an extension of the single-source al-
gorithm for h = 3. Again, it works in iterations. Roughly, in iteration 4 the
algorithm constructs a ball B around one of the terminals s; and ¢;. In contrast
to the single-source problem, there might be commodities with both terminals
inside B. To deal with these pairs, the algorithm is recursively run in the
ball B, with levels re-initialized to 0. There are two main issues that must be
addressed: the number of recursive calls working with the same part of the
original graph, and the (in)dependence of the subproblems. A minor change
from the single-source algorithm is that now we require that xz(e) < 1/(6hL)
for every e € D.

4.1 Number of overlapping recursive calls.

To guarantee that the depth of the recursion is small, we ensure that every
constructed ball contains at most half of the remaining commodities (i.e., both
terminals of the commodity are inside the ball). Then the depth of the recur-
sion is log k only. In this part of our algorithm and its analysis we use the ideas
from the recent paper by Barman and Chawla [5]. Lemma 9 deals with this
problem. The difference here is that we cannot treat the balls independently.
As in the single source case, it can happen that edges might be part of more
than one ball of the same recursion level. Hence, a naive use of the recursion
may cause too many recursive calls on the same area even though the depth
of the recursion is small.

To guarantee that there are not too many recursive calls on the same area,
we apply a lazy strategy: instead of invoking the recursive call immediately
after the ball B is defined, the algorithm postpones the calls till all balls in
a recursion level have been processed. The reasoning behind this is that if
the algorithm later defines another ball B’ at the same recursion level that
contains the super edge representing the ball B (as inner edge or entry edge),
it is sufficient to perform only the recursive call for B’; this call will then also
take care of all commodities inside B. In this way recursive calls at a certain
recursion level are only made for disjoint parts of the original graph. When
executing a recursive call on a ball B, the algorithm always makes sure that
the ball B is expanded to the original edges of the graph, that is, it does
not contain any super edges apart from special super edges of level -1, which
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we will define later. We will make sure that a recursive call has to deal with
at most logk super edges of level -1, and each such super edge e satisfies
x(e) < 1/(6hL).

Before we state and prove Lemma 9 we need a few more definitions. To
simplify them, in addition to the assumption made in the previous section (i.e.,
x(uv) + z;(uv) = |dgta; (V) — dgta, (u)] for each wv € E), we assume, without
loss of generality, that d,1.,(s;) =1 (i.e., the distance of s; from t; is 1). Then,
for r € (0,1) and z € {s;,t;} we define B*(r) = {u € V | dyts,(z,u) < r},
6ti(r) = 6(r), 6% (r) = 6(1 =), 64 (r) = 0x(r), and 65 (r) = 0z, (1 — ) where
for each v € V, dyqq,(ti,u) = dptg,(v) and dpgq, (si,u) = 1 — dgys, (0).
For z € {s;,t;} we also define 67(r) = 6%(r) \ {argmax.cs:(, c(e)}, 65(r) =
570\ {axgmas,cy; ) cfe)} and

D ={uve D | ¢(uww) =—1 or d(z,uv) is minimal among all e € D
with ¢(e) = ¢(uv) (where ties are broken arbitrarily)} ,
Di =D\ D? .

where d(t;,uv) = d(uv) and d(s;,uv) = 1 — d(t;, uv), and D is the set of super
edges. Now we can adjust the notion of a good radius: in this section we always
have to specify the vertex we talk about for the good radius. For z € {s;,t;},
we say that

R* = {re(0,1] | |0%,(r)| < h—1and 62(r) N D} = 0} .

is the set of good radii for z, where each edge is viewed as a segment consisting
of an z-part followed by an z;-part on the way from ¢; for both choices of z.
Finally, for z € {s;,t;} and r € [0, 1], we define

V(zr) = éfk+ / (5%(p))dp

pERZN|0,7]

Lemma 9 There exist a good radius rs for s and a good radius vy for t such

that
@ rs+1: <1, and

c(Op—1(si,7s)) < 6hlog(2k) - V(s;,rs) , and
c(0p—1(ti,rt)) < 6hlog(2k) - V(t;,re) .

Proof For z € {s;,t;} let §* = {r € [0,1] | [0 (r)| < h —1}. From Lemma 3
it follows that |S*| > 1/h for both choices of z. Since 65 (r) = 0% (1 —r),
we obtain that [(S* N [0,7]) U (8% N[0,1 —7])] > 1/h for every r € [0,1].
Moreover, as the number of edges in D is at most 2L and x(e) < 1/(6hL)
for every e € D}, |S* \ R*| < 1/(3h), for both choices of z. Therefore, for any
radius r € [0,1],

|R* M [0,7]] + |R" N [0,1 —7]| > max{|S* N[0,7]] — 1/(3h),0} +
max{|S" N[0,1 —r]| — 1/(3h),0}
>1/h—2/(3h) =1/(3h) .
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Since |[(R® N [0,7]| when seen as a function of r, is continuous and non-
decreasing on the interval from 0 to at least 1/h — 1/(3h), there must be
an 7 with [R* N[0, r]| > 1/(6h) and [R* N[0,1—r]| > 1/(6h). Thus, it follows
from Lemma 1 that there is an 7, € R* N[0, 7] with ¢(6;" ,(rs)) < 6hlog(2k)-
V(si,rs) and an 7, € RY N[0, 1 — 7] with ¢(8} | (ry)) < 6hlog(2k) - V (t;, 14).
Since 75 + r; < 1, the lemma follows. O

If 74 and 7; are the radii from Lemma 9 then the sets B% (r,) and B (r;)
are disjoint. Thus, at least one of them contains at most half of the remaining
commodities. We always pick such a ball in our algorithm.

Corollary 1 The depth of the recursion is at most logk.

4.2 Independence of the Balls

Note that without some special care, the recursive subproblems are not inde-
pendent as the inner part of every ball B is connected to the outside part by
two edges. This is in contrast to the case h = 2 where the two parts of the
graph are connected by a single edge and thus can be treated independently in
order to deal with those commodities with both terminals in the same part of
the graph. A new type of super edges, forbidden edges, will help us to control
the dependencies.

In the algorithm for the single-source multi-route cut, the input for itera-
tion 4 consists not only of the current graph with the set of commodities and
the corresponding fractional solution of the linear program but also of the set
of restricted edges with their level values inside of this graph, which helps us to
control the dependencies between the iterations. For multiple sources, besides
the restricted edges, we will also use so-called forbidden edges. To simplify the
description, we will view forbidden edges as original, restricted edges (even
though they are actually super edges) but their level will be —1 and the re-
strictions imposed on them are stronger: they are never cut (be it an h-route
cut or a mincut) and they are never charged for any cut.

Assume that we plan to invoke a recursive call for the (extended) ball H*
built around the terminal z € {s;,t;} with radius r. We distinguish between
two cases (as in the previous section, v; and w; denote the two entry nodes of
H?):

— If dy(vi,w;, G\ H?) < 1/(12hL?), the recursive call is invoked for the
subgraph H* with an extra edge v;w; with z(v,w;) = dg(v;, w;, G\ H?),
c(viw;) = e(mincut(v;, w;, G\ H*)) and level —1. For each j # ¢ we also set
2 (viw;) = dyya; (vi, wi, G\ H?) —x(v;w;). The set of commodities consists
of those with both terminals in B*(r). The set of restricted edges is preset
to {uv € DN E(H?) | £(uv) = —1} U {v;w; }; the level of every other edge
is set to zero at the beginning of the recursive call. Recall that we do not
allow the restricted edges of level —1 to be cut or to be charged for a cut,
be it an h-route cut or a mincut. This is the reason why we use a different
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Algorithm 3-RouteCutMultipleSources(G = (V, E), P = {(s1,t1), ..., (sk,tx)}, D-1)
// D—_1 only contains restricted edges of level -1
F:=0,D=0,¢():=0foreverye € E\ D_;
Z:=0 // set of candidates for recursive calls
while there is h-connected (s;, ;) € P do
Contract all H € D into a set of super edges D

D:=DuUD_;
(r, z) :=findradius(G, D, s;, t;) /] z € {si,ti}
F = F U 85(r)

T :={(H,P)cI|HCH*} 5
P i={(s,t) € P|s,t€ B*(r)}UUg pyer P

I:=Z\T)U{(H* P)} // add a new instance for recursive call
P:=P\{(s,t) e P|s€ B*(r) or t € B*(r)}

V:=V\ B*(r)

E:=FE\{w € E|ué€ B*(r)orve B*(r)}

D:=DnNE

Let H? be the extended ball H*(r) and v;,w; be its entry nodes
if v; # w; then
if dy (vi, wi, H?) > 1/(6hL) then
F := F U mincut2(v;, w;, H?)
else
E:=FU {’U,’wl}
D := DU {vjw;}
D:=DU{H*}
z(viw;) = dg(vi, ws, H?)
x5 (’UZ'LUZ) = dz+z]. (’Ui7 Wi, Hz) - IE(UZ'LU,L),V‘] 75 %
(v, w;) := c¢(mincut2(v;, wi, H?))
£(v;, w;) = max{l + maX.c p(H)nD, {(€), MaXccp(mH)nD, £(e)}

else
C:=CUE(H)
E:=FE\ E(H)

Replace the super edges in F' by their mincuts, remove them from D,
and add the edges of their subgraphs that are outside of H(r) to C
For any entry edge of H(r) that is a super edge e, add the subgraph corresponding
to e to H(r) and choose its outside entry edge as new entry edge for H(r)
Undo the contraction of all other super edges in D
for each (H,P) € Z do
if dy (vi, w;, G\ H) < 1/(12hL?) then
z(viw;) = dg(vi,w;, G\ H)
xj(viw;) == dota; (vi, wi, G\ H), — z(v;w;),Vj # i
c(viw;) = c(mincut(vi, w;, G\ H))
L(v;w;) == —1
E(H) := E(H) U {viw;}
D' :=D_1U {vzwl}
else
T:=TU {viwi}
D' :=D_,
F := F U 3-RouteCutMultipleSources(H, P, D')
// at the highest recursion level, we add a 2-route cut for 7 to F
return I

Fig. 6 The 3-route cut algorithm for a multiple sources. Initially, C':= () and 7 := 0. The
algorithm is called with parameters G = (V, E), P = {(s1,t1),...,(Sk,tk)}, and D_1 = 0.
Procedure findradius(G, D, s;,t;) selects a radius and one of the terminals as specified in
Section 4.1. Procedure mincut2(v;, w;, H) works as specified in Lemma 10.
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mincut procedure, called mincut2, which computes a smallest cut in H*
avoiding the edges of level —1 — see Lemma 10 and Fig. 6.

— If dy(vi, w;, G\ H*) > 1/(12hL?), we also use the expanded subgraph H~
for the recursive call but without the edge v;w;. Instead, the pair {v;, w;}
is added to a global set 7. The set of commodities consists again of those
with both terminals in B#(r), and the set of restricted edges is preset
to {uv € DN E(H?) | £(uv) = —1}. Once all recursive calls have been
completed at all levels of recursion, we compute a 2-route cut for all pairs
in 7 in order to decrease their connectivity to one. We explain in Section 4.3
why and how to do that.

It remains to discuss the details of the first case. Let V(H?) be the volume of
H* without the forbidden edges. It holds:

Lemma 10 If d,(v;, w;, H?*) > 1/(6hL) then c(mincut2(v;, w;, H?)) < 12hL-

V(H?).

Proof In the following, consider all z;-values in H* to be 0. A radius p €
[0, dy(vi, wi, H?)] is forbidden if §(v;, p) contains a forbidden edge. Let R be the
set of forbidden radii and v = min,c(o,a, (v; w,,72))\r ¢(6(vs, p)). As each for-
bidden edge has an x-length of at most 1/(12hL?) and there are at most log k
forbidden edges, |R| < 1/(12hL). Also, v > c¢(mincut2(v;, w;, H*)). Hence,
similarly as in the proof of Lemma 2,

V(H?) =

/ (6w p)) > - (da(vs,ws, HY) — |R|)
pe[O,dw (Ui,wi,HZ)]\R

> c(mincut2(v;, w;, H*))/(12hL)
We conclude that c(mincut2(v;, w;, H*))< 12hL - V(H?). |

4.3 Putting it Together

Similarly to the singe-source version of the algorithm, for every part of the set
F' that the algorithm constructs, the ratio between the cost and the volume
is bounded by O(logk), and to each part of the volume we charge at most
O(log k) times within each recursive call. The only problem is that the set F'
that was constructed so far need not be a valid h-route cut. The difficulty is
with the recursion.

In the recursive calls, when the distance d,(v;, w;, G \ H*) was large (see
the previous subsection), we ignored the fact that the v; and w; were possibly
connected outside of the ball B#(r). Thus, at this point we have no guarantee
that the set F' that we constructed so far is a 3-route cut. To ensure that we
do have a 3-route cut, we remove an additional set of edges from the graph.
To be more specific, it suffices to find a 2-route cut for the pairs in 7.

We proceed as follows. Consider any pair {v;,w;} in 7. We know that
dz(vi,w;, G\ H?) > 1/(12hL?). Hence, when scaling all z-lengths of the edges
in G by a factor of 12hL?, we obtain a feasible fractional solution of the old LP
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relaxation of the minimum multicommodity 2-route cut problem that we recall
as LP (8) in Section 5. Therefore, it follows from the O(log? k)-approximation
algorithm of Barman and Chawla [5] and Theorem 3 below that there is a
2-route cut F’ for 7 in G with ¢(F’) = O(log* k - ¢). We add F’ to the set of
edges F' to obtain the final cut returned by the algorithm. Note that a 2-route
cut for the pairs in 7 indeed suffices for the final F' to be a 3-route cut.

Lemma 11 For every source-sink pair (s;j,t;) it holds that after removing F
and F' from G, the nodes s; and tj are at most 2-connected.

Proof Suppose that the source-sink pair (s;,t;) was recursively processed in
some ball H* with entry nodes v;, w;. If v; and w; are still connected after the
removal of F' and F”, then they are either connected in H* or in G \ H* but
not in both: otherwise they would still be 2-connected. In the rest of the proof
we distinguish these two cases.

If v; and w; are connected in H* but not in G\ H*, then the final connec-
tivity of s; and ¢; is at most 2 as we know that they are at most 2-connected
in H* (after removing the edges in F').

If v; and w; are connected in G\ H* but not in H*, and a path between v;
and w; in G\ H* can be extended into a path between s; and t; in G without
F and F’ (otherwise the claim of the lemma is obvious), then there is no path
between s; and ¢; in H* as otherwise v; and w; would also be connected inside
H?, contradicting out assumption. Hence, s; and t; are at best be 1-connected
in this case. a

Considering the explanation at the beginning of this section and the bound
from the previous paragraph, the cost of the set F is O(log*k - ¢), and at
this point, F' is a valid 3-route cut. The main theorem follows. A detailed
description of the algorithm is given in Figure 4.1.

Theorem 2 The approxzimation ratio of the algorithm for the general 3-route
cut problem is O(log* k).

5 Duality of Multicommodity Multiroute Flows and Cuts

Recall that an elementary h-flow between s and t is a set of h edge-disjoint
paths between s and t, each carrying a unit flow. Let Q; denote the set of all
elementary h-flows between s; and ¢; and let Q = Uf:Z Q;. Then the problem
of finding a maximum multicommodity A-route flow has the following linear
programming formulation; there is a non-negative variable f(q) for every ¢ € Q
where the value f(q) represents the total amount of flow sent along the h-route
flow g. On the right side of the page we state the dual linear program.

Note that without the factor i in the objective function the linear program (8)
is another relaxation of the h-route cut problem (the approximation algorithm
of Chekuri and Khanna [7] for 2-route cuts is based on this relaxation). We
will refer by (8’) to the linear program (8) with the objective function scaled

down to ) . cle) - z(e).
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max Z f(a) (7) min h - Z c(e) - z(e) (8)
q€Q ecE
Z fl@) <h-cle) VeeFE Zz(e)Zl Vg€ Q
qEQ:e€q e€q
fl@) >0 VgeQ z(e) >0 Vec E

There are simple examples showing that the linear relaxation (8’) is by
a factor of h lower (asymptotically) than the linear relaxation of (1). Think
about two vertices s and ¢ connected by M parallel edges. Then the fractional
optimum for the linear program (8’) is M/h (assign a value 1/h to every
variable) while the fractional optimum of the linear program (1) is M — h.

The main technical result of this section is that the gap between the two
relaxations is not more than h; note that no previous results from this paper
are needed in the proof of this result in Theorem 3. As a corollary we obtain
an approximate duality theorem for multiroute cuts and flows.

Theorem 3 Given an instance of the h-route cut problem, let Oy denote the
optimum value of the linear program (1) and Oy the optimum value of the
linear program (8’). Then Oy < O1 < h - Oq, and the bound is tight.

Proof Since the first inequality is trivial, it suffices to prove the second one.
Let 2 be an optimum solution of the linear program (8). We are going to
derive from z a solution Z,z1, ..., 7 € RF of the linear program (1) with the
objective value being larger by a factor of at most h (i.e., Y .pc(e)z(e) <
h3 e cle)z(e)).

It is tempting to argue as follows. For every commodity ¢, the maximum
number of edge disjoint paths between s; and ¢; of x-length strictly less then
1/h, is h — 1. Thus, by Menger’s theorem, there exists a set F; of h — 1 edges
whose removal destroys all s; — ¢; paths of a-length less then 1/h. For each
edge e € F; we set z;(e) = 1, and for each e € E we set T(e) = h - x(e).
Unfortunately, Menger’s theorem does not hold for paths of bounded length
(cf. [4]) and thus, this reasoning is completely wrong.

We have to argue more carefully. For each e € E, let Z(e) = h - z(e). It
suffices to prove that for each ¢, the following linear program has a feasible
solution x;. As in Section 2, P; denotes the set of all paths between s; and ¢;.

in(e) >1- Zf(e) Vp € P; 9)

ecp ecp
in(e)gh—l Vee E
ecE

xi(e) >0 Ve c E

Assume, for a contradiction, that the linear program (9) does not have a
feasible solution. Then, by Farkas’ lemma, there exists a non-negative vector
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X\ € RP and a non-negative scalar v such that

Z AMp) <1 VeeFE (10)
pEPie€p
S A=Y #(e) > h—1
pEP; eEp

(without loss of generality, we assume that v = 1 and therefore it does not
show up in the above inequalities; note that every vector (\,~) obtained by the
application of the Farkas’ lemma to the linear program (9) satisfies v > 0 and
thus, we can scale the (), ) to guarantee v = 1). In the following discussion,
among all vectors A\ satisfying the constraints (10) we fix the one for which
> pep, A(p) is minimal.

Observe that A corresponds to a feasible flow between s; and ¢; in the
graph G with all edge capacities set to one; the size of the flow is at least
h =143 cp Decpy NP)ZT(e) > h — 1. For each edge e € E, let A(e) =
> pecp A(p) and let E' = {e € E'| A(e) > 0} be the subset of edges on which
the flow A is non-zero. Since the flow is realized in a graph with unit capacities
and the size of the flow is strictly larger than h—1, by Menger’s theorem there
exist h edge disjoint paths between s; and t; in (V, E’); let ¢ € Q; denote the
corresponding elementary h-flow and A(q) = min.c, A(e). Let X € R be (a
path-decomposition of) the flow obtained from the flow A\ by subtracting A(q)
units of flow from every edge e € g. Note that > p A(p) > > cp. N (p).
Since we started with a feasible solution z of the linear program (8’), from the
definition of Z we know that > ___Z(e) > h. Observing that

ecq
DoALA =D z(e) = Y NP1 =Y #(e) +Ag)(h =) _z(e))
PEP; eEp PEP; eEp e€q

we conclude that 3 » AN'(p)(1 — > ., %(e)) > h — 1. However, this is a
contradiction with the choice of A: the flow A’ also satisfies the constraints (10)
and its size is smaller than the size of A\. Thus, the linear program (9) has a
feasible solution, for each i, and the proof is completed. O

Corollary 2 (Duality of multiroute multicommodity flows and cuts)
For any instance with k commodities, the cost of the minimum h-route cut for
h < 3 is at least a fraction 1/h of the mazimum h-route multicommodity flow,
and is always at most O(log* k) times as much.

Proof The first relation is trivial: one always has to block at least one of the h
paths of every elementary h-flow. The other relation follows from Theorem 3,
the duality of the linear programs (7) and (8), and Theorem 2 (the approxi-
mation algorithm). O
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5.1 Sparsest multiroute cut

The sparsest multiroute cut problem is a multiroute analog of the sparsest cut
problem. As input we are given a graph, k pairs of vertices s;,t; and k integers
d; called demands. The task is to find a subset of edges F' such that the ratio
of the sum of capacities of edges in I’ and the sum of demands of commodities
that are at most h — 1-connected after the removal of F', is minimized. The
approximation algorithm is based on a linear programming relaxation of the
sparsest cut problem; we refer to the survey paper by Shmoys [17] for more
details about the derivation of the linear relaxation. As in the previous section,
Q; denotes the set of all elementary h-flows between s; and t;.

min Z cle)x(e) (11)

k
Z dy; =1
i=1

dale) =y Vielkl,qge Q

ecq

Sparsest multiroute cut. Here we describe a rounding procedure for the LP (11).
We solve the linear program and then, by standard techniques [11,17], find a
nonempty subset S C [k] of commodities such that ymin > 1/(>_;c5 diH (D))
where Ymin = min;esy;, D = Zle d; and H(j) is the j-th Harmonic number.
We scale the fractional solution = by 1/ymin to obtain a feasible fractional
solution Z = & /ymin for the linear program (8) with the set of commodi-
ties given by the set S. Then we apply the construction from the proof of
Theorem 3 to obtain from Z a feasible fractional solution of the linear pro-
gram (1); the cost of the scaled fractional solution is larger than the fractional
optimum of the original relaxation of the multiroute sparsest cut by a factor
of h/Ymin < h),cqdiH(D) at most. To round this fractional solution to an
integral one we use the algorithm described in Section 3. Clearly, the inte-
gral solution for the minimum h-route cut instance S corresponds also to an
integral solution of the original sparsest h-route cut instance.

Realizing that the objective of the sparsest multiroute cut problem is to
minimize the ratio between the capacity of the removed edges and the sum of
demands of disconnected commodities (which is ) ;. g d;), the main results of
this section follow.

Theorem 4 The approximation ratio achievable in polynomial time for the
multiroute sparsest cut problem with h < 3 is O(log* klog D) where D =

Zf:l d;.
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Corollary 3 For any instance with k commodities, the sparsest h-route cut
for h < 3 is at least as large as the mazimum concurrent h-route multicom-
modity flow, and is always at most O(log4 k log D) times larger.
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