
On the Complexity of Paths Avoiding

Forbidden Pairs

Petr Kolman, Ondřej Pangrác

Department of Applied Mathematics and
Institute for Theoretical Computer Science,

Charles University, Malostranské nám. 25, 118 00 Prague, Czech Republic. 1

Abstract

Given a graph G = (V,E), two fixed vertices s, t ∈ V and a set F of pairs of vertices
(called forbidden pairs), the problem of a path avoiding forbidden pairs is to find a
path from s to t that contains at most one vertex from each pair in F . The problem
is known to be NP-complete in general and a few restricted versions of the problem
are known to be in P. We study the complexity of the problem for directed acyclic
graphs with respect to the structure of the forbidden pairs.

We write x ≺ y if and only if there exists a path from x to y and we assume,
without loss of generality, that for every forbidden pair (x, y) ∈ F we have x ≺ y.
The forbidden pairs have a halving structure if no two pairs (u, v), (x, y) ∈ F satisfy
v ≺ x or v = x and they have a hierarchical structure if no two pairs (u, v), (x, y) ∈ F
satisfy u ≺ x ≺ v ≺ y. We show that the PAFP problem is NP-hard even if the
forbidden pairs have the halving structure and we provide a surprisingly simple and
efficient algorithm for the PAFP problem with the hierarchical structure.

Key words: Path, Forbidden pairs, Algorithm

Email addresses: kolman@kam.mff.cuni.cz (Petr Kolman),
pangrac@kam.mff.cuni.cz (Ondřej Pangrác).
1 Institute for Theoretical Computer Science is supported by Ministry of Education
of the Czech Republic as project 1M0021620808.

Preprint submitted to Elsevier Science 29 April 2009

1 Introduction

The problem of a path avoiding forbidden pairs (PAFP) is defined as follows.
Given a graph G = (V, E) with two fixed vertices s, t ∈ V and a set of pairs
of vertices F ⊂ (V × V), the task is to find a path from s to t that contains
at most one vertex from each pair in F , or to recognize that such path does
not exist. The pairs in the set F are called forbidden pairs and the paths
containing at most one vertex from each pair in F are called F -paths.

The problem arose in the seventies in connection with automatic software
testing and validation [5,6] as the impossible pairs constrained path problem.
The effort was to make the testing more efficient by considering only those
paths through a program that contain at most one branch of each pair of
mutually unexecutable branches. Gabow et al. [3] proved that the problem is
NP-complete in directed acyclic graphs.

Yinnone [7] studied the problem in directed graphs under a so-called skew-
symmetry condition constraining the set of edges and the set of forbidden
pairs and described a polynomial time algorithm for instances satisfying the
condition.

A restricted version of the PAFP problem appears also in bioinformatics,
namely in the problem of protein identification via tandem mass spectrometry.
For a protein with an unknown structure, the task is to determine the sequence
of its amino acids from a mass spectrum of the protein (i.e., from a set of
masses corresponding to masses of prefix and suffix fragments of the protein).
Chen et al. [1] propose a method that, using information about the weights of
amino acids, constructs a graph from the mass spectrum; the graph that they
construct is a directed acyclic graph and the biological matter of the problem
yields a linear ordering < of the set of vertices that is consistent with the
partial ordering induced by the edge set. From the mass spectrum they also
derive a set of forbidden pairs with a specific structure: every two forbidden
pairs (a, b) and (c, d) satisfy that either a < c < d < b or c < a < b < d.
They are looking for a path from the first to the last vertex that avoids the
forbidden pairs. For such instances they describe an algorithm that runs in
time polynomial in the size of the graph.

In this paper we study the complexity of the PAFP problem (in directed
acyclic graphs) with respect to the structure of the forbidden pairs. Given a
directed acyclic graph G = (V, E) and two vertices x, y ∈ V , we write x ≺ y
if and only if there exists a path from x to y in G, that is, we use ≺ to denote
the partial ordering on V induced by the structure of the graph G. It will
be convenient to assume, without loss of generality, that for every forbidden
pair (x, y) ∈ F we have x ≺ y; if y ≺ x we replace the pair (x, y) by (y, x)

2

and if x and y are not comparable, we remove the pair (x, y) from F without
any effect on the solvability of the problem. The forbidden pairs in F have a
halving structure (with respect to the ordering ≺) if no two forbidden pairs
(u, v), (x, y) ∈ F satisfy v ≺ x or v = x. The forbidden pairs in F have a
hierarchical structure if no two pairs (u, v), (x, y) ∈ F satisfy u ≺ x ≺ v ≺ y.
For brevity we also speak about PAFP with the halving structure and PAFP
with the hierarchical structure and about instances with the halving and the
hierarchical structure.

We note that the problem considered by Chen et al. [1] is a special case of the
PAFP with both the hierarchical and the halving structure.

The main contributions of the paper are a proof of NP-hardness of the PAFP
problem even if the forbidden pairs have the halving structure (Section 3) and
a surprisingly simple and efficient polynomial time algorithm for the PAFP
problem with the hierarchical structure (Section 4). The algorithm yields so-
lutions also for several optimization versions of the PAFP problem: search for
the shortest or the longest path with the length defined as the sum of edge or
vertex weights, or the search for k shortest or k longest paths.

2 Preliminaries

We assume that the input graph G = (V, E) is a directed acyclic graph that is
connected and we denote by ≺ the partial order on V induced by G. Further,
we assume that s is the unique smallest element in V and t is the unique
largest element in V , with respect to the partial order ≺; otherwise we delete
vertices and edges that are not reachable from s and vertices and edges from
which t is not reachable, without any effect on the solvability of the PAFP
problem in G.

In the following observation we show that the PAFP problem is NP-complete
even if both G = (V, E) and (V, F) are planar; the proof is a simple modifica-
tion of the original proof [3] of NP-completeness of the PAFP problem.

Observation 2.1 The PAFP problem is NP-complete even if both G = (V, E)
and (V, F) are planar.

Proof: The original proof is by a transformation from the 3-SAT problem.
Given a formula C =

∧n
i=1(xi,1 ∨ xi,2 ∨ xi,3) where each xi,j is either a variable

or a negation of a variable, we construct a layered graph G = (V, E) as follows.
For i ∈ [1, n], the i-th level consists of three vertices xi,1, xi,2, xi,3, the level zero
contains the source vertex s and the level n+1 contains the sink vertex t, and
each pair of consecutive levels forms a complete bipartite graph. Formally, we

3

define multisets

V = {s, t} ∪
n⋃

i=1

{xi,1, xi,2, xi,3}

and

E = {(s, x1,1), (s, x1,2), (s, x1,3), (xn,1, t), (xn,2, t), (xn,3, t)} ∪
n−1⋃
i=1

{(xi,1, xi+1,1), (xi,1, xi+1,2), (xi,1, xi+1,3),

(xi,2, xi+1,1), (xi,2, xi+1,2), (xi,2, xi+1,3),

(xi,3, xi+1,1), (xi,3, xi+1,2), (xi,3, xi+1,3)} .

The set F of the forbidden pairs consists of all pairs (xi,j, xk,l) such that i < k
and (xi,j, xk,l) correspond to a variable and its negation. By construction, the
formula C is satisfiable if and only if there exists a path from s to t avoiding
the forbidden pairs.

We note that the constructed graph G can be made planar: add for every
two consecutive layers i and i + 1 a new vertex zi and replace the complete
bipartite graph K3,3 on vertices

xi,1, xi,2, xi,3, xi+1,1, xi+1,2, xi+1,3

by a graph with edges

{(xi,1, zi), (xi,2, zi), (xi,3, zi), (zi, xi+1,1), (zi, xi+1,2), (zi, xi+1,3)} .

Observe that the transformation works analogously for any SAT instance. If
we start with a SAT instance with the number of occurrences per variable
bounded by three (also an NP-complete problem [2]), we end with (V, F)
planar (each component of (V, F) contains at most three vertices). Thus, the
PAFP is NP-complete even if both G = (V, E) and (V, F) are planar.

2

In the next section, for technical reasons, we will work with a version of the
PAFP problem (denoted !1-PAFP) in which every vertex, except for s and t,
appears in exactly one forbidden pair. In the rest of this section we show that
the problem remains NP-complete under this restriction.

Observation 2.2 Let G = (V, E), F ⊂ V × V and s, t ∈ V be an instance of
the PAFP problem. Then there exists an instance G′ = (V ′, E ′), F ′ ⊂ V ′× V ′

and s′, t′ ∈ V ′ of the !1-PAFP problem that has a solution if and only if the
original instance has a solution. Further, the new instance can be constructed
in time polynomial in V and F .

4

Proof: The transformation from G to G′ is done in two phases. In the first
phase we ensure that every vertex appears in at most one forbidden pair. For
every vertex v ∈ V that belongs to more than one forbidden pair we perform
step by step the following transformation. Let (v, u1), . . . , (v, uh) be the for-
bidden pairs in which v appears as the first vertex and (w1, v), . . . , (wl, v) be
the forbidden pairs in which v appears as the second vertex. We replace v by
a directed path xlxl−1 . . . x1yhyh−1 . . . y1 and reconnect the edges adjacent to v
as follows. All edges incoming to v are directed to xl, all edges outgoing from
v are outgoing from y1. Then, for each i ∈ [1, h] we replace the forbidden pair
(v, ui) by (yi, ui) and for each j ∈ [1, l] we replace (wi, v) by (wi, xi). At this
point each vertex appears in at most one forbidden pair.

In the second phase we get rid of all vertices that do not belong to any for-
bidden pair, except for s and t. If v is such vertex and (u1, v), . . . , (uh, v),
(v, w1), . . . , (v, wl) are edges adjacent to v, we remove v from V and replace
the edges adjacent to v by a complete bipartite graph on {u1, . . . , uh} and
{w1, . . . , wl}, that is, by edges {(ui, wj) | i ∈ [1, h], j ∈ [1, l]}. This is done
stepwise for all vertices not appearing in any forbidden pair, except for s and
t.

2

3 Forbidden pairs with halving structure

As a tool for proving NP-completeness of the PAFP problem with the halving
structure, we define a new problem called the red-blue path problem: Given
a directed graph G = (V, E) and a partitioning of its edges into two sets
E = ER ∪ EB such that both GR = (V, ER) and GB = (V, EB) are acyclic
graphs, the task is to find two node disjoint s− t paths pR and pB in G such
that pR ⊂ ER and pB ⊂ EB (for notational simplicity we view a path as a set
of edges). The edges in ER are called red and the edges in EB are blue. We
show that the red-blue path problem is closely related to the PAFP problem.

Proposition 3.1 The red-blue path problem is NP-complete.

Proof: The proof is by reduction from the !1-PAFP problem. Given an in-
stance of the !1-PAFP problem, namely a directed graph G = (V, E), s, t ∈ V
and a set of forbidden pairs F = {(x1, y1), (x2, y2), . . . , (xl, yl)} such that each
vertex appears in exactly one forbidden pair (except for s and t), we construct
an instance G′ = (V ′, ER ∪ EB) of the red-blue path problem as follows. We
start with a vertex set V ′ = V . The set of red edges will consists of edges

ER = {(s, x1), (s, y1), (xl, t), (yl, t)} ∪

5

l−1⋃
i=1

{(xi, xi+1), (xi, yi+1), (yi, xi+1), (yi, yi+1)}

and the set of blue edges will coincide with the set of original edges in G, that
is, EB = E.

It follows from the construction that if there exists a path p between s and t
in G avoiding the forbidden pairs in F , then there exist the two node disjoint
paths pB ⊂ EB and pR ⊂ ER in G′ (specifically, pB = p), and vice versa. At
this point, there might be edges in G′ belonging to both ER and EB. We can
easily get rid of them by subdividing every red edge for which there exists a
parallel blue edge into two consecutive edges (i.e., we replace the edge by a
path of length 2). The overall reduction is clearly a polynomial time reduction
and the proof is completed.

2

Theorem 3.2 The PAFP problem with the halving structure is NP-complete.

Proof: The proof is by reduction from the red-blue path problem. Given an
instance G = (V, ER ∪ EB) and s, t ∈ V of the red-blue path problem, we
construct an instance G′ = (V ′, E ′), s′, t′ ∈ V ′ and F ⊂ V ′ × V ′ of the PAFP
problem with the halving structure. The vertex set of the graph G′ consists of
two copies of the vertex set of the graph G; let V1 denote the first copy and
V2 the second copy and let v1 denote the copy of v ∈ V in V1 and v2 the copy
of v ∈ v in V2. The core of G′ consists of two graphs (V1, ER) and (V2, EB)
connected by an edge (t1, s2), that is, V ′ = V1 ∪ V2, E ′ = E1 ∪E2 ∪ {(t1, s2)},
s′ = s1 and t′ = t2. The set of forbidden pairs consists of all pairs (v1, v2)
except for the pairs (s1, s2) and (t1, t2), that is, F =

⋃
v∈V \{s,t}{(v1, v2)}.

By construction, if there exists a path p in G′ from s′ to t′, then it has a form
p = s1 · · · t1s1 · · · t2 and the first part s1 · · · t1 uses only the edges from ER

and the second part s2 · · · t2 uses only the edges from EB and, moreover the
forbidden pairs ensure that if the first part uses a vertex v1 then the other part
does not use the vertex v2, for each v ∈ V \ {s, t}, and vice versa. Thus, if we
interpret the first part of the path p as the red path in G and the second part
as the blue path in G, then they have the desired property. On the other hand,
given a red path and a node disjoint blue path in G, then a concatenation of
their copies in G′ yields a solution for the PAFP problem in G′. Since the
reduction is clearly a polynomial time reduction, the proof is completed.

2

Although the PAFP problem with the halving structure is NP-complete, there
exists a natural version of the PAFP with the halving structure that is solv-
able in polynomial time. This version was already briefly discussed in the

6

introduction and the instances of it have both the halving and the hierar-
chical structure (and some other restricting properties). Let V be a linearly
ordered set consisting of 2k + 2 vertices s < x1 < x2 < . . . < xk < yk < . . . <
y2 < y1 < t, G = (V, E) be a directed graph such that the partial order ≺
induced by G is consistent with < (i.e., a < b for each edge (a, b) ∈ E) and
F = {(x1, y1), (x2, y2), . . . , (xk, yk)} be a set of forbidden pairs. As mentioned
in the introduction, such instances are important in the problem of protein
identification and Chen et al. [1] proposed a polynomial time algorithm for
solving them. In the rest of this section we enlarge the set of instances of the
PAFP with the halving structure for which a polynomial time algorithm is
known.

Let σ be a permutation of 1, 2, . . . , k. We say that an instance G = (V, E), F
(with |V | = 2k + 2) belongs to the class PAFP(σ) if there is a linear ordering
of V consistent with ≺ such that, after a suitable relabeling of the vertices,
we have

s < x1 < x2 < . . . < xk < yσ(1) < yσ(2) < . . . yσ(k) < t

and

F = {(x1, y1), (x2, y2), . . . , (xk, yk)} .

For a permutation σ of 1, 2, . . . , k we denote by σ the reversed permutation
(i.e., σ(i) = σ(k + 1− i), for each i ∈ [1, k]).

In the following theorem, by an oracle for a problem we mean anything that
provides correct solutions for instances of the problem in constant time.

Proposition 3.3 Let S be a class of permutations and let AS be an oracle for
instances from

⋃
σ∈S PAFP(σ). For every σ ∈ S, every instance from PAFP(σ)

can be solved in polynomial time with the oracle AS.

Proof: Consider a permutation σ ∈ S and an instance from PAFP(σ), that
is, a graph G = (V, E) and a set of forbidden pairs F with the property
that there exists a linear ordering on V consistent with ≺ such that after a
suitable relabeling the vertices from V satisfy s < x1 < x2 < . . . < xk <
yσ(1) < yσ(2) < . . . < yσ(k) < t and the set of the forbidden pairs has the form

F = {(x1, y1), (x2, y2), . . . , (xk, yk)}.

If (s, t) ∈ E, the problem is trivial. Otherwise we perform a series of queries
to the AS-oracle for instances derived from G and F . If any of the answers
is positive, then there exists an F -path in G, and if none of the answers is
positive, then there is no F -path in G.

We start by constructing a set of edges E ′ by a modification of E: we delete
all edges starting in s, all edges ending in t and all edges of the form (xi, yj),
and then we reverse the direction of the edges induced by the vertices Vy =
{y1, y2, . . . , yk}. Note that the graph (V, E ′) with the set of forbidden pairs F

7

is an instance from PAFP(σ). If there exists an edge (xi, t) ∈ E, for some i,
we construct a new graph Gt = (V, Et) by setting Et = E ′∪⋃

(xi,t)∈E{(xi, t)}∪⋃
(s,xi)∈E{(s, xi)} and ask the AS-oracle for the existence of an F -path in Gt.

Analogously, if there exists an edge (s, yi), for some i, then we construct Gs =
(V, Es) by setting Es = E ′ ∪ ⋃

(s,yj)∈E{(yj, t)} ∪
⋃

(yj ,t)∈E{(s, yj)} and ask the
AS-oracle for the existence of an F -path in Gs.

Finally, for each edge of the form (xi, yj) ∈ E we construct a graph Gij by
setting Eij = E ′ ∪⋃

(s,x′
i)∈E{(s, x′i)} ∪ {(yj, t)} ∪

⋃
(y′

j ,t)∈E{(xi, y
′
j)} and ask the

AS-oracle for the existence of an F -path in Gij = (V, Eij).

If none of the particular problems has a solution then there is no F -path from
s to t in the graph G.

2

Note that the version of the problem considered by Chen et al. [1] belongs
to the class PAFP(ι) where ι is the identity permutation. Thus, we get the
following corollary.

Corollary 3.4 There exists a polynomial time algorithm for all problems from
PAFP(ι).

4 Forbidden pairs with hierarchical structure

In this section we describe a polynomial time algorithm for the PAFP problem
with the hierarchical structure. The input of the algorithm is a directed acyclic
graph G = (V, E), a set of forbidden pairs F ⊂ V × V with the hierarchical
structure (i.e., no two pairs (a, b), (c, d) ∈ F satisfy a ≺ c ≺ b ≺ d) and a
weight function w : E → R on the edges. The goal is to find an path from s
to t that avoids the forbidden pairs from F and has the maximum weight (the
weight of a path is the sum of the edge weights of the path). We recall our
assumption that s is the unique minimal element and t is the unique maximal
element in V , with respect to the partial order ≺.

On a high level, the algorithm repeatedly shrinks the input instance by re-
moving vertices, edges and forbidden pairs while guaranteeing that one can
obtain a solution for the original instance from a solution for the new (smaller)
instance. For this purpose, the algorithm maintains a label ρ(e) for every edge
in the current graph; the labels are strings and initially, the label of an edge
e is ρ(e) = e. The label of an edge e encompasses information about a path
in the original graph that is now represented by the edge e; the details are
described below.

8

The algorithm iteratively applies the following three reduction rules. For nota-
tional simplicity, we use G and F to denote the current graph and the current
set of forbidden pairs.

Rule R1 – contraction of a vertex.

Step by step, for every vertex x ∈ V \ {s, t} that does not appear in any
forbidden pair in F , do the following. Remove x from V , and for every pair
of edges (u, x), (x, y) ∈ E add a new edge (u, y) to E. The label of the new
edge is a concatenation of the labels of the two old edges, that is, ρ(u, y) =
ρ(u, x)ρ(x, y). Similarly, we define the weight of the new edge as the sum of
the weights of the two old edges, that is, w(u, y) = w(u, x) + w(x, y). Remove
all edges adjacent to x.

If two parallel edges (u, v) emerge (i.e., an edge (u, v) was present in G before
the reduction), we compare their weights and keep only the edge with the
larger weight.

Rule R2 – removal of an edge.

For every edge e ∈ E ∩ F , remove e from E.

Rule R3 – removal of a forbidden pair.

For every (x, y) ∈ F such that x 6≺ y (i.e., there is no directed path from x to
y), remove (x, y) from F .

We are ready to describe the algorithm.

Input: a directed acyclic graph G = (V, E), two distinct vertices s, t ∈ V , a set
of forbidden pairs F ⊂ V × V with the hierarchical structure, an edge
weight function w : E → R.

Algorithm: for each edge (x, y) ∈ E set ρ(x, y) = (x, y).
while |V | > 2 do

apply R1
apply R2
apply R3

if E = ∅ output “No F -path from s to t exists.”
else output “The maximum weight of an F -path from s to t is w(s, t)
and a corresponding path is ρ(s, t).”

To establish the correctness of the algorithm, we will prove two things. First,
after an application of any of the rules, there is way to obtain a solution for
the original instance from the solution for the new (smaller) instance. Second,
if none of the rules is applicable, then the graph consists of the two vertices
s and t only (with or without an edge between them) and the problem is

9

trivial. Before proving these two properties formally in lemmas, it will be
convenient to introduce an additional notation. A label ρ(P) of a path P
consisting of k edges e1, e2, . . . , ek is a concatenation of the k labels ρ(ei), that
is, ρ(P) = ρ(e1)ρ(e2) . . . ρ(ek). Observe that in the original graph with edge
labels ρ(e) = e, the label ρ(P) of a path P is exactly the description of the
path.

Lemma 4.1 Let G = (V, E) be a directed acyclic graph and F a set of forbid-
den pairs with the hierarchical structure. Let G′ be the graph obtained from G
by an application of the reduction rule R1, R2 or R3. Then for any F -path
P ′ in G′ there is an F -path P in G such that ρ(P) = ρ(P ′) and w(P) = w(P ′).
On the other hand, if P is an F -path in G between s and t then there exists
an F -path P ′ in G′ between s and t such that w(P) ≤ w(P ′).

Proof: We start by arguing about the rule R1. Without loss of generality we
assume that the rule was applied to a vertex x only.

Consider an F -path P ′ in G′ that uses only edges appearing also in the graph
G. Then P ′ is also a path in G and the first claim in the lemma is trivial.
Similarly, if P is a path in G that does not use the vertex x, then P is a path
in G′ too and the second claim in the lemma is trivial.

Now, consider an F -path P ′ in G′ that contains a new edge (u, v) 6∈ E that
was introduced by the application of the rule R1. By replacing the edge (u, v)
in P ′ by two edges (u, x), (x, v), we obtain a path P in G and clearly P avoids
all forbidden pairs F ; it follows from the description of the rule R1 that
ρ(P) = ρ(P ′) and w(P) = w(P ′).

Finally, let P be an F -path in G containing the vertex x and let (u, x) and
(x, v) be two consecutive edges of P , adjacent to x. If (u, v) ∈ E and w(u, v) ≥
w(u, x) + w(x, v), then a path derived from P by replacing (u, x), (x, v) by
(u, v) is the desired F -path P ′ in G′. Otherwise, an edge (u, v) with a weight
w(u, x) + w(x, v) and a label ρ(u, x)ρ(x, v) appears in G′ and the desired F -
path P ′ is derived from P by replacing the two edges (u, x), (x, v) by (u, v);
clearly w(P ′) = w(P) (and even ρ(P) = ρ(P ′)) which completes the proof.

Concerning the other two reduction rules, it is easy to see that they do not
effect the solution of the problem.

2

Proposition 4.2 Let G = (V, E) be a directed acyclic graph and F a set of
forbidden pairs with the hierarchical structure. If none of the reduction rules
R1, R2, R3 can be applied then V = {s, t}.

Proof: The proof is by contradiction. Assume that there exists a vertex x ∈ V

10

distinct from s, t. Since the rule R1 is not applicable, the vertex x is contained
in an F -pair, and therefore F 6= ∅. Note that for each F -pair (u, v) there is
a path from u to v since otherwise we can apply the rule R3. Consider a
pair (u, v) ∈ F such that no other pair (x, y) ∈ F satisfies u ≺ x ≺ y ≺ v.
Since the rule R2 is not applicable, there must be an internal vertex, say
a vertex x, on the shortest path from u to v. But since the rule R1 is not
applicable, there is another vertex y such that (x, y) ∈ F or (y, x) ∈ F , and
the hierarchical structure of F implies that y is also on the shortest path from
u to v, a contradiction.

2

The two lemmas imply the following theorem.

Theorem 4.3 There exists a polynomial time algorithm for the PAFP prob-
lem with the hierarchical structure.

We remark that a slight modification the algorithm yields an algorithm for
variants of the PAFP problem in which we are interested in finding the k
shortest or the k longest F -path (for both edge and vertex lengths). It suffices
to keep for every edge (vertex) k labels and k weights (initially all k labels
equal and all k weights equal for each edge or vertex) and to modify the
reduction rule R1 appropriately.

Fast implementation. A naive implementation requires time O(n2) for a
contraction of a single vertex and O(1) for a removal of a single edge; the most
time-consuming part of a naive implementation is the recognition of redundant
forbidden pairs and requires time O(m) per forbidden pair containing a given
vertex. Since the total number of iterations is at most n (observe that the
rule R1 is applied in each iteration, except for the last iteration) the overall
running time is then upper bounded by O(mn2). By exploiting algorithms
for fast matrix multiplication for the recognition of the redundant forbidden
pairs, we can reduce the time bound down to about O(n3.3). We are going to
sketch how to implement the algorithm in time O(n3).

Italiano [4] described a data structure supporting a sequence of reachability
queries and deletion operations in a directed acyclic graph running in time
O(mn+qn) where q denotes the number of reachability queries, n the number
of nodes in the graph and m the initial number of edges. An inspection of
the algorithm reveals that a simple extension yields an algorithm supporting
in addition the operation of a vertex contraction in time O(n2) per contrac-
tion (note that a vertex contraction does not affect the reachability within
the graph, except for the contracted vertex). With such an algorithm (and a
relevant data structure) we implement our algorithm in time O(n3) as follows.
We slightly modify the first two steps of each iteration. Instead of performing
these two steps sequentially, we check already during the vertex contraction

11

which of the new edges appear in the set of forbidden pairs F and we add to the
graph only those edges that do no appear in F . To be able to do these checks
fast, we maintain an array H indexed by pairs of vertices with the meaning
H(u, v) = 1 if (u, v) ∈ F and H(u, v) = 0 otherwise; the initialization of the
array takes time O(n2) and the total time of all updates is also bounded by
O(n2). With this modification of the algorithm, the total number of all edge
removals is O(m), and as the amortized complexity of an edge removal is O(n),
we need at most O(mn) time for all edge removals. Since there are at most n
vertex contractions, the total time for all vertex contractions is O(n3). With
the data structure of Italiano at al., the recognition of a redundant forbidden
pair requires amortized time O(n); overall the recognition and removal of all
redundant forbidden pairs takes time O(n3). We conclude that the running
time of the algorithm is O(n3).

Acknowledgement We thank Liam Roditty for pointing us to the paper [4].

References

[1] T. Chen, Ming-Yang Kao, M. Tepel, J. Rush, G. M. Church. A Dynamic
Programming Approach to De Nova Peptide Sequencing via Tandem Mass
Spectrometry, Journal of Computational Biology 8(3) (2001), 325–337.

[2] V. Dalmau and D. K. Ford. Generalized satisfiability with limited occurrences
per variable: A study through delta-matroid parity. In Mathematical
Foundations of Computer Science 2003, volume 2747 of Lecture Notes in
Computer Science, pages 358–367, 2003.

[3] H. N. Gabow, S. N. Maheshwari, L. J. Osterweil. On two problems in the
generation of program test paths, IEEE Trans. Software Egeneering SE-2
(1976), 227–231.

[4] G. F. Italiano. Finding Paths and Deleting Edges in Directed Acyclic Graphs.
Inf. Process. Lett. 28(1), (1988), 5–11.

[5] K. W. Krause, R. W. Smith, M. A. Goodwin, Optimal software test planning
through automated network analysis, Proceedings 1973 IEEE Symp. Computer
Software Reliability, New York (1973), 18–22.

[6] Pradip K. Srimani, Bhabani P. Sinha, Impossible pair constrained test path
generation in a program, Information Sciences 28(2) (1982), 87–103.

[7] H. Yinnone, On path avoiding forbidden pairs of vertices in a graph, Discrete
Applied Math. 74 (1997), 85–92.

12

