
Approximating Spanning Tree Congestion
on Graphs with Polylog Degree

Petr Kolman[0000−0003−2235−0506]

Charles University, Faculty of Mathematics and Physics
Prague, Czech Republic
kolman@kam.mff.cuni.cz

https://kam.mff.cuni.cz/~kolman

Abstract. Given a graph G and a spanning tree T of G, the congestion
of an edge e ∈ E(T), with respect to G and T , is the number of edges
uv in G such that the unique path in T connecting the vertices u and
v traverses the edge e. Given a connected graph G, the spanning tree
congestion problem is to construct a spanning tree T that minimizes its
maximum edge congestion.
It is known that the problem is NP-hard, and that every spanning tree
is an n/2-approximation, but it is not even known whether an o(n)-
approximation is possible in polynomial time; by n we denote the number
of vertices in the graph G.
We consider the problem on graphs with maximum degree bounded by
∆ = polylog(n) and describe an o(n)-approximation algorithm; note that
even on this restricted class of graphs the spanning tree congestion can
be of order n · polylog(n).

Keywords: Graph sparsification · Congestion · Bisection · Spanning
tree.

1 Introduction

The construction of a spanning tree of a given graph G is a cornerstone problem
in graph theory and computer science, explored with various objectives over
the past century [3]. In the spanning tree congestion problem, the objective is
to construct a spanning tree T of G minimizing its maximum edge congestion
where the congestion of an edge e ∈ T is the number of edges uv in G such that
the unique path between u and v in T passes through e. The problem can be
viewed as an extreme instance of graph sparsification (represent the connectivity
of a graph by its spanning tree), or as an instance of a graph embedding problem
(embed a graph into a tree T , with the restriction that T is a spanning tree).

The problem was first considered, as far as we know, by Simonson [14] under
the name Min cut (spanning) tree arrangement; the name spanning tree con-
gestion was coined later by Ostrovskii [10]. Even though the problem has been
studied for many years, its complexity is not much understood. It is known that
it is NP-hard [7,12], and that every spanning tree is an n/2-approximation [11],
but it is not even known whether an o(n)-approximation is possible in polynomial
time.

https://kam.mff.cuni.cz/~kolman

2 P. Kolman

1.1 Our Results

We restrict our attention on graphs in which the degree of every vertex is at
most polylogarithmic in the number of vertices. For these graphs, the spanning
tree congestion ranges between 1 and Θ(n · polylog(n)) (cf. the lower bound (3)
below). We describe a polynomial-time o(n)-approximation algorithm, namely
an Õ(n1−1/(

√
logn+1))-approximation1. This provides a partial answer to the

question (Problem 2.21) posted by Otachi [11].
The analysis of our algorithm exploits two new lower bounds on the spanning

tree congestion that are of independent interest.

1.2 Selected Related Results

The spanning tree congestion problem is known to be NP-complete even for
graphs with one vertex of unbounded degree and all other vertices of bounded
degree [2]. For planar graphs, the problem is NP-hard as well [12]. Unless P=NP,
no c-approximation with c smaller than 6/5 is possible [8]. The decision version
k-STC of the problem, to determine whether a given graph has a spanning tree
congestion at most k, is solvable in polynomial time for k ≤ 3, and is NP-
complete for k ≥ 5 [8]; NP-completeness of 5-STC implies the above mentioned
inapproximability bound.

The problem k-STC can be solved in linear time for every fixed k on apex-
minor-free graphs, a general class of graphs containing planar graphs, graphs
of bounded treewidth, and graphs of bounded genus [2] (cf. [12]). In the same
paper, the authors also show that for every fixed d and k, there is a linear time
algorithm for k-STC on graphs with maximum degree at most d; the result
is based on a close connection between the spanning tree congestion and the
treewidth that holds for bounded degree graphs.

Regarding algorithms for the hard instances, there is an exact exponential
time algorithm for solving them [9].

For a more detailed overview of other related results, we refer to the survey
paper by Otachi [11].

1.3 Sketch of our Approximation

Our algorithm uses the Divide and conquer framework. If the graph is small
enough, we use any spanning tree. Otherwise, we partition the graph by an
approximation of the minimum bisection into two or more components of con-
nectivity, each with at most n/2 vertices, solve the problem recursively for each
of the components, and then combine the spanning trees of the components into
a spanning tree of the entire graph.

The challenge is to relate the congestion of the final spanning tree to the
congestion of the optimal spanning tree. To be able to do so, we prove two

1 In the Big-O-Tilde notation Õ, we ignore polylogarithmic factors; note that for every
c > 0, logc n = o(n1/(

√
logn+1)).

Approximating Spanning Tree Congestion 3

lower bounds on the spanning tree congestion. The first one provides a relation
between the bisection of a graph and the spanning tree congestion (Corollary 1),
the other provides a connection between the spanning tree congestion of the
entire graph and the spanning tree congestion of its subgraph (Lemma 5).

The analysis of the algorithm is based on the following idea: if there is a
component with large bisection, where the exact meaning of large depends on
the recursion level, the combination of Corollary 1 and Lemma 5 yields a strong
lower bound on the optimal spanning tree congestion ensuring that any spanning
tree has the desired approximation property; on the other hand, if all components
that are used by the algorithm have small bisections, then it is possible to get a
stronger bound on the spanning tree congestion of the spanning tree constructed
by the algorithm.

1.4 Preliminaries

Given an undirected graph G = (V,E) and a subset of vertices S ⊂ V , we
denote by EG(S, V \ S) the set of edges between S and V \ S in G, and by
eG(S, V \ S) = |EG(S, V \ S)| the number of these edges; if the graph which we
are referring to is clear from the context, we avoid the lower index G. An edge
{u, v} ∈ E is also denoted by uv for notational simplicity; when the vertices of
an edge are not important, we simply talk about an edge e ∈ E. For a subset
of vertices S ⊆ V , G[S] is the subgraph induced by S. By V (G), we mean the
vertex set of the graph G and by E(G) its edge set. By d(v) we denote the degree
of a vertex v ∈ V , and by ∆(i) the sum of the i largest vertex degrees in G.
Given a graph G = (V,E) and an edge e ∈ E, G \ e is the graph (V,E \ {e}).

Let G = (V,E) be a connected graph and T = (V,ET) be a spanning tree
of G. For an edge uv ∈ ET , we denote by Su, Sv ⊂ V the vertex sets of the two
connected components of T \ uv. We define the congestion c(uv) of the edge uv
with respect to G and T as c(uv) = eG(Su, Sv). The congestion c(G,T) of the
spanning tree T of G is defined asmaxe∈ET

c(e), and the spanning tree congestion
STC(G) of G is defined as the minimum value of c(G,T) over all spanning trees
T of G.

A bisection of a graph with n vertices is a partition of its vertices into two sets,
S and V \ S, each of size at most dn/2e; in approximations, this requirement is
sometimes relaxed to 2n/3 (or to some other fraction). The width of a bisection
(S, V \ S) is e(S, V \ S). The minimum width of a bisection of a graph G is
denoted b(G).

There are several approximation and pseudo-approximation algorithms for
the minimum bisection [1,4]. In our algorithm, the congestion of the constructed
spanning tree grows exponentially with the depth of the recursion of the al-
gorithm (cf. the proof of Lemma 7). Thus, when approximating the minimum
bisection, the balance of the two parts is more important than the exact approx-
imation factor. For this reason, we will employ the approximation algorithm
by Räcke [13] and not the approximation by Arora, Rao and Vazirani [1], even
though the latter has better approximation.

4 P. Kolman

Theorem 1 (Räcke [13]). A bisection of width within a ratio of O(log n) of
the optimum can be computed in polynomial time.

We will also need an existential result about the size of the minimum exact
bisection in trees.

Lemma 1 (Folklore, cf. [5]). If T = (V,E) is a tree on n vertices and
maximum degree ∆, then there exists a bisection of width at most ∆ · log n.
Moreover, for every k < n, there exists a cut S ⊆ V such that |S| = k and
e(S, V \ S) ≤ ∆ · log n.2

2 Lower Bounds

An indispensable component of the analysis of any approximation algorithm
is an appropriate lower bound. In this section, we provide several known and
several new lower bounds on the spanning tree congestion. Even though we do
not need the old lower bounds in the analysis of our algorithm, we provide them
here for comparison. The new lower bounds are not difficult to prove but we are
not aware of these results; both Corollary 1 and Lemma 5 are crucial ingredients
for the analysis of the algorithm in the next section.

We need two more definitions. For each pair {u, v} of vertices of G we denote
by m(u, v) the maximal number of edge-disjoint paths between u and v in G.
The conductance φ(G) of a graph G = (V,E) (a.k.a. the Cheeger constant of G)
is defined as

φ(G) = min
S⊂V

|S|≤|V |/2

e(S, V \ S)∑
v∈S d(v)

.

Lemma 2 (Folklore, cf. [11]). For every graph G = (V,E) on n vertices with
m edges,

STC(G) ≥ 2m

n− 1
− 1 . (1)

Lemma 3 (Ostrovskii [10]). For every graph G = (V,E) of maximum degree
∆, minimum degree δ and diameter diam(G),

STC(G) ≥ max
u,v∈V

m(u, v) , (2)

STC(G) ≥ δ

∆
· φ(G) · (n− 1) , (3)

STC(G) ≥ δ · φ(G) ·
⌊
diam(G)

2

⌋
. (4)

2 Both results hold even in a slightly stronger form where ∆ · logn is replaced by
∆(logn), the sum of the logn largest degrees.

Approximating Spanning Tree Congestion 5

Lemma 4. For every graph G = (V,E) on n vertices with maximum degree ∆,
and for every k < n,

STC(G) ≥
min S⊂V

|S|=k
e(S, V \ S)

∆ · log n
. (5)

Proof. Let C = min S⊂V
|S|=k

e(S, V \S) be the minimum cut-size of a k-size cut in G
and let T be the spanning tree of G with the minimum congestion. By Lemma 1,
for the minimum k-size cut S of T , eT (S, V \S) ≤ ∆ · log n. Thus, the congestion
of the tree T is at least C/(∆ · log n). ut

Corollary 1. For every graph G = (V,E) on n vertices with maximum de-
gree ∆,

STC(G) ≥ b(G)

∆ · log n
. (6)

Before stating the next lemma, we note that the spanning tree congestion
of a connected subgraph of G might be much larger then the spanning tree
congestion of G; the lemma provides some bounds on the increase.

Lemma 5. For every graph G and every subset of vertices S ⊂ V that induces
a connected subgraph,

STC(G) ≥ STC(G[S])
e(S, V \ S)

. (7)

Proof. Consider an arbitrary subset of vertices S ⊂ V . We start by showing a
slightly different bound, namely

STC(G) ≥ STC(G[S])

1 + e(S,V \S)
2

. (8)

We do so by constructing a spanning tree of G[S] of congestion at most (1 +
e(S,V \S)

2) · STC(G). Let T be the spanning tree of G with congestion STC(G).
Let F ⊂ E be the subset of edges uv ∈ E with u, v ∈ S such that the path
between u and v in T uses at least one vertex from V \ S. Note that for every
edge uv ∈ F , the path between u and v in T has to use at least two edges from
E(S, V \ S). Thus, |F | ≤ STC(G) · e(S, V \ S)/2.

Let T ′ be an arbitrary extension of the forest T [S] into a spanning tree of
G[S]. It follows from the above observation that the congestion c(G[S], T ′) of
the spanning tree T ′ of G[S] is at most

c(G[S], T ′) ≤ STC(G) + |F | ≤ STC(G) + STC(G) · e(S, V \ S)
2

,

which completes the proof of the inequality (8).
At this point, we distinguish two cases. If e(S, V \ S) = 1, then STC(G) ≥

STC(G[S]) = STC(G[S])
e(S,V \S) ; if e(S, V \S) ≥ 2, then 1+ e(S,V \S)

2 ≤ e(S, V \S). Thus,
the inequality (7) holds in both cases. ut

6 P. Kolman

3 Approximation for Graphs with Degrees Bounded by
Polylog

Let G = (V,E) be a connected graph on n vertices with maximum degree ∆ ≤
polylog(n) and let k = k(n) = d

√
log ne + 1. We construct the spanning tree

of G by the procedure ConstructST(H, s, σ); the procedure is called with
parameters H = G, s = n

2k−1 , σ = 1.

Algorithm 1 ConstructST(H, s, σ)

1: construct an approximate bisection (S, V (H) \ S) of H
2: F ← E(S, V (H) \ S); b← |F |
3: if b/σ ≥ n1/k or |V (H)| ≤ s then
4: return any spanning tree of H
5: for each connected component C of H \ F do
6: TC ← ConstructST(C, s, σ + b)

7: arbitrarily connect all the spanning trees TC by edges from F to form
a spanning tree T of H

8: return T

Let τ denote the tree representing the recursive decomposition of G (implic-
itly) constructed by the procedure ConstructST: The root r of τ corresponds
to the graph G, and the children of a non-leaf node t ∈ τ associated with a set
Vt correspond to the connected components of G[Vt] \ F where F is the set of
cut edges of an approximate bisection of G[Vt] computed by Räcke’s algorithm
(Theorem 1); we denote by bt = |F | the width of this bisection of the subgraph
G[Vt]. The level l(r) of the root r of τ is zero, and the level of every child t′ of
t ∈ τ is l(t′) = l(t) + 1. We denote by Gt = G[Vt] the subgraph of G induced by
the vertex set Vt, by Tt the spanning tree constructed for Gt by the procedure
ConstructST; note that for every tree node t ∈ τ , by construction the graph
Gt is connected.

A tree node t ∈ τ at level l is preferable if either l = 0 and bt ≥ n1/k, or l ≥ 1
and bt ≥ n1/k ·

∑
t′∈p bt′ where p is the unique path in τ between the root r of τ

and the immediate predecessor of the node t. A tree node that is not preferable
is tolerable.

Lemma 6. If there is at least one preferable node t ∈ τ , then the spanning tree
constructed by the procedure ConstructST is an Õ(n1−1/k(n))-approximation.

Proof. Consider a preferable node t ∈ τ and let l = l(t) denote its level. If
l = 0, by the definition of the preferable node and by the O(log n) bound on the
approximation ratio of Räcke’s algorithm for minimum bisection (Theorem 1) we
know that the minimum bisection of G is of size Ω

(
n1/k

logn

)
. Thus, by Corollary 1,

STC(G) = Ω

(
n1/k

∆ · log2 n

)
.

Approximating Spanning Tree Congestion 7

If l ≥ 1, then by the construction of the sets Vt′ by the algorithm, it follows
that e(Vt, V \Vt) ≤

∑
t′∈p bt′ where p is again the unique path between the root

r and the immediate predecessor of t. Combining this bound with Lemma 5,
Corollary 1, the definition of the preferable node, and the O(log n) bound on the
approximation of minimum bisection, we obtain

STC(G) ≥ STC(Gt)

e(Vt, V \ Vt)
= Ω

(
b(Gt)

∆ · log n ·
∑

t′∈p bt′

)
= Ω

(
n1/k

∆ · log2 n

)
.

In both cases, the lower bound on STC(G) immediately yields the claim of
the lemma as the congestion of any spanning tree T of G is at most O(∆ ·n). ut

Lemma 7. Let t ∈ τ be a tolerable node at level l = l(t) such that all its
predecessors tl−1, . . . , t1, t0 = r (i.e., the nodes on the path from t to the root r
in τ) are tolerable. Then (with tl = t)

l∑
i=0

bti = O(br · n1−1/k) . (9)

Proof. By induction on the level l of the node t ∈ τ , we first prove that

l∑
i=0

bti ≤ br · (1 + n1/k)l . (10)

For l = 0, the relation (10) asserts simply br ≤ br, and this holds.
For the inductive step, assume that the relation (10) holds for l and we want

to prove it for l+1. As we are looking at a tolerable node, by the assumption of
the lemma, we have btl+1

< n1/k ·
∑l

i=0 bti . Thus, using the inductive assumption,
we derive

l+1∑
i=0

bti =

l∑
i=0

bti + btl+1

≤
l∑

i=0

bti · (1 + n1/k)

≤ br · (1 + n1/k)l+1

which completes the proof of the inequality (10).
By construction, for every node t ∈ τ , the size of Vt is bounded by

|Vt| ≤
n

2l(t)
.

Considering the condition in step 3 of the procedure ConstructST and our
choice of the value of s = n

2k−1 , we conclude that l(t) ≤ k − 1 for every node

8 P. Kolman

t ∈ τ . Combining this bound with the inequality (10), we obtain the desired
estimate

l(t)∑
i=0

bti ≤ br · (1 + n1/k)k−1 = O(br · n1−1/k)

where the last inequality uses the bound(
1 + n1/(

√
logn+1)

)√logn

≤ 3 · n1−1/(
√
logn+1)

which follows from the analytical properties of the functions involved. ut

Lemma 8. Given a graph G = (V,E), a subset S ⊂ V , a spanning tree TS
of G[S], a spanning tree TV \S of G[V \ S], and an edge f ∈ E(S, V \ S), let
T = (V,E(TS) ∪ E(TV \S) ∪ {f}). Then T is a spanning tree of G and

c(G,T) ≤ max{c(G[S], TS), c(G[V \ S], TV \S)}+ e(S, V \ S) .

Proof. The fact that T is a spanning tree of G follows immediately from the
construction of T . For every e ∈ E(TS), the congestion c(e) of e with respect
to G and T is at most c(e) ≤ c(G[S], TS) + e(S, V \ S), similarly, for every
e ∈ E(TV \S), the congestion c(e) of e with respect to G and T is at most
c(e) ≤ c(G[V \ S], TV \S) + e(S, V \ S), and the congestion of f is at most
c(f) ≤ e(S, V \ S). ut

Corollary 2. Given a connected graph G = (V,E) and a subset F ⊂ E of
edges, let V1, V2, . . . , Vk be the vertex sets of the connected components of G \ F
ordered in such a way that for each l = 2, . . . , k, there is at least one edge fl in
G between

⋃l−1
i=1 Vi and Vl. If for each i = 1, . . . , k, Ti is a spanning tree of G[Vi],

then T = (V,
⋃k

i=1E(Ti) ∪ {f2, f3, . . . , fk}) is a spanning tree of G and

c(G,T) ≤ max
i=1,...,k

{c(G[Vi], Ti)}+ |F | .

Proof. For i = 1, . . . , k, let Gi = G[
⋃i

j=1 Vj] and T ′i = (V (Gi),
⋃i

j=1E(Tj) ∪
{f2, f3, . . . , fi}). By induction on i, we are going to show that T ′i is a spanning
tree of Gi and

c(Gi, T
′
i) ≤ max

j=1,...,i
{c(G[Vj], Tj)}+

i∑
j=2

e(

j−1⋃
l=1

Vl, Vj) . (11)

As Gk = G, T ′k = T and F ⊆
⋃k

j=2E(
⋃j−1

l=1 Vl, Vj), this will complete the proof.
For i = 1, the inequality (11) simply states that c(G1, T

′
1) ≤ (G1, T1) which

holds, as T ′1 = T1.
For the inductive step, note that by Lemma 8,

c(Gi+1, T
′
i+1) ≤ max{c(Gi, T

′
i), c(G[Vi+1], Ti+1)}+ e(

i⋃
j=1

Vj , Vi+1) .

Approximating Spanning Tree Congestion 9

Applying the inductive assumption on c(Gi, T
′
i) and using the fact that for any

three non-negative numbers a, b, c, max{a+ b, c} ≤ max{a, c}+ b, we obtain the
desired bound on c(Gi+1, T

′
i+1):

c(Gi+1, T
′
i+1) ≤ max

 max
j=1,...,i

{c(G[Vj], Tj)}+
i∑

j=2

e(

j−1⋃
l=1

Vl, Vj), c(G[Vi+1], Ti+1)

+ e(

i⋃
j=1

Vj , Vi+1)

≤ max
j=1,...,i+1

{c(G[Vj], Tj)}+
i+1∑
j=2

e(

j−1⋃
l=1

Vl, Vj)

ut

Lemma 9. If there is no preferable node t ∈ τ , then the spanning tree T con-
structed by the ConstructST procedure is an Õ(n1−1/k)-approximation.

Proof. For a node t ∈ τ , let L(t) denote the set of all leaves of the subtree of τ
rooted in t, and for a leaf s ∈ L(t), let p(s, t) denote the set of all nodes on the
unique path between s and t in the tree τ . Recall that for a non-leaf node t ∈ τ ,
bt is the size of the bisection of the graph Gt that was used by the procedure
ConstructST; for notational simplicity of the next steps, we define bt for every
leaf t ∈ τ as well, namely as bt = 0. For every node t ∈ τ , we are going to prove
the following bound:

c(Gt, Tt) ≤ max
s∈L(t)

c(Gs, Ts) +
∑

u∈p(s,t),u6=t

bu

+ bt (12)

We proceed by induction, from bottom up in the tree τ . Consider first a leaf
t ∈ τ . In this case, the inequality (12) simplifies to c(Gt, Tt) ≤ c(Gt, Tt) + bt
which holds as bt = 0. Next, consider a non-leaf node t ∈ τ such that the
inequality (12) holds for all its children; let t1, . . . , tk be the children of t, for
some k ≥ 2. By applying Corollary 2 on the graph Gt, we obtain

c(Gt, Tt) ≤ max
i=1,...,k

{c(Gti , Tti)}+ bt .

Plugging in the bound (12) for each of the subgraphs Gti , a simple manipulation
yields the desired bound (12) for the node t as well.

Note that for each leaf s ∈ τ ,

c(Gs, Ts) = O(∆ · n1−1/k) , (13)

and, ∑
u∈p(s,r)

bu = O(n1−1/k) · br ; (14)

10 P. Kolman

the first bound follows from construction as the algorithms ensures |Vs| ≤ n
2k−1 ≤

n1−1/k for each leaf s, and the second bound is given in Lemma 7. Thus, by
application of the inequality (12) for the root r of the tree τ , we obtain, using (13)
and (14),

c(G,T) ≤ max
s∈L(r)

{c(Gs, Ts)}+O(br · n1−1/k) = O((∆+ br) · n1−1/k) . (15)

Exploiting once more the bound on the approximation ratio of Räcke’s algorithm
for the minimum bisection (Theorem 1), namely b(G) = Ω(br

logn), Corollary 1
yields

STC(G) = Ω

(
br

∆ · log2 n

)
.

Combining this lower bound on the minimum spanning tree congestion of G with
the upper bound (15) on the congestion c(G,T) of the spanning tree constructed
by the algorithm, the proof is completed. ut

Lemmas 6 and 9 yield the main theorem.

Theorem 2. ConstructST is an Õ(n1−1/k)-approximation algorithm for the
minimum congestion spanning tree problem for graphs with maximum degree
bounded by ∆ = polylog(n).

4 Conclusion

We have designed an o(n)-approximation algorithm for the spanning tree conges-
tion problem for graphs with maximum degree bounded by polylog(n). Appar-
ently, there are many open problems concerning the spanning tree congestion.
Here are some of them:

P1 Is the decision problem 4-STC solvable in polynomial time, or is it NP-
complete [8]?

P2 Is it possible to extend the algorithm ConstructST to work for graphs of
unbounded degree?

P3 Is the spanning tree congestion problem NP-hard for graphs with all degrees
bounded by a constant? The known NP-hardness proofs require at least one
vertex of unbounded degree.

To state the next problem, we need one more definition. Following Law and
Ostrovskii [6], given a graph G = (V,E) and an integer c, we define the value
f(G, c) as

f(G, c) = min{e(S, V \ S) | S ⊂ V, |S| = c, G[S] is connected} . (16)

They observe that

STC(G) ≥ min

{
f(G, c)

∣∣∣∣ ⌈n− 1

∆

⌉
≤ c ≤ n

2

}
. (17)

Approximating Spanning Tree Congestion 11

The above lower bound is based on the size of a cut S satisfying three proper-
ties: i) the subgraph induced by S is connected, ii) the subset S has a prescribed
size, iii) the number of edges e(S, V \S) is the smallest among all subsets satisfy-
ing the properties i) and ii); we are going to call the task of finding such a cut the
minimum connected c-cut problem. As far as we know, if only any two of these
three properties are required (i.e., minimum c-cut, not necessarily connected, or
minimum connected cut, not necessarily of size c, or connected cut of size c, not
necessarily minimum), then the problem of finding such a cut is solvable, or at
least reasonably approximable, in polynomial time; however, we are not aware
of any non-trivial approximation if all three requirements have to be at least
approximately satisfied.

P4 Design an approximation algorithm for the minimum connected c-cut.

Acknowledgments The author thanks Marek Chrobak for introducing him to the
spanning tree congestion problem.

References

1. S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and
graph partitioning. J. ACM, 56(2):5:1–5:37, 2009. Preliminary version in Proc. of
the 40th Annual ACM Symposium on Theory of Computing (STOC), 2004.

2. H. L. Bodlaender, F. V. Fomin, P. A. Golovach, Y. Otachi, and E. J. van Leeuwen.
Parameterized complexity of the spanning tree congestion problem. Algorithmica,
64(1):85–111, 2012.

3. O. Borůvka. O jistém problému minimálním (About a certain minimal problem).
Práce Moravské přírodovědecké společnosti, III(3):37–58, 1926.

4. U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum
bisection. SIAM J. Comput., 31(4):1090–1118, 2002.

5. C. G. Fernandes, T. J. Schmidt, and A. Taraz. On minimum bisection and related
cut problems in trees and tree-like graphs. J. Graph Theory, 89(2):214–245, 2018.

6. H.-F. Law and M. Ostrovskii. Spanning tree congestion: duality and isoperimetry;
with an application to multipartite graphs. Graph Theory Notes of New York,
58:18–26, 2010.

7. C. Löwenstein. In the Complement of a Dominating Set. PhD thesis, TU Ilmenau,
April 2010.

8. H. Luu and M. Chrobak. Better hardness results for the minimum spanning tree
congestion problem. In Proc. of 17th International Conference and Workshops
on Algorithms and Computation (WALCOM), volume 13973 of Lecture Notes in
Computer Science, pages 167–178, 2023.

9. Y. Okamoto, Y. Otachi, R. Uehara, and T. Uno. Hardness results and an exact ex-
ponential algorithm for the spanning tree congestion problem. J. Graph Algorithms
Appl., 15(6):727–751, 2011.

10. M. Ostrovskii. Minimal congestion trees. Discrete Mathematics, 285(1):219–226,
2004.

11. Y. Otachi. A survey on spanning tree congestion. In Treewidth, Kernels, and
Algorithms: Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 165–172,
2020.

12 P. Kolman

12. Y. Otachi, H. L. Bodlaender, and E. J. van Leeuwen. Complexity results for the
spanning tree congestion problem. In Proc. of 36th International Workshop on
Graph Theoretic Concepts in Computer Science (WG), volume 6410 of Lecture
Notes in Computer Science, pages 3–14, 2010.

13. H. Räcke. Optimal hierarchical decompositions for congestion minimization in
networks. In Proc. of the 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 255–264. ACM, 2008.

14. S. Simonson. A variation on the min cut linear arrangement problem. Math. Syst.
Theory, 20(4):235–252, 1987.

	Approximating Spanning Tree Congestion on Graphs with Polylog Degree

