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Abstract

Given a graph G = (V,E) with two distinguished vertices s, t ∈ V and an integer L, an
L-bounded flow is a flow between s and t that can be decomposed into paths of length at
most L. In the maximum L-bounded flow problem the task is to find a maximum L-bounded
flow between a given pair of vertices in the input graph.

For networks with unit edge lengths (or, more generally, with polynomially bounded
edge lengths, with respect to the number of vertices), the problem can be solved in poly-
nomial time using linear programming. However, as far as we know, no polynomial-time
combinatorial algorithm1 for the L-bounded flow is known. For general edge lengths, the
problem is NP-hard. The only attempt, that we are aware of, to describe a combinatorial
algorithm for the maximum L-bounded flow problem was done by Koubek and Říha in 1981.
Unfortunately, their paper contains substantial flaws and the algorithm does not work; in
the first part of this paper, we describe these problems.

In the second part of this paper we describe a combinatorial algorithm based on the
exponential length method that finds a (1 + ε)-approximation of the maximum L-bounded
flow in time O(ε−2m2L logL) where m is the number of edges in the graph. Moreover,
we show that this approach works even for the NP-hard generalization of the maximum
L-bounded flow problem in which each edge has a length.

1 Introduction

Given a graph G = (V,E) with two distinguished vertices s, t ∈ V and an integer L, an L-
bounded flow is a flow between s and t that can be decomposed into paths of length at most L.
In the maximum L-bounded flow problem the task is to find a maximum L-bounded flow between
a given pair of vertices in the input graph. The L-bounded flow was first studied, as far as we
know, in 1971 by Adámek and Koubek [1]. In connection with telecommunication networks,
L-bounded flows in networks with unit edge lengths have been widely studied and are known as
hop-constrained flows [8].

For networks with unit edge lengths (or, more generally, with polynomially bounded edge
lengths, with respect to the number of vertices), the problem can be solved in polynomial time
using linear programming. Linear programming is a very general tool that does not make use
of special properties of the problem at hand. This often leaves space for superior combinatorial
∗This research was partially supported by project GA17-09142S of GA ČR.
1Combinatorial in the sense that it does not explicitly use linear programming methods or methods from

linear algebra or convex geometry.
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algorithms that do exploit the structure of the problem. For example, maximum flow, matching,
minimum spanning tree or shortest path problems can all be described as linear programs but
there are many algorithms that outperform general linear programming approaches. However,
as far as we know, no polynomial-time combinatorial algorithm for the L-bounded flow is known.

1.1 Related results

For clarity we review the definitions of a few more terms that are used in this paper. A network
is a quintuple G = (X,R, c, s, t), where G = (X,R) is a directed graph, X denotes the set
of vertices, R the set of edges, c is the edge capacity function c : R → R+, s and t are two
distinguished vertices called the source and the sink. We use m and n to denote the number of
edges and the number of vertices, respectively, in the network G, that is, m = |R| and n = |X|.
Given an L-bounded flow f , we denote by |f | the size of the flow, and for an edge e ∈ R, we
denote by f(e) the total amount of flow f through the edge e.

An L-bounded flow problem with edge lengths is a generalization of the L-bounded flow
problem: each edge has also an integer length and the length of a path is computed not with
respect to the number of edges on it but with respect the sum of lengths of edges on it.

Given a network G and an integer parameter L, an L-bounded cut is a subset C of edges R in
G such that there is no path from s to t of length at most L in the network G = (X,R \ C, c, s, t).
In the minimum L-bounded cut problem the task is to find an L-bounded cut of minimum size.
We sometimes abbreviate the phrase L-bounded cut to L-cut and, similarly, we abbreviate the
phrase L-bounded flow to L-flow.

Although the problems of finding an L-flow and an L-cut are easy to define and they have
been studied since the 1970’s, still some fundamental open problems remain unsolved. Here we
briefly survey the main known results.

L-bounded flows As far as we know, the L-bounded flow was first considered in 1971 by
Adámek and Koubek [1]. They published a paper introducing the L-bounded flows and cuts
and describing some interesting properties of them. Among other results, they show that, in
contrast to the ordinary flows and cuts, the duality between the maximum L-flow and the
minimum L-cut does not hold.

The maximum L-flow can be computed in polynomial time using linear programming [5,
19, 5, 23]. The only attempt, that we are aware of, to describe a combinatorial algorithm
for the maximum L-bounded flow problem was done by Koubek and Říha in 1981 [20]. The
authors say the algorithm finds a maximum L-flow in time O(m · |I|2 ·S/ψ(G)), where I denotes
the set of paths in the constructed L-flow, S is the size of the maximum L-flow, and ψ(G) =
min(|c(e) − c(g)| : c(e) 6= c(g), e, g ∈ R ∪ {e′}), where c(e′) = 0. Unfortunately, their paper
contains substantial flaws and the algorithm does not work as we show in the first part of this
paper. Thus, it is a challenging problem to find a polynomial time combinatorial algorithm for
the maximum L-bounded flow.

Surprisingly, the maximum L-bounded flow problem with edge lengths is NP-hard [5] even
in outer-planar graphs. Baier [4] describes a FPTAS for the maximum L-bounded flow with
edge lengths that is based on the ellipsoid algorithm. He also shows that the problem of finding
a decomposition of a given L-bounded flow into paths of length at most L is NP-hard, again
even if the graph is outer-planar.

A related problem is that of L-bounded disjoint paths: the task is to find the maximum
number of vertex or edge disjoint paths, between a given pair of vertices, each of length at most
L. The vertex version of the problem is known to be solvable in polynomial time for L ≤ 4
and NP-hard for L ≥ 5 [17], and the edge version is solvable in polynomial time for L ≤ 5 and
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NP-hard for L ≥ 6 [7]. The polyhedra associated with L-bouded paths was studied by Dahl [9].

L-bounded cuts The L-bounded cut problem is NP-hard [24]. Baier et al. [5] show that it
is NP-hard to approximate it by a factor of 1.377 for L ≥ 5 in the case of the vertex L-cut,
and for L ≥ 4 in the case of the edge L-cut. Assuming the Unique Games Conjecture, Lee at
al. [21] proved that the minimum L-bounded cut problem is NP-hard to approximate within any
constant factor. For planar graphs, the problem is known to be NP-hard [11, 26], too.

The best approximations that we are aware of are by Baier et al. [5]: they describe an
algorithm with an O(min{L, n/L}) ⊆ O(

√
n)-approximation for the L-bounded vertex cut,

and O(min{L, n2/L2,
√
m}) ⊆ O(n2/3)-approximation for the L-bounded edge cut. The ap-

proximation factors are closely related with the cut-flow gaps: there are instances where the
minimum edge L-cut (vertex L-cut) is Θ(n2/3)-times (Θ(

√
n)-times) bigger than the maximum

L-flow [5]. For the vertex version of the problem, there is a τ -approximation algorithm for graphs
of treewidth τ [18].

The L-bounded cut was also studied from the perspective of parameterized complexity. It is
fixed parameter tractable (FPT) with respect to the treewidth of the underlying graph [10, 18].
Golovach and Thilikos [14] consider several parameterizations and show FPT-algorithms for
many variants of the problem (directed/undirected graphs, edge/vertex cuts). On planar graphs,
it is FPT with respect to the length bound L [18]. Fluschnik et al. [12] show that the L-bounded
cut has no kernel of polynomial size when parameterized by L and the size of the cut (with
reasonable complexity assumptions).

The L-bounded cut appears in the literature also as the short paths interdiction problem [6],
[18], [21] or as the most vital edges for shortest paths [6].

1.2 Our contributions

In the first part of the paper, we show that the combinatorial algorithm by Koubek and Říha [20]
for the maximum L-bounded flow is not correct.

In the second part of the paper we describe an iterative combinatorial algorithm, based on
the exponential length method, that finds a (1 + ε)-approximation of the maximum L-bounded
flow in time O(ε−2m2L logL); that is, we describe a fully polynomial approximation scheme
(FPTAS) for the problem.

Moreover, we show that this approach works even for the NP-hard generalization of the
maximum L-bounded flow problem in which each edge has a length. This approach is more
efficient than the FPTAS based on the ellipsoid method [4].

Our result is not surprising (e.g., Baier [4] mentions the possibility, without giving the
details, to use the exponential length method to obtain a FPTAS for the problem); however,
considering the absence of other polynomial time algorithms for the problem that are not based
on the general LP algorithms, despite of the effort to find some, we regard it as a meaningful
contribution. The paper is based on the results in the bachelor’s thesis of Kateřina Altmanová [2]
and in the master’s thesis of Jan Voborník [25]. A preliminary version of this work was presented
at the 2019 WADS Algorithms and Data Structures Symposium [3].

2 The algorithm of Koubek and Říha

2.1 Increasing an L-bounded flow

The following notation is needed for the main definition of this subsection.
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Definition 1 (Relevant parts of Definition 2.2 in [20]). Given a directed graph (X,R), a directed
path of length n from z0 to zn is a finite sequence p = (z0, u1, z1, . . . , un, zn), where zi ∈ X
(i = 0, 1, . . . , n), uj ∈ R (j = 1, 2, . . . , n), uj = (zj−1, zJ). We shall write L(p) = n,BEG(p) =
z0, END(p) = zn. Whenever possible, we omit the edges in the notation of a path; we write e.g.
p = (z0, z1, . . . , zn).
Given a directed path p = (z0, u1, z1, . . . , un, zn),

• If w = zi, then for any integer b, −i ≤ b ≤ n− i, we define (x+ b) mod p = zi+b.

• If i < j, then p|{zi, zj} is the directed path (zi, ui+1, zi+1, . . . , uj , zj) of length (j − i) from
zi to zj.

For the sake of completeness, we now proceed with the definition of an increasing L-system,
a key notion in the paper by Koubek and Říha [20]. After the formal definition, we provide an
informal explanation of the relevant parts of it. By Z+ we denote the set of all non-negative
integers.

Definition 2 (Definition 4.1 in [20]). Assume that f is an L-bounded flow from s to t in
G = (X,R, c, s, t) and {(pi, ri); i ∈ I} a decomposition of f into paths of length at most L, path
pi carrying ri units of flow, for each i ∈ I. An increasing L-system with respect to the L-flow
f in the network G is a labeled oriented tree T = (V,E, v0, LABV,LABE), where

a) V is the set of vertices, E is the set of edges, v0 is the root of an oriented tree (V,E)

b) LABV is a mapping labeling vertices: for each v ∈ V LABV (v) = ((q(v), i(v), a(v), b(v)),
where q(v) is a path in G, i(v) ∈ I, a(v), b(v) ∈ Z+

c) LABE is a partial mapping labeling edges: for each edge u = (x, y) LABE(u) is not
defined or is equal to (h(u), j(u), d(u), o(u)), where h(u) ∈ I or h(u) ⊂ R, j(u) ∈ I,
d(u) ∈ Z+, o(u) ∈ Z+ or o(u) ∈ V and if h(u) ∈ I then o(u) ∈ Z+;
if LABE(u) is undefined, then we say that y is a 1-son of x, if h(u) ∈ I, o(u) ∈ Z+

then y is a 2-son of x, if h(u) ⊂ R, o(u) ∈ Z+ then y is a 3-son of x, if h(u) ⊂ R,
o(u) ∈ V then y is a 4-son of x; as (V,E) is a tree we get that an edge u = (x, y) is
uniquely determined by its end-vertex y, and therefore we shall often write for y ∈ V
LABE(y) = (h(y), j(y), d(y), o(y)) instead of LABE(u) where u = (x, y);

and for values of LABV , LABE the following conditions hold:

1) for each v ∈ V :

– if u ∈ q(v) then f(u) = 0,

– END(q(v)) ∈ pi(v),
– a(v) +L(q(v)) + b(v) ≤ L and a(v) +L(q(v)) + b(v) = L implies (END(q(v)) + b(v))

mod pi(v) = t;

2) BEG(q(v0)) = s, a(v0) = 0 and either L(q(v0)) > 0 or u = (s, (s+ 1) mod pi(v0)) is not
saturated;

3) for each v ∈ V :

a) if v is a 4-son then v is a leaf of the tree (V,E)

b) if v is a 1-son or a 3-son then v has a 1-son iff (END(q(v)) + b(v)) mod pi(v) 6= t

c) v has at most one 1-son and at most one 2-son
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d) v has a 2-son iff v is a 2-son or a 3-son and d(v) > o(v) > 0

e) v has a 3-son or a 4-son iff there is u ∈ q̄(v) with f(u) = c(u), and where here and
in what follows q̄(v) = pi(v) | {END(q(v)), (END(q(v)) + b(v)) mod pi(v)};

4) if v is a 1-son of w then BEG(q(v)) = (END(q(w) + b(w)) mod pi(w), a(v) = a(w) +
L(q(w)) + b(w);

5) if v is a 2-son of w then d(w)− o(w) ≥ d(v)− o(v), a(v) = o(v), a(v) = L(q(v)) + b(v) =
a(w), (s+ d(v)) mod pj(v) = BEG(q(v)), i(v) = h(v);

6) if v is a 3-son of w then h(v) ⊆ {u; u ∈ q̄(w), f(u) = c(u)} ∩ pj(v), h(v) 6= ∅, a(v) = o(v),
BEG(q(v)) = (s+ d(v)) mod pj(v) precedes every edge u ∈ h(v);

7) if v is a 4-son of w then j(v) = j(o(v)), o(v) is a 3-son, ∅ 6= h(v) ⊆ {u; u ∈ q̄(w), f(u) =
c(u)} ∩ pj(v), and the following condition hold: let u1, . . . , un (v1, . . . , vm) be the sequence
of vertices of the tree (V,E) such that for i = 1, . . . , n − 1 (j = 1, . . . ,m − 1) ui+1 is a
2-son of ui (vj+1 is a 1-son of vj), u1 = v1 = o(v), un (vm) has no 2-son (1-son); then
z 6∈ pj(um)|{s, s+ o(un} and z 6∈ q̄(ui), z 6∈ q̄(vj) for each z ∈ h(v), 1 < i ≤ n, 1 < j ≤ m;

8) for each vertex v: if Y (v) is the set of all 3-sons and 4-sons of v then {u; u ∈ q̄(v), f(u) =
c(u)} =

⋃
h(w) where the union is taken over all w ∈ Y (v); if w1 6= w2, w1, w2 ∈ Y (v),

then h(w1) ∩ h(w2) = ∅;

9) for every path p in (V,E) and for every couple of vertices v1, v2 ∈ p, v1 6= v2, v1, v2 being
a 3-son or a 4-son, it holds h(v1) ∩ h(v2) = ∅.

The algorithm of Koubek and Říha [20] is supposed to work as follows: given an arbitrary
L-flow f from s to t in G that is not a maximum L-flow, build an increasing L-system T =
(V,E, v0, LABV,LABE) and use it to derive a larger L-flow f ′ from the L-flow f (cf. Lemma 1).
In the rest of this subsection we provide an informal description of the meaning of various
attributes of the increasing L-system.

For (almost) each node u in T , there are two consecutive paths in G associated with: the
first one, denoted by q(u), contains only edges that are not used by the current L-flow f , and the
second one, denoted by q̄(u), coincides with a subpath of some path from the current L-flow f
(Fig. 1). The tree T encodes a combination of these paths with paths in f and this combination

s t

a(v) b(v)

pi(v)

q(v) q(v)

Figure 1: The paths q(v) and q(v) associated with the node v.

is supposed to yield the larger L-flow f ′. To explain the error in the paper, it is sufficient to
deal only with three of the four types of nodes in T , namely with types 1-son, 3-son and 4-son.

The attributes a(v) and d(v) of the node labels store information about the distance of the
path segments q(v) and q̄(v) from s along the paths used in the new L-flow f ′, the attribute
i(v) specifies the index of a path from f s.t. q̄(v) is a subpath of pi(v), and the attributes b(v)
specifies the number of edges along which the path pi(v) is being followed by q̄(v).

Consider a node w in the tree T such that at least one edge in q̄(w), say an edge e, is
saturated in the L-flow f (i.e., f(e) = c(e)). In this case, the properties of the tree T enforce
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that the node w has at least one 3-son u whose responsibility is to desaturate the edge e by
diverting one of the paths that use e in f along a new route; the attribute j(u) specifies the
index of the path from f that is being diverted by the node u (Fig. 2), and h(u) specifies which

s

t

f(e) = c(e)

q(w)

q(w)

pi(w)

pj(u)

d(u)

q(u) q(u)

e

Figure 2: Desaturation of a saturated edge e in a q̄(w) by a 3-son u.

saturated edge(s) from q̄(w) are desaturated this way by the node u.
As the definition of the tree T does not pose any requirements on the disjointness of the

q̄-paths corresponding to different nodes of T , it may happen that the paths q̄(w) and q̄(w′) for
two different nodes w and w′ of the tree T overlap in a saturated edge e. In such a case, Koubek
and Říha allow an exception (our terminology) to the rule described in previous paragraph: if
one of the nodes w and w′, say the node w, has a 3-son u that desaturates e, and if w′ is not a
descendant of u, then the node w′ need not have a 3-son for desaturation of e but it may have
a 4-son instead. The purpose of this 4-son is just to provide a pointer to the 3-son u of w that
takes care about the desaturation of the edge e.

2.2 The main error

We start by recalling a few more definitions and lemmas from the original paper [20]. In this
section we identify an L-bounded flow f with its decomposition {(pi, ri); i ∈ I}.

Definition 3 (Definition 4.2 in [20]). Let T be an increasing L-system with respect to an L-flow
f = {(pi, ri) : i ∈ I} in a network G = (X,R, c, s, t). Given an edge u ∈ R, we define:

• T1(u) is the number of vertices x in the tree T such that u ∈ q(x) and if there is a saturated
edge v ∈ q(x) then there is a 3-son y of x with v ∈ h(y), u /∈ pj(y).

• T2(u) is the number of vertices x in the tree T such that u ∈ q(x).

• T3(u) is the number of vertices x which are 3-sons or 4-sons with u ∈ h(x).

For i ∈ I we denote mi = sup{T3(u) : u ∈ pi}, |T | = min{ c(u)T2(u)
: u ∈ R, f(u) = 0} ∪ { c(u)−f(u)T1(u)

:

u ∈ R} ∪ { rimi : i ∈ I}, where the expressions that are not defined are omitted.

Lemma 1 (Lemma 4.2 in [20]). If there is an increasing L-system with respect to an L-flow f ,
then there is an L-flow g with |g| = |f |+ |T |.

Definition 4 (Definition 4.3 in [20]). Let R = R ∪ {u′}, where u′ /∈ R and c(u′) = 0. We put
ψ(G) = min(|c(u)− c(v)| : c(u) 6= c(v), u, v ∈ R).

Lemma 2 (Lemma 4.4 in [20]). For each increasing L-system T (with respect to an L-flow
f = {(pi, ri) : i ∈ I}) constructed by the above procedure it holds |T | ≥ ψ(G)/|I|.
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s t

ca

b d

1/∞

1/∞ 1.5/∞1/1

1/1

0.5/0.5

flow/capacity

1/1

0.5/∞

Figure 3: A network G with a 4-bounded flow f .

The above procedure in Lemma 2 refers to a construction of an increasing L-system that is
outlined in the original paper. As Definition 4 implies ψ(G) > 0, we also know by Lemma 2
that for every increasing L-system T , |T | > 0.

Now we are ready to describe the counter example.

Lemma 3. There exist a network G, a maximum L-flow f in G and an increasing L-system T
with respect to f .

Proof. Take L = 4 and let G be a network G = (X,R, c, s, t) defined as follows: X =
{s, t, a, b, c, d}, R = {(s, a), (s, b), (s, c), (a, c), (b, d), (c, d), (c, t), (d, t)}, c(a, c) = c(b, d) = c(c, t) =
1, c(c, d) = 1/2 and all other edges have unbounded capacity. Consider a 4-flow f defined by
the following path decomposition: p0 = (s, c, t), p1 = (s, a, c, t), p2 = (s, b, d, t), p3 = (s, a, c, d, t)
and r0 = r1 = r3 = 1/2 and r2 = 1; note that f is a maximum 4-flow between s and t.

We are going to show that there exists an increasing system T for f . According to Lemmas 1
and 2 this implies the existence of a 4-bounded flow g of size |f |+ |T | > |f |. As the flow f is a
maximum 4-bounded flow in G, this is a contradiction.

v1: 3-son
q(v1) = (s, a, c, t)
saturated edges: {ac, ct}

v3: 3-sonq(v2) = (s)
q(v2) = (s, c, t) q(v3) = (s, a, c, d, t)

h(v3) = {ct}

h(v5) = {ac, cd}

saturated edges: {ac, cd}

o(v5) = v2

saturated edges: {ct}

v4: 4-son
h(v4) = {ct}
o(v4) = v3

v5: 4-son

v0:

q(v1) = (s)

q(v3) = (s)

h(v1) = {bd}

h(v2) = {ac}

q(v0) = (s)
q(v0) = (s, b, d, t)
saturated edges: {bd}

v2: 3-son

Figure 4: Increasing 4-system T . Saturated edges are the edges from q that are saturated in f .

The increasing system T is depicted in Figure 4 and described in detail in Table 1. It is just
a matter of a mechanical effort to check that it meets Definition 22

In words, the essence of the counter example is the following. The purpose of the root of the
tree, the node v0, is to increase the flow from s to t along the path q(v0)q̄(v0) = (s, b, d, t). As
there is an edge saturated in f on this path, namely the edge bd, there is a 3-son of the node
v0, the node v1, whose purpose is to desaturate the edge bd by diverting one of the paths that

2Due to an attempt for simpicity, the counter-example given in the preliminary version of the paper [3] is
erroneous - it does not satisfy the property 9.
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q q i a b h j d o type
v0 (s) (s, b, d, t) 2 0 3 − − − − 1-son
v1 (s) (s, a, c, t) 1 0 3 {bd} 2 0 0 3-son
v2 (s) (s, c, t) 0 0 2 {ac} 3 0 0 3-son
v3 (s) (s, a, c, d, t) 3 0 4 {ct} 1 0 0 3-son
v4 (s) (s) 1 0 0 {ct} 1 0 v3 4-son
v5 (s) (s) 1 0 0 {ac, cd} 3 0 v2 4-son

Table 1: The labels of the increasing 4-system T .

use it in f along an alternative route; in particular, the node v1 is diverting the path pj(v1) = p2
and it is diverting it from the very beginning, from s, along the path q(v1)q̄(v1) = (s, a, c, t).

As there are two edges saturated in f on this path, namely the edges ac and ct, there are
two 3-sons v2 and v3 of the node v1. The purpose the node v2 is to desaturate the edge ac by
diverting one of the paths that use it along an alternative route and, similarly, the purpose the
node v3 is to desaturate the edge ct by diverting one of the paths that use it along an alternative
route. In particular, the node v2 is diverting the path pj(v2) = p3 and it is diverting it along
the path q(v2)q̄(v2) = (s, c, t), and the node v3 is diverting the path pj(v3) = p1 along the path
q(v3)q̄(v3) = (s, a, c, d, t).

As there is a saturated edge on the path (s, c, t), namely the edge ct, and as there is already
another node in the tree that is desaturating ct, namely the node v3, the node v2 does not have
a 3-son but it has a 4-son v4 instead, which is just a pointer to the node v3. Similarly, as there
is a saturated edge on the path (s, a, c, d, t), namely the edge ac, and as there is already another
node in the tree that is desaturating ac, namely the node v2, the node v3 does not have a 3-son
but it has a 4-son v5 instead, which is just a pointer to the node v3; the diversion of the path
pj(v5) = p3 will desaturate also the edge cd.

This way, there is a kind of a deadlock cycle in the increasing system: the task of v4 is to
desaturate the edge ct for the node v2 but it itself needs v3 to do it; v3 in turn needs v5 to
desaturate the edge ac, but v5 delegates this task back to v2. Thus, none of the nodes does the
real desaturation that is needed for the increase of the flow.

Corollary 4. The algorithm for maximum L-bounded flow [20] does not work.

At this point, we know that Lemma 1 or Lemma 2 is not correct. By Definition 3, one can
check that |T | > 0 which implies, as we started with a maximum flow, that it is Lemma 1 that
does not hold.

3 FPTAS for maximum L-bounded flow

We first describe a fully polynomial approximation scheme for maximum L-bounded flow on
networks with unit edge length. The algorithm is based on the primal-dual algorithm for the
maximum multicommodity flow by Garg and Könemann [13].

Then we describe a FPTAS for the L-bounded flow problem with general edge lengths.
Our approximation schemas for the maximum L-bounded flow on unit edge lengths and the
maximum L-bounded flow with edge lengths are almost identical, the only difference is in using
an approximate subroutine for resource constrained shortest path in the general case which
slightly complicates the analysis.
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3.1 FPTAS for unit edge lengths

Let us consider the path based linear programming (LP) formulation of the maximum L-bounded
flow, Ppath, and its dual, Dpath. We assume that G = (V,E, c, s, t) is a given network and L is
a given length bound. Let PL denote the set of all s-t paths of length at most L in G. There is
a primal variable x(p) for each path p ∈ PL, and a dual variable y(e) for each edge e ∈ E. Note
that the dual LP is a relaxation of an integer LP formulation of the minimum L-bounded cut
problem.

max
∑
P∈PL

x(P )

s.t.
∑
P∈PL:
e∈P

x(P ) ≤ c(e) ∀e ∈ E

x ≥ 0

min
∑
e∈E

c(e)y(e)

s.t.
∑
e∈P

y(e) ≥ 1 ∀P ∈ PL

y ≥ 0

The algorithm simultaneously constructs solutions for the maximum L-bounded flow and the
minimum fractional L-bounded cut. It iteratively routes flow over shortest paths with respect to
properly chosen dual edge lengths and at the same time increases these dual lengths; dual edge
length of the edge e after i iterations will be denoted by yi(e). The progress of the algorithm
depends on two positive parameters, ε < 1, δ < 1. During the runtime of the algorithm,
the constructed flow need not respect the edge capacities; however, with the right choice of
parameters ε, δ the resulting flow can be scaled down to a feasible (i.e., respecting the edge
capacities) flow (Lemma 5) that is a (1 + ε)-approximation of the maximum L-bounded flow
(Theorem 7).

For a vector y of dual variables, let dLy (s, t) denote the length of the y-shortest s − t path
from the set of paths PL and let αL(i) = dLyi(s, t). Note that a shortest s− t path with respect
to edge lengths y that uses at most a given number of edges can be computed in polynomial
time by a modification of the Dijkstra’s shortest path algorithm.

Algorithm 1 Approx(ε, δ)
1: i← 0, y0(e)← δ ∀e ∈ E, x0(P )← 0 ∀P ∈ PL
2: while αL(i) < 1 do
3: i← i+ 1
4: xi ← xi−1, yi ← yi−1
5: P ← yi-shortest s-t path with at most L edges
6: c← min

e∈P
c(e)

7: xi(P )← xi(P ) + c
8: yi(e)← yi(e)(1 + εc/c(e)) ∀e ∈ P
9: end while

10: return xi

Let fi denote the size of the flow after i iterations, fi =
∑

P∈PL xi(P ), and let τ denote the
total number of iterations performed by Approx; then xτ is the output of the algorithm and
fτ its size.

Lemma 5. The flow xτ scaled down by a factor of log1+ε
1+ε
δ is a feasible L-bounded flow.

Proof. By construction, for every i, xi is an L-bounded flow. Thus, we only have to care about
the feasibility of the flow

xτ

log1+ε
1+ε
δ

. (1)

9



For every iteration i and every edge e ∈ E, as αL(i − 1) < 1, we also have yi−1(e) < 1 and
so yi(e) < 1 + ε. It follows that

yτ (e) < 1 + ε . (2)

Consider an arbitrary edge e ∈ E and suppose that the flow fτ (e) along e has been routed in
iterations i1, i2, . . . , ir and the amount of flow routed in iteration ij is cj . Then fτ (e) =

∑r
j=1 cj

and yτ (e) = δ
∏r
j=1(1 + εcj/c(e)). Because each cj was chosen such that cj ≤ c(e), we have by

Bernoulli’s inequality that 1 + εcj/c(e) ≥ (1 + ε)cj/c(e) and

yτ (e) ≥ δ
r∏
j=1

(1 + ε)cj/c(e) = δ(1 + ε)fτ (e)/c(e). (3)

Combining inequalities (2) and (3) gives

fτ (e)

c(e)
≤ log1+ε

1 + ε

δ

which completes the proof.

Claim 6. For i = 1, . . . , τ ,

αL(i) ≤ δLeεfi/β . (4)

Proof. For a vector y of dual variables, let D(y) =
∑

e c(e)y(e) and let β = minyD(y)/dLy (s, t).
Note that β is equal to the optimal value of the dual linear program. For notational simplicity
we abbreviate D(yi) as D(i).

Let Pi be the path chosen in iteration i and ci be the value of c in iteration i. For every
i ≥ 1 we have

D(i) =
∑
e∈E

yi(e)c(e)

=
∑
e∈E

yi−1(e)c(e) + ε
∑
e∈Pi

yi−1(e)ci

= D(i− 1) + ε(fi − fi−1)αL(i− 1)

which implies that

D(i) = D(0) + ε
i∑

j=1

(fj − fj−1)αL(j − 1). (5)

Now consider the length function yi − y0. Note that D(yi − y0) = D(i) − D(0) and
dLyi−y0(s, t) ≥ αL(i)− δL. Hence,

β ≤ D(yi − y0)
dLyi−y0(s, t)

≤ D(i)−D(0)

αL(i)− δL
. (6)

By combining relations (5) and (6) we get

αL(i) ≤ δL+
ε

β

i∑
j=1

(fj − fj−1)αL(j − 1) .
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Now we define z(0) = αL(0) and for i = 1, . . . , τ , z(i) = δL + ε
β

∑i
j=1(fj − fj−1)z(j − 1).

Note that for each i, αL(i) ≤ z(i). Furthermore,

z(i) = δL+
ε

β

i∑
j=1

(fj − fj−1)z(j − 1)

=

δL+
ε

β

i−1∑
j=1

(fj − fj−1)z(j − 1)

+
ε

β
(fi − fi−1)z(i− 1)

= z(i− 1)(1 + ε(fi − fi−1)/β)

≤ z(i− 1)eε(fi−fi−1)/β.

Since z(0) ≤ δL, we have z(i) ≤ δLeεfi/β , and thus also, for i = 1, . . . , τ , αL(i) ≤ δLeεfi/β .

Theorem 7. For every 0 < ε < 1 there is an algorithm that computes an (1 + ε)-approximation
to the maximum L-bounded flow in a network with unit edge lengths in time O(ε−2m2L logL).

Proof. We start by showing that for every ε < 1
3 there is a constant δ = δ(ε) such that xτ , the

output of Approx(ε, δ), scaled down by log1+ε
1+ε
δ as in Lemma 5, is a (1 + 3ε)-approximation.

Let γ denote the approximation ratio of such an algorithm, that is, let γ denote the ratio of
the optimal dual solution (β) to the appropriately scaled output of Approx(ε, δ),

γ =
β log1+ε

1+ε
δ

fτ
, (7)

where the constant δ will be specified later.
By Claim 6 and the stopping condition of the while cycle we have

1 ≤ αL(τ) ≤ δLeεfτ/β

and hence
β

fτ
≤ ε

log 1
δL

.

Plugging this bound in the equality for the approximation ratio γ, we obtain

γ ≤
ε log1+ε

1+ε
δ

log 1
δL

=
ε

log(1 + ε)

log 1+ε
δ

log 1
δL

.

Setting δ = 1+ε
((1+ε)L)1/ε

yields

log 1+ε
δ

log 1
δL

=
1
ε log((1 + ε)L)(

1
ε − 1

)
log((1 + ε)L)

=
1

1− ε
.

Taylor expansion of log(1 + ε) gives a bound log(1 + ε) ≥ ε − ε2

2 for ε < 1 and it follows for
ε < 1

3 that

γ ≤ ε

(1− ε) log(1 + ε)
≤ ε

(1− ε)(ε− ε2/2)
≤ 1

1− 3
2ε
≤ 1 + 3ε.

To complete the proof, we just put ε′ = ε/3 and run Approx(ε′, δ(ε′)). It remains to prove
the time complexity of the algorithm. In every iteration i of Approx, the length yi(e) of an
edge e with the smallest capacity on the chosen path P is increased by a factor of 1+ε′. Because
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P was chosen such that yi(P ) < 1 also yi(e) < 1 for every edge e ∈ P . Lengths of other edges
get increased by a factor of at most 1 + ε′, therefore yτ (e) < 1 + ε′ for every edge e ∈ E. Every
edge has the minimum capacity on the chosen path in at most

⌈
log1+ε′

1+ε′

δ

⌉
= O(1ε log1+ε L)

iterations, so Approx makes at most O(mε log1+ε L) = O(m
ε2

logL) iterations.
Each iteration takes time O(Lm) so the total time taken by Approx is O(ε−2m2L logL).

3.2 FPTAS for general edge lengths

Now we extend the approximation algorithm to networks with general edge lengths that are
given by a length function ` : E → N. The dynamic programming algorithm for computing
shortest paths that have a restricted length with respect to another length function, does not
work in this case. In fact, the problem of finding shortest path with respect to a given edge
length function while restricting to paths of bounded length with respect to another length
function is NP-hard in general [15]. On the other hand, there exists a FPTAS for it [16, 22].

We assume that we are given as a black-box an algorithm that for a given graph G, two
edge length functions y and `, two distinguished vertices s and t from G, a length bound L
and an error parameter w > 0, computes a (1 + w)-approximation of the y-shortest path of
`-length at most L; we denote by dLy,`(s, t;w) the length of such a path and we also introduce
an abbreviation ᾱL(i) = dLyi,`(s, t;w). Note that for every i, ᾱL(i) ≤ (1 + w)αL(i). We can use
the FPTAS of Lorenz and Raz [22] for this task.

The structure of the L-bounded flow algorithm with general edge lengths stays the same as
in the unit edge lengths case. The only difference is that instead of y-shortest L-bounded paths,
approximations of y-shortest L-bounded paths are used (steps 2 and 5).

Algorithm 2 ApproxGeneral(ε, δ, w)
1: i← 0, y0(e)← δ ∀e ∈ E, x0(P )← 0 ∀P ∈ PL
2: while ᾱL(i) < 1 + w do
3: i← i+ 1
4: xi ← xi−1, yi ← yi−1
5: P ← (1 + w)-approximation of the yi-shortest L-bounded path
6: c← min

e∈P
c(e)

7: xi(P )← xi(P ) + c
8: yi(e)← yi(e)(1 + εc/c(e)) ∀e ∈ P
9: end while

10: return xi

The analysis of the algorithm follows the same steps as the analysis of Algorithm 1 but one
has to be more careful when dealing with the lengths.

As in the previous subsection, let fi denote the size of the flow after i iterations and let τ
denote the total number of iterations performed by ApproxGeneral; then xτ is the output
flow and fτ its size.

Lemma 8. The flow xτ scaled down by a factor of log1+ε
(1+ε)(1+w)

δ is a feasible L-bounded flow.

Proof. For every edge e ∈ E and iteration i, as ᾱL(i− 1) < 1 +w, we also have yi−1(e) < 1 +w.
By description of the algorithms, this implies yi(e) < (1 + ε)(1 + w), and in particular,

yτ (e) < (1 + ε)(1 + w) . (8)
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Combining this with yτ (e) ≥ δ(1 + ε)fτ (e)/c(e) from inequality (3) in previous subsection, we
derive

fτ (e)

c(e)
≤ log1+ε

(1 + ε)(1 + w)

δ

which completes the proof.

Claim 9. For i = 1, . . . , τ ,

αL(i) ≤ δLeε(1+w)fi/β . (9)

Proof. By the same reasoning as in the proof of Claim 6, we obtain

D(i) ≤ D(0) + ε
i∑

j=1

(fj − fj−1)(1 + w)αL(i− 1) , (10)

where the extra 1 + w factors stems from the fact that we work, in iteration i, not with a path
of length α(i) but with a path of length ᾱ(i) ≤ (1 +w)α(i). Combining this with β ≤ D(i)−D(0)

αL(i)−δL
from inequality (6), we obtain

αL(i) ≤ δL+
ε(1 + w)

β

i∑
j=1

(fj − fj−1)αL(j − 1) .

From this point, we proceed again along the same lines as in the proof of Claim 6 (the only
difference is that instead of ε/β, we work now with (1 +w)ε/β) and get the desired bound.

Theorem 10. There is an algorithm that computes an (1 + ε)-approximation to the maximum
L-bounded flow in a graph with general edge lengths in time O(m

2n
ε2

logL(log log n+ 1
ε )).

Proof. We show that for every ε ≤ 1
3 there are constants δ and w such that xτ , the output

of ApproxGeneral(ε, δ, w), scaled down by log1+ε
(1+ε)(1+w)

δ as in Lemma 8, is a (1 + 5ε)-
approximation to the maximum L-bounded flow with general capacities; the theorem easily
follows.

Let γ denote the approximation ratio of such an algorithm, that is, let γ denote the ratio of
the optimal dual solution (β) to the appropriately scaled output of ApproxGeneral(ε, δ, w),

γ =
β log1+ε

(1+ε)(1+w)
δ

fτ
, (11)

where the constants δ and w will be specified later.
By the stopping condition of the while cycle we have 1 + w ≤ ᾱL(τ) ≤ (1 + w)αL(τ), that

is, 1 ≤ αL(τ); combining it with Claim 9, we get

β

fτ
≤ ε(1 + w)

log 1
δL

.

Plugging this bound in the equality for the approximation ratio γ, we obtain

γ ≤
ε(1 + w) log1+ε

(1+ε)(1+w)
δ

log 1
δL

=
ε(1 + w)

log(1 + ε)

log (1+ε)(1+w)
δ

log 1
δL

. (12)
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Setting δ = (1+ε)(1+w)

((1+ε)(1+w)L)1/ε
yields

log (1+ε)(1+w)
δ

log 1
δL

=
1
ε log((1 + ε)(1 + w)L)(

1
ε − 1

)
log((1 + ε)(1 + w)L)

=
1

1− ε
. (13)

Thus, the bound on the approximation ratio γ (12) simplifies to

γ ≤ ε(1 + w)

(1− ε) log(1 + ε)
≤ ε(1 + w)

(1− ε)(ε− ε2

2 )
≤ 1 + w

1− 3
2ε

,

where the second inequality follows from the Taylor expansion of log(1 + ε) and the bound
log(1 + ε) ≥ ε− ε2

2 , for ε < 1. By setting w = ε, for ε ≤ 1
3 we get the promised bound

γ ≤ 1 + w

1− 3
2ε
≤ (1 + ε)(1 + 3ε) ≤ 1 + 5ε .

Concerning the running time, we observe that in every iteration the length of at least one
edge gets increased by the ratio 1 + ε. For every edge e ∈ E we have yτ (e) ≤ (1 + ε)(1 +w). By
the same arguments as in the previous subsection, our choice of the parameters ensures that the
total number of iterations is at most O(mε log1+ε L) = O(m

ε2
logL). The FPTAS approximating

the resource bounded shortest path takes time O(mn(log log n + 1
ε )). Combining these two

bounds completes the proof.

4 Conclusion and Open Problems

The maximum L-bounded flow problem looks as a simple modification of the maximum flow
problem. We know that it is solvable in polynomial time using LP algorithms. However, it is
not obvious how to solve it by combinatorial algorithms (though, e.g., the Dinic’s algorithm for
maximum flow implicitly deals with lengths of flow paths) and currently, no such algorithm is
known, despite the effort to find some. The best we can do without LP algorithms is the FPTAS
described in this paper.

We note that the exponential length method can be used for many fractional packing prob-
lems and using the same technique we could get an approximation algorithm for maximum
multicommodity L-bounded flow.

It is a challenging open problem to design an exact polynomial time combinatorial algorithm
for the maximum L-bounded flow. Considering the fact that one of the first algorithms for the
maximum flow problem was a primal-dual algorithm, a more specific question is whether we can
solve the maximum L-bounded problem exactly by a primal-dual algorithm.
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