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Abstract. Given a graph G = (V,E) with two distinguished vertices
s, t ∈ V and an integer parameter L > 0, an L-bounded cut is a subset F
of edges (vertices) such that the every path between s and t in G\F has
length more than L. The task is to find an L-bounded cut of minimum
cardinality.
Though the problem is very simple to state and has been studied since
the beginning of the 70’s, it is not much understood yet. The problem
is known to be NP-hard to approximate within a small constant factor
even for L ≥ 4 (for L ≥ 5 for the vertex–deletion version). On the other
hand, the best known approximation algorithm for general graphs has
approximation ratio only O(n2/3) in the edge case, and O(

√
n) in the

vertex case, where n denotes the number of vertices.
We show that for planar graphs, it is possible to solve both the edge– and
the vertex–deletion version of the problem optimally in O((L + 2)3Ln)
time. That is, the problem is fixed-parameter tractable (FPT) with re-
spect to L on planar graphs. Furthermore, we show that the problem
remains FPT even for bounded genus graphs, a super class of planar
graphs.
Our second contribution deals with approximations of the vertex–deletion
version of the problem. We describe an algorithm that for a given graph
G, its tree decomposition of width τ and vertices s and t computes a
τ -approximation of the minimum L-bounded s− t vertex cut; if the de-
composition is not given, then the approximation ratio is O(τ

√
log τ).

For graphs with treewidth bounded by O(n1/2−ε) for any ε > 0, but not
by a constant, this is the best approximation in terms of n that we are
aware of.

1 Introduction

The subject of this paper is a variation of the classical s− t cut problem,
namely the minimum L-bounded edge (vertex) cut problem: given a graph
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G = (V,E) with two distinguished vertices s, t ∈ V and an integer pa-
rameter L > 0, find a subset F of edges (vertices) of minimum cardinality
such that every path between s and t in G \ F has length more than L.
The problem has been studied in various contexts since the beginning of
the 70’s (e.g., [AK71,LNP78,BEH+10]) and occasionally it appears also
under the name the short paths interdiction problem [KBB+08].

Closely related is the shortest path most vital edges and vertices prob-
lem (e.g. [BGV89,BNKS95,BNN15]): given a graph G, two distinguished
vertices s and t and an integer k, the task is to find a subset F of k
edges (vertices) whose removal maximizes the increase in the length of
the shortest path between s and t. If we introduce an additional parame-
ter – the desired minimum distance of s and t – we obtain a parameterized
version of the L-bounded cut problem: given a graph G, two distinguished
vertices s and t and integers k and L, does there exist a subset F of at
most k edges (vertices) such that every path between s and t in G\F has
length more than L? We also note that NP-hardness of the shortest path
most vital edges (vertices) problem immediately implies NP-hardness of
the L-bounded edge (vertex) cut problem, and vice versa.

In contrast to many other cut problems on graphs (e.g., multiway
cut, multicut, sparsest cut, balanced cut, maximum cut, multiroute cut),
the known approximations of the minimum L-bounded cut problem are
substantially weaker. In this work we focus on algorithms for restricted
graph classes, namely planar graphs, bounded genus graphs and graphs
with bounded, yet not constant, treewidth, and provide new results for
the L-bounded cut problem on them; the results for planar graphs solve
one of the open problems suggested by Bazgan et al. [BNN15]. We also
remark that the L-bounded cut problem does not fit into the framework
of Czumaj et al. [CHLN05] that is applicable for some NP-hard problems
in graphs with superlogarithmic treewidth.

Related Results. NP-hardness of the shortest path most vital edges prob-
lem (and, thus, as noted above, also of the L-bounded cut problem) was
proved by Bar-Noy et al. [BNKS95]. The best known approximation al-
gorithm for the minimum L-bounded cut problem on general graphs has
approximation ratio only O(min{L, n/L}) ⊆ O(

√
n) for the vertex case

and O(min{L, n2/L2,
√
m}) ⊆ O(n2/3) for the edge case, where m de-

notes the number of edges and n the number of vertices [BEH+10]. On
the lower bound side, the edge–deletion version of the problem is known
to be NP-hard to approximate within a factor of 1.1377 for L ≥ 4, and
the vertex–deletion version for L ≥ 5 [BEH+10]; for smaller values of



L the problem is solvable in polynomial time [LNP78,MM10]. Indepen-
dently, Khachiyan et al. [KBB+08] proved that a version of the problem
with edge lengths is NP-hard to approximate within a factor smaller
than 1.36. Recently, assuming the Unique Games Conjecture, Lee [Lee17]
proved that the problem is NP-hard to approximate within any constant
factor.

An instance of the L-bounded edge (vertex, resp.) cut problem on
a graph G = (V,E) of treewidth τ can be cast as an instance of con-
straint satisfaction problem (CSP) with |V | variables, domain of size
L+ 2 (L+ 3, resp.) and treewidth τ .1 As CSP instances with n variables,
treewidth bounded by τ and domain by D can be solved in O(Dτn)
time [Fre90] (when a tree decomposition of width τ of the constraint
graph is given), the problem is fixed-parameter tractable with respect τ .
Dvořák and Knop [DK15] provide a direct proof of the same result with a
slightly worse dependance on L and τ ; they also prove that the problem
is W [1]-hard when parameterized by the treewidth only.

From the point of view of parameterized complexity, the problem was
also studied by Golovach and Thilikos [GT11], Bazgan et al. [BNN15] and
by Fluschnik et al. [FHNN16].

For planar graphs, the problem is known to beNP-hard [FHNN15,ZFMN17],
too, and the edge–deletion version of the problem has no polynomial-size
kernel when parameterized by the combination of L and the size of the
optimal solution [FHNN16].

For more detailed overview of other related results and applications,
we refer to the papers [KBB+08,BEH+10,MM10]. For more background
on parameterized algorithms, we refer to the textbook by Cygan et al. [CFK+15].

Our Contribution. We show that on planar graphs, both the edge– and
the vertex–deletion version of the problem are solvable in O((L+ 2)3Ln)
time. That is, we show that on planar graphs the minimum L-bounded
cut problem is fixed-parameter tractable (FPT) with respect to L. Fur-
thermore, we show that the problem remains FPT even for bounded genus
graphs, a super class of planar graphs. This is in contrast with the sit-
uation for general graphs – the problem is NP-hard even for L = 4 and
L = 5, for the edge– and vertex–deletion versions, respectively.

Our second contribution is a τ -approximation algorithm for the vertex–
deletion version of the problem, if a tree decomposition of width τ is
given. If the decomposition is not given, then using the best known al-
gorithm to compute a tree decomposition of a given graph, we obtain

1 For the sake of completeness, in Appendix A we provide details about this reduction.



an O(τ
√

log τ)-approximation for general graphs with treewidth τ , and
an O(τ)-approximation for planar graphs, graphs excluding a fixed mi-
nor and graphs with treewidth bounded by O(log n). For graphs with
treewidth bounded by τ = O(n1/2−ε) for any ε > 0, but not by a con-
stant, in terms of n, this is the best approximation we are aware of.

Our results are based on a combination of observations about the
structure of L-bounded cuts and various known results. The proofs are
straightforward but apparently non-obvious, considering the attention
given to the problem in recent years.

2 Preliminaries

Throughout the paper, given a graph G = (V,E), we use m to denote
the number of edges in G, that is, m = |E|, and for u, v ∈ V , we use
d(u, v) to denote the shortest path distance between u and v, that is,
the number of edges on a shortest path. For a graph G = (V,E) and a
subset of vertices W ⊂ V , a subgraph of G induced by W is the graph
(W,F ) where F is the subset of edges with both vertices in W , that is,
F = {{u, v} ∈ E | u, v ∈ W}. For a graph G = (V,E) and a subset of
edge F ⊂ E, we use G\F to denote the graph (V,E \F ), and for a subset
of vertices W ⊂ V , we use G \W to denote the subgraph of G induced
by V \W .

Given a graph G = (V,E) with two distinguished vertices s and t, a
subset of vertices W ⊂ V is an s− t vertex cut if s and t are in different
connected components in G \W . A subset of vertices W ⊂ V is a vertex
cut if the removal of W disconnects the graph, that is, if the graph G\W
is not connected.

For notions related to the treewidth of a graph and tree decompo-
sition we stick to the standard terminology as given in the book by
Kloks [Klo94]. A tree decomposition of a graph G = (V,E) is a tree
T with a node set V (T ) in which each node a ∈ V (T ) has an assigned
set of vertices B(a) ⊆ V , called a bag, such that

⋃
a∈T B(a) = V with the

following properties:

– for any {u, v} ∈ E, there exists a node a ∈ V (T ) such that u, v ∈ B(a),
– if v ∈ B(a) and v ∈ B(b), then v ∈ B(c) for all nodes c on the path

between a and b in T .

The tree decomposition is rooted if one of the nodes in the tree T is spec-
ified as the root. The treewidth of a tree decomposition T is the size of
the largest bag of T minus one. The treewidth of a graph G is the mini-
mum treewidth over all possible tree decompositions of G. To distinguish



vertices of a graph G and of a tree decomposition T of G, we call the
vertices of the tree decomposition nodes. A tree decomposition satisfies
the non-containment condition if no bag is contained in any other bag.

A simple yet important property of tree decompositions is stated in
the following lemma.

Lemma 1 (Folklore). Let G be a graph and T a tree decomposition of
G satisfying the non-containment condition. Then

– For any node a ∈ V (T ) that is not a leaf, B(a) is a vertex cut in G.

– For any two adjacent nodes a, b ∈ V (T ) such that none of the two
bags B(a) and B(b) is contained in the other, B(a)∩B(b) is a vertex
cut in G.

Note that the size of the cut B(a)∩B(b) in Lemma 1 is at most the width
of the tree decomposition T .

In a rooted tree, the parent of a node is the node connected to it on
the path to the root; every node except the root has a unique parent. A
child of a node v is a node of which v is the parent. A descendant of any
node v is any node which is either the child of v or is (recursively) the
descendant of any of the children of v. A leaf is a vertex having no child.

3 Fixed-parameter Tractability on Planar and Bounded
Genus Graphs

Our main tools are the following two well-known results.

Theorem 1 (Robertson and Seymour [RS84], Bodlaender [Bod88]).
The treewidth of a planar graph with radius d is at most 3d.

Theorem 2 (Freuder [Fre90]). CSP instances with n variables, treewidth
bounded by τ and domain by D are solvable in O(Dτn) time.

Since the minimum L-bounded edge (vertex, resp.) cut problem on a
graph G = (V,E) of treewidth τ can be cast as a CSP instance with |V |
variables, treewidth τ and domain of size L+2 (L+3, resp.), the problem
is solvable in O((L + 2)τn) time (O((L + 3)τn) time, resp.), as already
stated in the introduction and explained in Appendix A.

The main result of this section says that the L-bounded cut prob-
lem on planar graphs is fixed-parameter tractable, with respect to the
parameter L.



Theorem 3. The minimum L-bounded edge (vertex, resp.) cut problem
on planar graphs is solvable in O((L+ 2)3Ln) time (O((L+ 3)3Ln) time,
resp.).

Proof. We prove the theorem for the edge–deletion version; the proof for
the vertex–deletion version is analogous.

Given a graph G = (V,E), s, t ∈ V and an integer L, let V ′ = {v ∈
V | d(s, v) + d(t, v) ≤ L}. In words, V ′ is the subset of vertices lying on
paths of length at most L between s and t. Without loss of generality we
assume that d(s, t) ≤ L – otherwise the problem is trivial. Let G′ be the
subgraph of G induced by V ′. Note that the radius of G′ is at most L as,
by definition, d(s, v) ≤ L for every v ∈ V ′.

The set V ′ (and, thus, the subgraph G′) can be computed using the
O(n)-time algorithm for single-source shortest paths on planar graphs by
Klein et al. [KRRS94] that we run twice, once for s and once for t. Note
that both s and t belong to V ′.

Obviously, G′ is a planar graph, and by Theorem 1, its treewidth
is at most 3L. We solve the L-bounded problem for G′ and s and t by
Theorem 2 inO((L+2)3Ln) time. Let F be the optimal solution forG′. We
claim that F is an optimal solution for the original instance of the problem
on G as well. To prove feasibility of F , assume, for contradiction, that
there exists an s−t-path p of length at most L in (V,E\F ). As there is no
such path in G′\F , p has to use at least one vertex v from V \V ′. However,
this yields a contradiction: on the one hand, d(s, v)+d(v, t) ≤ L as v is on
an s− t-path of length at most L, on the other hand, d(s, v) +d(v, t) > L
as v is not in V ′. Concerning the optimality of F , it is sufficient to note
that the size of an optimal solution for the subgraph G′ is a lower bound
on the size of an optimal solution for G. ut

Theorem 1 was generalized by Eppstein [Epp00] to graphs of bounded
genus and this result makes it possible to generalize Theorem 3 also to
graphs of bounded genus.

Theorem 4 (Eppstein [Epp00]). There exists a constant ĉ such that
the treewidth of every graph with radius d and genus g is at most ĉdg.

In the same way as we used Theorem 1 to prove fixed-parameter
tractability for the L-bounded cut problem on planar graphs (Theorem 3),
we can use Theorem 4 to prove fixed-parameter tractability of the L-
bounded cut problem on graphs of bounded genus. The only other change
is that instead of the O(n)-time single-source shortest path algorithm for
planar graphs [KRRS94] we use the O(n+m)-time single-source shortest



path algorithm for general graphs [Tho99]. Considering the fact that by
Euler’s formula, genus g graphs have O(n + g) edges [Har69], we obtain
the following theorem.

Theorem 5. The minimum L-bounded edge (vertex, resp.) cut problem
on graphs with genus g is solvable in O((L+2)ĉgLn) time (O((L+3)ĉgLn)
time, resp.).

4 τ -Approximation for L-bounded Vertex Cuts

In this section we describe an algorithm for the L-bounded s − t vertex
cut problem whose approximation ratio is parameterized by the width τ
of a tree decomposition T of the input graph G. Throughout this section
we assume that the vertices s and t are not connected by an edge – in
such a case there is no L-bounded s− t vertex cut in G. Without loss of
generality we also assume that tree decompositions in this section satisfy
the non-containment condition.

Consider a graph G and a rooted tree decomposition T of G of width
τ . By d(G, s, t) we denote the distance between s and t in G. Given a
subset R ⊆ V (T ) of nodes inducing a connected subtree of T , a deepest
node in R is a node in R with no child in R. Given a node b of the rooted
tree decomposition T , we denote by Tb the subtree of T consisting of b and
of all its descendants, and by Gb the subgraph of G induced by vertices
in bags of Tb; similarly, we denote by T̄b the subtree of T consisting of all
nodes in T including b and excluding the descendants of b and by Ḡb the
subgraph of G induced by vertices in bags of T̄b. Note that b is the only
node of the tree T that appears in both subtrees Tb and T̄b.

The following simple observation captures the main properties of G
and T that make the algorithm of this section work. For notational sim-
plicity, in the rest of the section we use the term L-bounded path for an
s− t path of length at most L.

Claim 2 If b is a deepest node in the set R = {a ∈ V (T ) | d(Ga, s, t) ≤
L} and G′ = Ḡb \ (B(b) \ {s, t}), then the following holds:

1. There is at least one L-bounded path in Gb.

2. There is no L-bounded path in Gb \ (B(b) \ {s, t}).
3. The L-bounded paths in Gb are internally vertex disjoint with the L-

bounded paths in G′.

Proof. The first point follows from the membership of b in the set R.



The second point is obvious if b has none or exactly one child. Assume
that b is a node with two or more children and that there is an L-bounded
path p between s and t in Gb \ (B(b) \ {s, t}). Then, by the choice of b
(i.e., a deepest node in R), there exist children c and c′ of b and vertices
x, x′ on the path p such that x ∈ V (Gc)\V (Gc′) and x′ ∈ V (Gc′)\V (Gc).
Consider the vertex cut B(b) (cf. Lemma 1) and note that x and x′ belong
to different components of connectivity of Gb \B(b). Thus, the sub-path
of p between x and x′ has to contain as an inner vertex a vertex from
B(b) \ {s, t}, a contradiction. We conclude that there is no L-bounded
path in Gb \ (B(b) \ {s, t}).

For the third point, note that any L-bounded path in G either in-
tersects the set B(b) \ {s, t} or appears in G \ (B(b) \ {s, t}). As every
L-bounded path in Gb intersects, by the second part of this claim, the set
B(b) \ {s, t}, and as G′ is a subgraph of G \ (B(b) \ {s, t}), the third part
of the Claim follows. ut

The L-bounded cut is computed using the recursive procedure L-
bounded cut(G,T, s, t, L) described in Algorithm 1. In step 12, prune(G,T,C)
is a procedure that for a graph G = (V,E), a tree decomposition T and
a vertex set C ⊂ V , deletes from G the vertices in C and all adjacent
edges, and modifies the tree decomposition T by deleting the vertices in
C from all bags.

Algorithm 1 L-bounded cut(G,T, s, t, L)

1: if d(G, s, t) > L then # no need to remove anything

2: return ∅
3: else R← {a ∈ V (T ) | d(Ga, s, t) ≤ L} # set up

4: b← a deepest node in R
5: if |B(b) ∩ {s, t}| ≤ 1 then # simple cases - no need for recursion

6: if |B(b) ∩ {s, t}| = 1 then # s ∈ B(b), t 6∈ B(b), or vice versa

7: return B(b) \ {s, t}
8: else # s, t 6∈ B(b)
9: c← child of b s.t. s ∈ Gc

10: return B(b) ∩B(c)

11: else # recursion, s, t ∈ B(b)
12: (G′, T ′)← prune(Ḡb, T̄b, B(b) \ {s, t})
13: S′ ← L-bounded cut(G′, T ′, s, t, L)
14: return S′ ∪B(b) \ {s, t}

The main result of this section is obtained from Lemmas 3 and 4.



Lemma 3. Given a graph G = (V,E), two vertices s, t ∈ V and a tree
decomposition T of G of width τ , Algorithm 1 finds in polynomial time
an L-bounded s− t vertex cut.

Proof. To prove the correctness of Algorithm 1, we proceed by induction
on the recursion depth. We start by showing the correctness of the final
recursive calls. To this end we distinguish the following three cases dealt
with in the algorithm:

Case 1. d(G, s, t) > L. As there is no need to remove anything in this
case, the correctness is obvious from the description of the algorithm.

Case 2. |B(b) ∩ {s, t}| = 1 (where b is the node selected in step 4).
As there exists at least one L-bounded path in Gb, both vertices s and
t appear in Gb, and as |B(b) ∩ {s, t}| = 1, one of the vertices s and t
appears in Gb \ B(b). By the second point of Claim 2, B(b) \ {s, t} is
an L-bounded cut in Gb, and every L-bounded path in G disjoint with
B(b) \ {s, t} has to use a vertex that does not appear in Gb. However, as
B(b) is a vertex cut in G separating Gb \B(b) from the rest of the graph,
there is no L-bounded path in G disjoint with B(b) \ {s, t}. We conclude
that G \ (B(b) \ {s, t}) is an L-bounded s− t vertex cut in G.

Case 3. B(b)∩ {s, t} = ∅ (where b is the node selected in step 4). The
argument is similar as in the previous case. On one hand, as there exists
at least one L-bounded path in Gb, both vertices s and t appear in Gb,
and as none of them belongs to the set B(b), there must be a child c of b
such that s ∈ Gc. On the other hand, the second point of Claim 2 implies
that every L-bounded path in G disjoint with B(b) \ {s, t} has to use a
vertex that does not appear in Gb. As B(b) ∩ B(c) is a vertex cut in G
separating Gc from the rest of the graph, we conclude that there is no
L-bounded path in G \ (B(b) ∩B(c)).

Inductive step. Consider a run of the procedure with a graph G and
its tree decomposition T , and let R and b be the objects defined by the
procedure in steps 3 and 4. Note that the set R induces a connected
subgraph of T .

The inductive assumption (i.e., S′ is an L-bounded cut in G′) com-
bined with the second point of Claim 2 implies that the set S′∪B(b)\{s, t}
is an L-bounded s− t cut in G, completing the inductive step in the proof
of the correctness.

Concerning the running time, the second point of Claim 2 implies
that the vertex b selected as a deepest node from R in some iteration will
not belong to the set R in any of the future recursive calls. Thus, the
size of the set R decreases by at least one with each new recursive call,
yielding an upper bound V (T ) on the number of recursive calls. Apart



from the recursive call, each level of recursion can be implemented in time
O(τ · |V (T )|), yielding an upper bound O(τ · |V (T )|2) on the total running
time. ut

Let cost(G,T ) be the size of the solution computed by Algorithm 1
for a graph G and a tree decomposition T of G, and let opt(G) be the
size of an optimal solution for the graph G.

Lemma 4. Given a graph G = (V,E), two vertices s, t ∈ V and a tree
decomposition T of G of width τ , then

cost(G,T ) ≤ τ · opt(G) .

Proof. Similarly as in the proof of Lemma 3, we proceed by induction on
the recursion depth. We start by showing the correctness of the bound for
the final recursive calls and, as before, we distinguish the following three
cases:

Case 1. d(G, s, t) > L. For graphs with no L-bounded s− t path, the
claim is obvious as cost(G,T ) = 0 in this case.

Case 2. |B(b) ∩ {s, t}| = 1. It suffices to note that |B(b) \ {s, t}| ≤ τ
and that opt(G) ≥ 1.

Case 3. B(b) ∩ {s, t} = ∅. As in the previous case, it suffices to note,
using the non-containment condition, that |B(b) ∩ B(c)| ≤ τ and that
opt(G) ≥ 1.

Inductive step. From the description of the algorithm we know that
cost(G,T ) ≤ τ + cost(G′, T ′). Points 1 and 3 of Claim 2 imply opt(G) ≥
1 +opt(G′). Combining these observations with the inductive assumption
cost(G′, T ′) ≤ τ · opt(G′), we obtain cost(G,T ) ≤ τ · opt(G). ut

Putting Lemmas 3 and 4 together, we get the main result of this
section.

Theorem 6. Given a graph G, a rooted tree decomposition T of G of
width τ , vertices s and t and an integer L, Algorithm 1 finds in polynomial
time a τ -approximation of the minimum L-bounded s− t vertex cut.

Remark. At the cost of increasing the approximation ratio to τ + 1, the
steps 5-10 of the algorithm can be simplified as follows:

if |B(b) ∩ {s, t}| ≤ 1 then return B(b) \ {s, t}

By this change, if |B(b) ∩ {s, t}| = 1, the output of the algorithm will
not change. If B(b) ∩ {s, t} = ∅, the modified algorithm outputs B(b) =



B(b)\{s, t} instead of the original output B(b)∩B(c); obviously, this will
not break the correctness of the algorithm but the bound in Lemma 4 will
change to cost(G,T ) ≤ (τ + 1) · opt(G) as B(b) may be of size τ + 1.

In the case that we are not given a tree decomposition on input,
we start by constructing it using one of the known algorithms: Feige et
al. [FHL08] describe a polynomial time algorithm that yields, for a given
graph of treewidth τ , a tree decomposition of width O(τ

√
log τ); for pla-

nar graphs and for graphs excluding a fixed minor, the width is in O(τ).
Similarly, for graphs with treewidth bounded by O(log n), Bodlaender et
al. [BDD+16] describe how to find in polynomial time a tree decomposi-
tion of widthO(τ). Depending on the input graph, one of these algorithms
is used to obtain a desired tree decomposition. Thus, we obtain the fol-
lowing corollary.

Corollary 1. There exists an O(τ
√

log τ)-approximation algorithm for
the minimum L-bounded vertex cut on graphs with treewidth τ ; for planar
graphs, graphs excluding a fixed minor and graphs with treewidth bounded
by O(log n), there exists an O(τ)-approximation algorithm.

5 Open problems

Having shown fixed-parameter tractability of the L-bounded cut prob-
lem on planar and bounded genus graphs by giving LO(L)n time algo-
rithms, the question arises whether the presented bounds are optimal.
Could the dependence on the parameter L be improved to 2O(L)? As
our proofs of fixed-parameter tractability rely on the existence of the al-
gorithm for CSP, a much more general class of problems, on graphs of
bounded treewidth, it is conceivable that a better bound is possible; on
the other hand, under the Strong Exponential Time Hypothesis [IP01],
matching lower bounds for some problems expressible as CSP (e.g., q-
coloring) do exist [LMS11].

A natural open problem for planar graphs is whether the shortest
path most vital edges (vertices) problem is fixed-parameter tractable on
them, with respect to the number k of deleted edges (vertices). Despite
the close relation of the L-bounded cut problem and the shortest path
most vital edges (vertices) problem, fixed-parameter tractability of one
of them does not seem to easily imply fixed-parameter tractability of the
other problem.

The τ -approximation for L-bounded vertex cuts is based on the fact
that bags in a tree decomposition yield vertex cuts of size at most equal
the width of the decomposition. Unfortunately, this is not the case for



edge cuts – one can easily construct bounded treewidth graphs with no
small balanced edge cuts. Thus, another open problem is to look for better
approximation algorithms for minimum L-bounded edge cuts, for graphs
with treewidth bounded by τ .

Yet another challenging and more general open problem is to narrow
the gap between the upper and lower bounds on the approximation ratio
of algorithms for the L-bounded cut for general graphs: the best upper
bound for the edge– and vertex–deletion version of the problem is O(n2/3)
and O(

√
n), resp., while the best lower bound is constant.

Finally, we note that the edge–deletion version of the L-bounded cut
problem in a graph G = (V,E) is a kind of a vertex ordering prob-
lem. We are looking for a mapping ` from the vertex set V to the set
{0, 1, . . . , L, L+1} such that `(s) = 0, `(t) = L+1 and the objective is to
minimize the number of edges {u, v} ∈ E for which |`(u)−`(v)| > 1; given
a solution F ⊆ E, the lengths of the shortest paths from s to all other ver-
tices in G\F yield such a mapping of cost |F |. There are plenty of results
dealing with linear vertex ordering problems where one is looking for a
bijective mapping from the vertex set V to the set {1, 2, . . . , n} minimiz-
ing some objective function (e.g., the minimum cut linear arrangement
problem, the minimum feedback arc set problem [LR99]). However, the
requirement that the mapping is a bijection to a set of size n seems crucial
in the design and analysis of approximation algorithms for these problems.
The question is whether it is possible to obtain good approximations for
some nontrivial non-linear vertex ordering problems.

Acknowledgments. We thank Martin Koutecký and Hans Raj Tiwary
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A Appendix L-bounded Cut as a CSP Instance

An instance Q = (V,D,H, C) of CSP [KK15] consists of

– a set of variables zv, one for each v ∈ V ; without loss of generality we
assume that V = {1, . . . , n},

– a set D of finite domains Dv (also denoted D(v)), one for each v ∈ V ,

– a set of hard constraints H ⊆ {CU | U ⊆ V } and a set of soft con-
straints C ⊆ {CU | U ⊆ V } where each constraint CU ∈ C ∪ H with
U = {i1, i2, . . . , ik} and i1 < i2 < · · · < ik, is a |U |-ary relation
CU ⊆ Di1 ×Di2 × · · · ×Dik .

For a vector z = (z1, z2, . . . , zn) and U = {i1, i2, . . . , ik} ⊆ V with i1 <
i2 < · · · < ik, we define the projection of z on U as z |U = (zi1 , zi2 , . . . , zik).
A vector z = (z1, z2, . . . , zn) satisfies the constraint CU ∈ C∪H if and only
if z|U ∈ CU . We say that a vector z? = (z?1 , . . . , z

?
n) is a feasible solution for

Q if z? ∈ D1×D2× . . .×Dn and z? satisfies every hard constraint C ∈ H.
In the maximization (minimization, resp.) version of CSP, the task is to
find a feasible solution that maximizes (minimizes, resp.) the number of
satisfied (unsatisfied, resp.) soft constraints; the cost of a feasible solution
is the number of satisfied (unsatisfied, resp.) soft constraints.

The constraint graph of Q is defined as H = (V,E) where E =
{{u, v} | ∃CU ∈ C∪H s.t. {u, v} ⊆ U}. We say that a CSP instance Q has
bounded treewidth if the constraint graph of Q has bounded treewidth.

Given an edge–deletion version of the L-bounded cut instance G =
(V,E) with s, t ∈ V and an integer L, we construct the corresponding
minimization CSP instance Q = (V,D,H, C) as follows. The set of vari-
ables of Q coincides with the set V of vertices of G and for each v ∈ V ,
the corresponding domain Dv is {0, 1, . . . , L, L+ 1}. The set of hard con-
straints H consists of two constraints, C{s} = {0} and C{t} = {L + 1}.
The set of soft constraints C contains a constraint

C{i,j} = {(`, `′) | 0 ≤ `, `′ ≤ L+ 1, |`− `′| ≤ 1}

for each edge {i, j} ∈ E of the graph G.

To see that a feasible solution for the constructed instance Q of CSP
corresponds to a feasible solution of the L-bounded cut problem of the
same cost, and vice versa, we observe the following.

Given an optimal solution F ⊂ E of the edge–deletion version of the
L-bounded cut problem, we distinguish two cases. If s and t belong to
the same component of connectivity in (V,E \ F ), then the vector of



shortest path distances from s to all other vertices in (V,E \ F ) yields
a feasible solution for the CSP instance Q (to be more precise, if some
of the distances are larger than L + 1, we replace in the vector every
such value by L+ 1); if s and t do not belong to the same component of
connectivity in (V,E \F ), we obtain a feasible solution for Q by assigning
the value 0 to every vertex in the s–component and the value L + 1 to
every vertex in the t–component. Note that in both cases the cost of the
L-bounded cut and the cost of the CSP instance Q are the same. We also
note that for every feasible solution (z1, . . . , zn) of the instance Q, the
set F = {{u, v} ∈ E | |zu − zv| > 1} is an L-bounded cut of the same
cost. Finally, we note that the constraint graph of Q coincides with the
original graph G.

For the vertex–deletion version of the L-bounded cut problem in G =
(V,E), the corresponding minimization CSP instance Q = (V,D,H, C) is
defined similarly. For each v ∈ V , we have Dv = {−1, 0, . . . , L, L+1} – the
domain of every vertex is extended by an extra element −1 representing
the fact that v belongs to the L-bounded cut. The set of hard constraints
H contains constraints C{s} = {0} and C{t} = {L+ 1}, and for each edge
{i, j} ∈ E also a constraint

H{i,j} ={(`, `′) | 0 ≤ `, `′ ≤ L+ 1, |`− `′| ≤ 1}
∪ {(`,−1) | 0 ≤ ` ≤ L+ 1} ∪ {(−1, `) | 0 ≤ ` ≤ L+ 1} .

The set of soft constraints contains for each vertex u other than s and t
a constraint

C{u} = {0, 1 . . . , L, L+ 1} .

Given an optimal solution U ⊂ V of the vertex–deletion version of
the L-bounded cut problem, we distinguish two cases. If s and t belong
to the same component of connectivity of G′ = G \ U , then assigning to
every v ∈ U the value −1 and assigning to every v ∈ V \ U its distance
from s in G′ yields a feasible solution for the CSP instance Q (to be more
precise, if some of the distances are larger than L + 1, we replace in the
vector every such value by L + 1); if s and t do not belong to the same
component of connectivity in G′, we obtain a feasible solution for Q by
assigning the value 0 to every vertex in the s–component, the value L+ 1
to every vertex in the t–component and the value −1 to every v ∈ U .
Note that in both cases the size of the L-bounded cut and the cost of
the CSP instance Q are the same. We also note that for every feasible
solution (z1, . . . , zn) of the instance Q, the set U = {v ∈ V | zv = −1}
is an L-bounded cut of size equal the cost of Q.


