Fundamental concepts and
results on polyhedra, linear
inequalities, and linear
‘programming

In this chapter we first state a fundamental theorem on linear inequalities (Section 7.1), and
next we derive as consequences some other important results, like the Finite basis theorem
for cones and polytopes, the Decomposition theorem for polyhedra (Section 7.2), Farkas’
lemma (Section 7.3), the Duality theorem of linear programming (Section 7.4), an affine
form of Farkas’ lemma (Section 7.6), Carathéodory’s theorem (Section 7.7), and results for
strict inequalities (Section 7.8). In Section 7.5 we give a geometrical interpretation of
LP-duality. In Section 7.9 we study the phenomenon of complementary slackness.

Each of the results in this chapter holds both in real spaces and in rational spaces. In the
latter case, all numbers occurring(like matrix and vector entries, variables) are restricted to
the rationals. -

7.1. THE FUNDAMENTAL THEOREM OF LINEAR INEQUALITIES

The fundamental theorem is due to Farkas [1894, 1898a] and Minkowski
[1896], with sharpenings by Carathéodory [1911] and Weyl [1935]. Its geo-
metric content is easily understood in three dimensions.

Theorem 7.1 (Fundamental theorem of linear inequalities). Let a,...,a,, b be
vectors in n-dimensional space. Then:

either 1. b is a nonnegative linear combination of linearly independent vectors
froma,,...,a

m»
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86 7 Fundamental concepts and results on polyhedra, linear inequalities and linear program

or II. there exists a hyperplane {x|cx = 0}, containing t — 1 linearly indep.
ent vectors from ay,...,a,, u.mmx that cb<0and ca,,...,ca, =0, w
t:=rank{a,,...,a,,b}. (N

Proof. We may assume that q,,...,q,, span the n-dimensional space.
Clearly, I and Il exclude each other, as otherwise, if b=A;a, 4+ -+
with 4,,...,4,, =0, we would have the contradiction

(1) 0>cb=4;-ca;+- -+ A,ca, =0.

To see that at least one of I and IT holds, choose linearly independent a;

g

_from ay,...,a,, and set D:={a;,,...,q; }. Next apply the following iteratiot

) (i) Write b= 24, a;, +-+ A4, 1If 4,..., A, =0, we are in case ]
(ii) Otherwise, choose the smallest 4 among i,,...,i, with 4, <O0.
{x]ex =0} be the hyperplane spanned by D\{a,}. We normal
so that ca, = 1. [Hence ¢b = 4, <0.]
(iii) If cay,...,ca, =0 we are in case IL.
(iv) Otherwise, choose the smallest s such that ca; < 0. Then repla
by (D\{a;})u{a,}, and start the iteration anew.

We are finished if we have shown that this process terminates. Let D, de
the set D as it is in the kth iteration. If the process does not terminate,

D, =D, for some k < (as there are only finitely many choices for D). Let
the highest index for which a, has been removed from D at the end of or
the iterations k, k + 1,...,1 — 1, say in iteration p. As D, = D,, we know th
also has been added to D in some iteration q with k<g <. So

3) D, {a,sy5..sa,} =Dy {8, 4 1,... 0.}

Let D,={a;s..,a;}, b= 4, a; + -+ A, a;, and let ¢’ be the vector c fc
in (ii) of iteration q. Then we have the contradiction:

@  0>cb=ca, + - +Aa)=lca, ++Aca, >0,
The first inequality was noted in (2) (ii) above. The last inequality follows {

5 ifi,<rthen A, >0,c'a, >0 (as by (2) (ii), r is the smallest index wi
) o Y n\n: g < 0; similarly, by (2) (iv) r is the sm
if i;=r then »c <0,¢'a;; <0) lindex with c'a, <0)

ifi;>r then c'a;; =0 (by (3) and (2) (ii)).

The above proof of this fundamental theorem also gives a fundam
algorithm: it is a disguised form of the famous simplex method, with Bl
rule incorporated—see Chapter 11 (see Debreu [1964] for a similar proof
with a lexicographic rule).
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‘72. CONES, POLYHEDRA, AND POLYTOPES

We first derive some geometrical consequences from the Fundamental
theorem. A nonempty set C of points in Euclidean space is called a (convex)
cone if Ax + pyeC whenever x, yeC and 4, u > 0.JA cone C is polyhedral if

(6) C={x|Ax <0}

for some matrix A, i.e. if C is the intersection of finitely many linear half-spaces.
Here a linear half-space is a set of the form {x|ax <0} for some nonzero row
vector a. The cone generated by the vectors x,,...,x,, is the set

@ ooy, tnd= (s 0+ Akl dssees > O,

i.e. it is the smallest convex cone containing x,, ..., X,,. A cone arising in this way
is called finitely. generated. .

It now follows from the Fundamental theorem that for cones the concepts of
‘polyhedral’ and ‘finitely generated’ are equivalent (Farkas [1898a, 1902],
Minkowski [1896], Weyl [1935]).

Corollary 7.12 (Farkas—Minkowski—Weyl theorem). A convex cone is polyhedral
if and only if it is finitely generated.

Proof. 1. To prove sufficiency, let x,,...,x,, be vectors in R". We show that
cone{x,,...,X,} is polyhedral. We may assume that x,,..., x,, span R" (as we
can extend any linear half-space H of lin.hull{x;,...,x,,} to a linear half-space
H' of R" such that H' nlin.hull{x,,...,x,} = H). Now consider all linear half-
spaces H = {x|cx <0} of R" such that x,,...,x,, belong to H and such that
{x|cx =0} is spanned by n — 1 linearly independent vectors from x,,...,x,. By
Theorem 7.1, cone {x,,..., x,,} is the intersection of these half-spaces. Since there
are only finitely many such half-spaces, the cone is polyhedral.

IL. Part I above also yields the converse implication. Let C be a polyhedral
cone, say C = {x|ajx <0,...,a]x <0} for certain column vectors a,...,a,. As
by I above, each finitely generated cone is polyhedral, there exist column vectors
b,,..., b, such that

(8) - cone{ay,...,a,}={x|b]x<0,...,b]x <0}.

We show that C =cone{b,,...,b,}, implying that C is finitely generated.
Indeed, cone {b,,...,b} = C,as b,,...,b,eC, since Fa.a_. <O0fori=1,...,mand
j=1,...,t, by (8). Suppose y¢cone{b,,...,b,} for some yeC. By Part I,
cone{b,,...,b,} is polyhedral, and hence there exists a vector w such
w'by,...,w'b, <0 and w'y>0. Hence by (8), wecone{a,,...,a,}, and hence
w'x <0 for all x in C. But this contradicts the facts that y is in C and w'y>0.
O

A set P of vectors in R" is called a (convex) polyhedron if

O P={xlAx<b)
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for some matrix 4 and vector b, i.e. if P is the intersection of finitely many
affine half-spaces. Here an affine half-space is a set of the form {x|wx <} for
some nonzero row vector w and some number 8. If (9) holds, we say that Ax <b
defines or determines P. Trivially, each polyhedral cone is a polyhedron.

A set of vectors is a (convex) polytope if it is the convex hull of finitely many
vectors. = -
Tt is intuitively obvious that the concepts of polyhedron and of polytope are
related. This is made more precise in the Decomposition theorem for polyhedra
(Motzkin [1936]) and in its direct corollary, the Finite basis theorem for poly-

topes (Minkowski [1896], Steinitz [1916], Weyl [1935]).

Corollary 7.1b (Decomposition theorem for polyhedra). 4 set P of vectors in
Euclidean space is a polyhedron, if and only if P =Q + C for some polytope Q
and some polyhedral cone C.

Proof. 1. First let P = {x|Ax < b} be a polyhedron in R". By Coroliary 7.1a the
polyhedral cone

X

(10) ]

xeR™ 1eR; A= 0; Ax — Ab <0

Xy Xy

2 )\

assume that each 4; is 0 or 1. Let Q be the convex hull of the x; with A;=1,

and let C be the cone generated by the x; with 4, =0. Now xeP, if and only if
” belongs to (10), and hence, if and only if x econe *1 m It

1 2 ) \a
follows directly that P=Q + C.

is generated by finitely many vectors, say by . We may

(3

I. Let P=Q + C for some polytope Q@ and some polyhedral cone C. Say

Q =conv.hull {x,,...,x,} and C=cone{y,,...,y,}. Then a vector x, belongs to
P, if and only if :

(1) x_o econe xHH eies xHa , vw seeo w_ ]

By Corollary 7.1a, the cone in (11} is equal to M Ax + Ab <0} for some
matrix A and vector b. Hence xy€P, if and only if Ax, < — b, and therefore
P is a polyhedron. O

We shall say that P is generated by the points x,...,x,, and by the directions
D27V 1

(12) P =conv.hull{x,,...,x,} +cone{y,,..., ».}. —

This gives a ‘parametric’ description of the solution set of a system of linear
"inequalities. For more about decomposition of polyhedra, see Section 8.9 below.
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.,\,.u Farkas® lemma and variants %9

" The Finite basis theorem for polytopes can be derived from the Decomposition
_ theorem. It is usually attributed to Minkowski [1896], Steinitz [1916] and Weyl
Tou 5]. (‘This classical resuit is an outstanding example of a fact which is
completely obvious to geometric intuition, but which wields important algebraic
content and is not trivial to prove’—R.T. Rockalellar.)

muo_.o__w_.% 7.1c (Finite basis theorem for polytopes). A set P is a polytope if and
only if P is a bounded polyhedron.

Proof. Directly from Corollary 7.1b. O

93, FARKAS’ LEMMA AND VARIANTS

. Another consequence of Theorem 7.1 is the well-known Farkas’ lemma,
~ proved first by Farkas [1894, 1898a] and Minkowski [1896].

o
Corollary 7.1d (Farkas’ lemma). Let A be a matrix and let b be a vector. Then
‘there exists a vector x =0 with Ax =b, if and only if yb > 0 for each row vector
y with yA = 0.

" Proof. The necessity of the condition is trivial, as yb = yAx >0 for all x and y
with x>0, yA =0, and Ax = b. To prove sufficiency, suppose there is no x >0
with Ax =b. Let ay,...,a,, be the columns of A. Then b¢cone{a,,...,a,}, and
hence, by Theorem 7.1, yb <0 for some y with y4 > 0. O
‘Farkas’ lemma is equivalent to: if the linear inequalities a,x <0,...,a,x <0
‘imply the linear inequality wx <0, then w is a nonnegative linear combination
of a,,...,a, (thus providing a ‘proof” of the implication).

Geometrically, Farkas’ lemma is obvious: the content is that if a vector b
oes not belong to the cone generated by the vectors a;,...,q,, there exists a
linear hyperplane separating b from a,,...,a,.
" There are several other, equivalent, forms of Farkas’ lemma, like those des-
c¢ribed by the following two corollaries. =

.o_.o,:»Q 7.1e (Farkas® lemma (variant)). Let A be a matrix and let b be a

ector. Then the system Ax < b of linear inequalities has a solution x, if and only
if §.W 0 for each row vector y =0 with yA =0.

“Proof. Let A’ be the matrix [I A —A]. Then Ax <b has a solution x, if and
nly if A'x" = b has a nonnegative solution x'. Application of Corollary 7.1d to
he latter system yields Corollary 7.1e. O

bt —

.N::.: [1956a] showed that this variant of Farkas’ lemma can be proved in a

ice short way with the ‘Fourier—Motzkin elimination method’—see Section
2:2.]
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1 Mnohostény

1.1 Sténa mnohosténu

Definice 1. Nechf P je konvexni mnohostén a ¢ € R"?,t € R. Jestlize Vo € P : ¢lz < ¢
a3z € P: cl'z = t, pak mnosinu {z|cTz = t} nazjvime teéna nadrovina, mnoZiny
{z|cTz =t} N P, § a P nazjvime sténami P. Sténu F, pro kterou plati F # P aF #{,
nazveme vlastni sténa.

Definice 2. Vrchol P je st&na dimenze 0.
Hrana P je sténa dimenze 1.
Faseta P je sténa dimenze dim(P) — 1

Véta 3. Prunik stén P je sténa P.
Dikaz. Na cvidenich. O

Véta 4. Necht P je konvezni mnohostén, V mnoZina vrchold P.
Pak x € V < x ¢ conv(P \ {z}).

z je extremdlnd bod
{ Navic, pokud je P omezeny, tak P = conv(V).)

Dikaz. (Pro V omezené)

Vo := minimélni mnoZina (vzhledem k inkluzi), Ze P = conv(Vp)
Veat '={x € Plz ¢ conv(P \ {z})}

Idea dikazu: V C Vi SV CV = Ve = W

V C Voot Sporem, volime z € V, 2z ¢ Veyy
Z definice vrcholu z € P,cTz =t avVe e P\ {2z} : Tz < ¢
2 ¢ Vegt = z € conv({z1,...75}) = spor, z neni vrchol.
e —

CP\{z}

Vezt € Vo Sporem, volime z € Vezr \ Vo
z € P = conv(Vp) C conv(P \ {z}) spor

Vo C V PouZijeme Vétu o oddélovani .
z € Vo, D := conv(Vg \ {2}); {2} a D jsou disjunktni uzavfené konvexni mnoziny. Tedy
podle véty o oddélovani méme c,r takové, Ze Ve € D:cTax <raclz>r ‘
Zvolime t := ¢ z, pak platiVz € D: Tz <r <t
a tedy A = {z|c’x =t} je tetna nadrovina, tedy Vz € Vy: Tz <taVz e P:clz <t
Tvrdime: AN P = {z}, nechf 2’ € AN P;2 # z, pak
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Chapter 4

Matroids

Matroids provide a successful connection between graph theory, geometry and
linear algebra. Some of the dualities we will discuss later are rooted in the the-
ory of matroids. Moreover, matroids provide a basis for discrete optimization.
Several important algorithms, for instance the greedy algorithm, belong to the
matroid world. We make a notational agreement in this chapter: the graphs are
allowed to have loops and multiple edges.

Definition 4.0.5. Let X be a finite set and S C 2X. We say that M = (X, S)
is a matroid if the following conditions are satisfied:

(I1) 0 e S,
(I2) Ae S and A’ C A then A’ € § (S is hereditary),

(I3) U,V € S and |U| = |V| + 1 then there is z € U — V so that VU {2z} € §
(S satisfies an ezchange aziom).

Ezample 4.0.6. Let X be the set of all columns of a matrix over a field and let
S consist of all the subsets of X that are linearly independent. Then (X, 9) is
a matroid (called vectorial or linear matroid).

Definition 4.0.7. Let M = (X, S) be a matroid. The elements of S are called
independent sets of M. The maximal elements of S (w.r.t. inclusion) are called
bases. Let A C X. The rank of A, r(A), is defined by r(A) = maz{|A’|; A’ C
A, A" € S}. The closure of A, 0(A), equals {z;r(AU{z}) =7(4)}. If A =o(A)
then A is closed. —

By repeated use of (13) in Definition 4.0.5 we get

Corollary 4.0.8. If U,V € S and |U| > |V| then there is Z C U~ V, |Z] =
[U—-V]and VUZ € S. All bases have the same cardinality.

Theorem 4.0.9. A non-empty collection B of subsets of X is the set of all
bases of a matroid on X if and only if the following condition is satisfied.
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(B1) If B1,By € B and z < Bi — By then there is y € By — By such that
Bi—{z}u{y} eB.

Proof. Property (B1) is true for matroids: we apply (I3) to By — {z}, B,. To
show the other implication we need to prove that each hereditary system satis-
fying (B1) satisfies (I3) too. First we observe that (B1) implies that no element
of B is a strict subset of another one, and by repeated application of (B1) we
observe that in fact all the elements of B have the same size. To show (I3)
let By, By be bases containing U,V from (I3) and such that their symmetric
difference is as small as possible. If (Bv N (U ~V)) # 0 then any element from
there may be added to V and (I3) holds. We show that (BvN(U-V)) = 0 leads
to a contradiction with the choice of By,By: If x € By — By — V then (B1)
produces a pair of bases with smaller symmetric difference. Hence By — By — V'
is empty. But then necessarily |Bv| < |Byl, a contradiction. O

Theorem 4.0.10. A collection S of subsets of X is the set of all independent
sets of a matroid on X if and only if (I11), (12) and the following condition are
satisfied.

(18°) If A is any subset of X then all the mazimal (w.r.t. inclusion) subsets Y
of A withY € S have the same cardinality.

Proof. Property (I3) is clerly equivalent to (I3). O

Theorem 4.0.11. An integer function r on 2X is a rank function of a matroid
on X if and only if the Jollowing conditions are satisfied.

(R1) r(8) =0,
(Re) r(Y) <r(Y U{g}) <r(¥) +1,
(R3) If r(Y U{y}) =r(Y U {z}) =r(Y) then r(Y) =r(v U {y,2}).

Proof. Clearly (R1),(R2) hold for matroids. To show (R3) let B be a maximal
independent subset of Y. If r(Y) < 7(Y U {y, z}) then B is not maximal inde-
pendent in Y U {y, 2}, but any enlargement leads to a contradiction.
To show the other direction we say that 4 is independent if r(4) = |A4|. Ob-
viously the set of the independent sets satisfies (I1). If A is independent and
B C A then r(B) = | B| since otherwise, by (R2), r(A) < |B — A| + r(B) < |A].
Hence (12) holds. If (I3) does not hold for U,V then by repeated application of
(R3) we get that 7(VU(U —~V)) = r(V), but this set contains U, a contradiction.
O

Theorem 4.0.12. An integer function on 2% is a rank function of a matroid
on X if and only if the following conditions are. satisfied.

(R1’) 0<r(Y)<|Y|,
(R2)) Z CY implies r(Z) < r(Y),
(RS’) r(YUZ)+r(YNZ) < r(Y)+r(Z). This property is called submodularity.
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— By such that A Proof. Clearly (R1’) and (R2’) hold for matroids. To show (R3’) let B be a
maximal independent set in ¥ N Z and let By, Bz be maximal independent in
Y, Z containing B. We have (Y N Z) = |By N Bz| and clearly r(By U Bz) <

1— {z}, Ba. '_Ib ‘ |Y' U Z|. Hence (R3) follows. On the other hand, (R1),(R2) and (R3) follow

ry system satis- ; easily from (R1’), (R2’) and (R3’).

that no element | 0

ition of (B1) we i

.. To show (I3) Theorem 4.0.13. The closure a(A) is the smallest (w.r.t. inclusion) closed

their symmetric 1 set containing A. o
fly element from Proof. First observe that o(A) is closed, since 7(c(A) U{z}) = r(c(4)) implies o
—V)) = 0 leads r(AU {z}) < r(c(4) U {z}) = r(c(A)) = r(A). To show the second part let !
7=V then (B1) AcC C,C closed and z € (6(A) — C). Hence r(CU{z}) > r(C) and this implies |
e By — By _g ' r(AU{z}) > r(A). (exercise: why?) This contradicts z € o(4). |
* all independent Theorem 4.0.14. A function o : 2% — 2% is the closure operator of a matroid
ng condition are 1 on X if and only if the following conditions are satisfied. |

(S1) Y C oY),
(S2) Z CY then o(Z) C o(Y), |
O , (83) o(a(Y)) = o(Y),

(84) if y ¢ oY) but y € o(Y U{z}) then z € o(Y U {y}). This property is
called the Steinitz-MacLane exchange axiom.

usion) subsets Y

don of a matroid

We say that two matroids are isomorphic if they differ only in the names of
their groundset elements.

,2})- 4.1 Examples of matroids
B be a ma)?unal j We already know vectorial matroids. A matroid is representable if it is isomor- i
K @&leal inde- phic to a vectorial matroid. - ‘
ction. Let G = (V, E) be a graph and let M (G) = (E, S) where S = {F C FE; F forest}.
(4) = |4]. Ob- 4 Then M(G) is a matroid, called the cycle matroid of G. Its rank function is ;
ndependent and ,f r(F) = |V] — c(F'), where we recall that ¢(F') denotes the number of connected ‘
Al+ T(B ) < Al | components of the spanning subgraph (V, F'). The matroids isomorphic to cycle |
2d apphca‘?lor.l of matroids of graphs are called graphic matroids.
a contradiction. Let G = (V, E) be a graph. The matching matroid of G is the pair (V, S) where

= ? A € S if and only if A may be covered by a matching of G. This is a matroid

since the basis axiom corresponds to the exchange along an alternating path of
aximum matchings of G.

A matroid is simple if r(A) = |A] whenever |A| < 3. Simple matroids of
rank 3 have a natural representation that we now describe. Each matroid is
determined by its rank function and so each simple matroid M of rank 3 is
determined by the set L(M) = {A C X;|A| > 2,7(A) =2, A closed }; if |A] > 2
then 7(A) = 2 if and only if A is a subset of an element of L(M).

ion of a matroid

d submodularity.
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|

jfi Lemma 4.1.1. If A, B € L(M) then |ANB| < 1. 4.2 Gre
‘[E Proof. We assume for a contradiction {z,2} CANB,ac A—Bandbec B— A. Lgt (X,S) be ¢
H Then both a,b belong to o({z,z}) and hence, by Theorem 4.0.13, both a,b discrete optw\%
}1,’; belong to any closed set containing {z, z}: a contradiction. @&X1mlzed- ‘
1 0 it was shown t

order to turn tl
we change the

A set C C 2% is a configuration on X if each element of C has at least a more general

3 elements and any pair of elements of C have at most one element of X in

common.

Theorem 4.1.2. Each configuration is the set L(M)

of a simple matroid of

rank 3 on X.

Proof. Given C, for each A C X define r(4) = |A] if |A| <2, and if |A] > 2 then
r(A) = 2 if and only if A is a subset of an element of C ; 7(A) = 3 otherwise. We
show that r is a rank function of a matroid. Note that (R1, (R2) are obviously
satisfied. We show (R3): If r(Y U {y}) = #(Y U {z}) = r(Y) then |Y] > 2
and both ¥ U {y}, Y U {2} are subsets of an element of C. They are in fact
subsets of the same element of C' since their intersection has size 2. Hence

works as follow

e Order th
o J:=0.

e Fori=1
The next t

Theorem 4.%
greedy algorith
function w on

r(Y) =r(Y U{y,z}). Proof. Tf a he
it is not difficu

does not work
- Hence we can represent simple matroids of rank 3 by a system of ’lines’ in that w,, > 0

the plane corresponding to the elements of L(M). The most famous picture greedy algorit
of matroid theory, the Fano matroid Fy, is depicted in Figure 4.1. The Fano Let T; = {1,"
matroid is the vectorial matroid, over GF(2), of the matrix whose columns are
all non-zero vectors of GF(2)3.

O

! 100
since J N T i
GA). We haw

m—1

Z (’wi — W

i—1

001

011 >
The only
’I”(Ti). GA th
Figure 4.1. Fano matroid F; maximize

: (A=Y
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4.2 Greedy algorithm

Let (X, S) be a set system and w a weight function on X = {1,2,--- ,nt. Ina
discrete optimization problem we may want to find J € S such that > ;o ;wi is
maximized. We encountered the greedy algorithm mm,
it was shown that GA correctly solves the minimum spanning tree problem (in
order to turn the minimum spanning tree problem into a maximization problem
we change the sign of each weight). Let us first define the greedy algorithm in
a more general way, as an algorithm for the general optimisation problem that

works as follows:

e Order the elements of X so that wy > wg 2 -+ > Wy

o J:=0.

e Fori=1,---,ndo: ifJU{i}ESandwiZOthengzJU{i}.

The next theorem shows that applicability of GA characterizes matroids.

Theorem 4.2.1. Let (X,S) be a hereditary non-empty set system. Then the
greedy algorithm solves the discrete optimization problem correctly for any weight

function w on X if and only if (X,S) is a matroid.

Proof. If a hereditary system is not a matroid then it does not satisfy (I3’) and
it is not difficult to construct a weight function w for which the greedy algorithm
does not work. Let us prove the opposite implication: Let m be maximal such
that w, > 0. Let 2z’ be the characteristic vector of a set produced by the
greedy algorithm and let 2 be the characteristic vector of any other set of S.
Let T, = {1,---,i},i=1,--- ,m. We notice that for each 4

& . Z/(Ti) = Zz; Z sz‘ = z(Ti),

Jj<i i<

since J N T} is a maximal subset of T; which belongs to S (by the definition of
GA). We have

wz < ;wm = ;wi(z(Ti) —2(Ti-1)) =

3

m—1
Z (w; — wip1)z(T) + Wi 2(Tm) < (w; — wit1)z (Ti) + W2 (Trn) = w2’
; 1

i=1 i

O

The only property we used in the proof is that z > 0 and 2(T3) < 2/(T3) =
r(T;). GA thus solves also the following problem:

maximize Y, x WiZi

2(A) = ieaz <T(A), ACK;
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The problems that may be described in this form are called linear programs,

and the part of optimization which studies linear programs is called linear pro-
gramming.

Corollary 4.2.2. Edmonds Matroid Polytope theorem: For any matroid, the
convez hull of the characteristic vectors of the independent sets is equal to P =
{220; for each A C X,2(4) < r(A)}.

Proof. (sketch) The convex hull is clearly a subset of P. By the Minkowski-Weyl
theorem introduced in the beginning of the book we have that P, a bounded
intersection of finitely many half-spaces, is a polytope, i.e. a convex hull of its
vertices. Each vertex c of P is characterized by the existence of a half-space
{#;wz < b} which intersects P exactly in {c}. Since GA solves any problem
max{wz; z € P}, each non-empty intersection of P with a half-space necessarily
contains the incidence vector of an independent set. In particular, each vertex
of P is the incidence vector of an independent set, and the theorem follows.

]

Finally we remark that the greedy algorithm is polynomial time if there is
polynomial algorithm to answer the questions 'Is J independent ?°. It is usual for
matroids to be given, for algorithmic purposes, by such an independence-testing
oracle,

4.3 Circuits

Definition 4.3.1. A circuit in a matroid is & minimal (w.r.t. inclusion) non-
empty dependent set.

The circuits of graphic matroids are the cycles of the underlying graphs.

Theorem 4.3.2. 4 non-empty set C is the set of the circuits of a matroid if
and only if the following conditions are satisfied.

(C1) If C1 # Cy are circuits then C1 is not a subset of Cs,

(C2) If Cy # Cy are circuits and z € C1NCy then (C1 U Cy) — z contains a
cireuit.

Proof. First we show that a matroid satisfies the above properties. The first is
obvious. For the second we have r(C; U Ca) < r(Ch) +7r(Cy) — r(Cy N Cy) =
[C’lf + ,Cgl — 'Cl n Cgl -2 = ]C’l U Cg] — 2. Hence (01 U 02) — z must be
dependent. On the other hand, we define S to be the set of all subsets which do
not contain an element of C and show that (X, 8) is a matroid. Axioms (I1) and
(I2) are obvious and we show (I3): let A C X and for a contradiction let J1, Jo
be maximal subsets of A that belong to S and [J1] < |2, and let |J; N J,] be as
large as possible. Let z € J; — J2 and C the unique circuit of J, Uz. Necessarily
thereis f € C— J; and J3 = (J2Uz) — f belongs to S by the uniqueness of C.
Then [J3 N J1| < |Jo N Jyf, & contradiction. O
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