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Abstract

We investigate here the quasiordering � of finite sets of finite strings over an infinite set of

symbols S. We set K � L iff it is possible to rename symbols occurring in the strings of L so

that any string of K is a subsequence of a string of the renamed L. We prove that � is a wqo

which answers the question raised by J. Gustedt in [3]. We prove also a stronger version with

injective correspondence between strings.

1 Introduction

Strings are finite sequences over S where S is an infinite countable set of symbols. Languages

are finite sets of strings, babels are sets of languages. If A ⊆ S then A∗ stands for the set of all

strings over A. By S∗∗ we denote the babel consisting of all languages. We define, for a string

u = a0a1 . . . am, S(u) =
⋃m

i=0{ai}. Similarly S(L) =
⋃

u∈L S(u) for any language L.

The notation u ⊂ v means, for any two sequences u = a0a1 . . . am and v = b0b1 . . . bn, that

u is a subsequence of v: a0 = bj0 , a1 = bj1 , . . . , am = bjm for some m indices 0 ≤ j0 < j1 <

. . . < jm ≤ n. We define, for two languages L and K, that L ≤ K (via f) iff u ⊂ f(u) for
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any u ∈ L for some mapping f : L → K. A mapping ϕ : S → S transforms a language L to

the language ϕ(L) = {ϕ(u) | u ∈ L} where ϕ(u) = ϕ(a0a1 . . . am) = ϕ(a0)ϕ(a1) . . . ϕ(am). We

shall investigate the following quasiordering.

Definition 1.1 L � K, L and K are languages, iff L ≤ ϕ(K) for some ϕ : S → S.

The above quasiordering was introduced in [7] to generalize chain minor ordering of finite

posets. We say, in accordance with [7] and with [3], that P is a chain minor of Q (P and Q are

finite posets) iff there is a mapping ρ : Q → P such that any chain in P is isomorphic via ρ to

a chain in Q (thus ρ must be onto). Chain minor ordering was introduced in connection with

scheduling stochastic project networks [7]. Clearly P is a chain minor of Q iff L(P ) � L(Q)

where L(P ) and L(Q) are languages consisting of chains in corresponding posets.

By means of that equivalence it has been proven in [3], see also [4], that chain minor is a

wqo of finite posets. The proof uses substantially the fact that any ”poset language” L(P )

consists of strings without repetitions. The problem whether � is a wqo for languages in

general was posed [3]. Generalizing the approach in [3] we answer this question affirmatively.

Theorem 1.2 (S∗∗,�) is a wqo.

One can define a stronger quasiordering �∗ if the mapping f in the definition of � is

injective in addition. We prove that �∗ is a wqo as well.

Theorem 1.3 (S∗∗,�∗) is a wqo.

In Section 2 we give some preliminaries and demonstrate in a simple case our method.

Theorems 1.2 and 1.3 are proven in Sections 3 and 4, respectively. In Section 5 we give

counterexamples showing that requiring an injective ϕ in Definition 1.1 destroyss the wqo

property.

2 Absolute minimum about wqo

Any transitive and reflexive binary relation is called a quasiordering or, shortly, qo. If (Q,≤Q)

is a qo then x <Q y means that x ≤Q y and y 6≤Q x. A cone determined by the element x ∈ Q
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is the set Kx = {y ∈ Q | y ≥Q x}. A qo (Q,≤Q) is a well quasiordering or, shortly, wqo if

it possesses the property characterized by the following lemma. For the proof and for more

background we refer to [6].

Lemma 2.1 Suppose (Q,≤Q) is a qo. The following conditions are equivalent.

1. For any infinite sequence (qi)∞i=0 ⊆ Q there are indices i < j such that qi ≤Q qj.

2. For any infinite sequence (qi)∞i=0 ⊆ Q there are indices 0 ≤ i0 < i1 < . . . such that

qi0 ≤Q qi1 ≤Q . . .

3. No infinitely many elements x0, x1, . . . of Q create an antichain or a strictly descending

chain

x0 >Q x1 >Q . . .

Sequences satisfying 1. are called good , other sequences are called bad. The infinite mono-

tonic subsequence in 2. is called perfect. We recall two folcloric but useful statements.

Cone deleting argument. Suppose (Q,≤Q) is a wqo and Q0, Q1, . . . are defined by

Q0 = Q, Qi+1 = Qi\Kqi , qi ∈ Qi. Then this sequence is finite, Qj = ∅ for some j (otherwise

(qi)∞i=0 ⊆ Q would be a bad sequence).

Product argument. Suppose (Qi,≤Qi)
r
i=0 are wqo’s, Q = Q0×Q1× . . . Qr and (Q,≤pr)

is defined by (xi)r
i=0 ≤pr (yi)r

i=0 iff xi ≤Qi yi for i = 0, . . . , r. Then (Q,≤pr) is a wqo as well

(apply Lemma 2.1 r + 1 times).

Let (Q,≤Q) be a qo. The Higman ordering (SEQ(Q),≤H) on the set

SEQ(Q) = {(I, `) | I is a finite linear ordering and ` : I → Q}

of all finite sequences over Q is defined by (I0, `0) ≤H (I1, `1) iff there is an increasing mapping

F : I0 → I1 such that `0(x) ≤Q `1(F (x)) for any x ∈ I0. We will use the following classical

result of the wqo theory [5].

Theorem 2.2 (Higman) (SEQ(Q),≤H) is a wqo for any wqo (Q,≤Q).
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To demonstrate our method in a simple case we prove as an example a weaker version of

Higman theorem which deals with the structure (SET (Q),≤S) consisting of finite subsets of

Q with the qo A ≤S B iff there is an injective mapping F : A → B such that x ≤Q F (x) for

any x ∈ A.

Lemma 2.3 (SET (Q),≤S) is a wqo for any wqo (Q,≤Q).

Proof. We prove by a direct argument that any sequence A = (Ai)∞i=0 ⊆ SET (Q) is good to

≤S . We say that X = (Bi, Ci)∞i=0 is a friend of A if (Bi)∞i=0 is a subsequence of A, Ci ⊆ Bi for

any i, and (|Ci|)∞i=0 is bounded. Set R(X) =
⋃∞

i=0(Bi\Ci) and G(i, x) = |Kx ∩ (Bi\Ci)| where

x ∈ Q. We say that X is a good friend of A if in addition limi→∞G(i, x) = ∞ (i.e., for any m

there is an n such that i ≥ n implies G(i, x) ≥ m) for any fixed x ∈ R(X).

To prove that any A has a good friend we define a (finite) sequence X0, X1, . . . of friends

of A and iniciate it by X0 = (Ai, ∅)∞i=0. Suppose that Xk = (Bi, Ci)∞i=0 is a friend of A which

fails to be a good friend: G(i0, x), G(i1, x), . . . ≤ N < ∞ for some indices 0 ≤ i0 < i1 < . . .

and some x ∈ R(Xk). Let Dij = Cij ∪ (Kx ∩ (Bij\Cij )). Then

Xk+1 = (Bij , Dij )
∞
j=0

is a friend of A and moreover R(Xk+1) ⊆ R(Xk)\Kx. According to the cone deleting argument

(X0, X1, . . .) terminates in a good friend of A. Notice that when (|Ai|)∞i=0 is bounded then the

good friend of A obtained is (Aij , Aij )
∞
j=0.

So let X = (Bi, Ci)∞i=0 be a good friend of A. We may assume that (|Ci|)∞i=0 is constant and

that C0 ≤S C1 ≤S . . . because by the product argument (Ci)∞i=0 contains a perfect subsequence.

Take j sufficiently large such that G(j, x) ≥ |B0\C0| for any x ∈ B0\C0. As C0 ≤S Cj and

any x ∈ B0\C0 is majorized (in ≤Q) by sufficiently many elements in Bj\Cj we conclude that

B0 ≤S Bj — A is good. 2

Recall that A∗ is the set of all strings over A and that ⊂ here is the subsequence relation.

The following result is an easy and well known consequence of Higman theorem.

Corollary 2.4 Let A be a finite alphabet. Then (A∗,⊂) is a wqo.
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3 Proof of Theorem 1.2

Any finite collection G = (E, I) = (E(G), I(G)) = ({ei | i ∈ I}, I) of finite sets is called a set

system, elements of E are called edges. We permit repetition of edges and for simplicity we

omit the indices of edges when possible. If H = (F, J) is another set system such that F ⊆ E

(and J ⊆ I) then H is said to be a subsystem of G. If E consists of mutually disjoint edges

then G is said to be a disjoint system.

The matching number M(G) of G = (E, I) is defined as the maximum number of edges in

a disjoint subsystem of G. A Q-system is a couple (G, `) where ` : E(G) → Q gives to the

edges of G labels from the set Q.

Suppose A = (Gi, `i)∞i=0 is a sequence of Q-systems where (Q,≤Q) is a qo. We say that

X = (Hi, `i,H
′
i)
∞
i=0

is a friend of A if (Hi, `i)∞i=0 is a subsequence of A, H ′
i is a subsystem of Hi, and (M(H ′

i))
∞
i=0

is bounded.

We define further

R(X) =
⋃∞

i=0 `i(E(Hi)\E(H ′
i)) ⊆ Q and G(i, x) = M(H ′′

i (x))

where x ∈ Q and H ′′
i (x) is a subsystem of Hi consisting of the edges

{e ∈ E(Hi)\E(H ′
i) | `i(e) ∈ Kx}.

We say that X is a good friend of A if in addition

lim
i→∞

G(i, x) = ∞

for any x ∈ R(X).

Lemma 3.1 Any sequence A = (Gi, `i)∞i=0 of Q-systems labelled by a wqo (Q,≤Q) has a good

friend X.

Proof. We define again a sequence X0, X1, . . . of friends of A starting with X0 = (Gi, `i, ∅)∞i=0

and show that it terminates in a good friend of A. Suppose Xk = (Hi, `i,H
′
i)
∞
i=0 fails to be a
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good friend of A: G(i0, y), G(i1, y), . . . ≤ N < ∞ for some indices 0 ≤ i0 < i1 < . . . and some

y ∈ R(Xk). Then

Xk+1 = (Hij , `ij ,H
′
ij ∪H ′′

ij (y))∞j=0

is clearly a new friend of A and moreover R(Xk+1) ⊆ R(Xk)\Ky. According to the cone

deleting argument after finitely many steps a good friend of A arises. 2

Definition 3.2 A (k, l)-babel where k, l are positive integers is any pair (B, A) satisfying:

1. B is a babel,

2. A ⊆ S, |A| ≤ l,

3. |S(u)\A| ≤ k whenever u ∈ L,L ∈ B.

Definition 3.3 We denote by SS
A, A ⊆ S, the set of all mappings ϕ : S → S such that

ϕ|A = idA and ϕ−1(A) = A. For two languages K and L the notation K �A L means that

K ≤ ϕ(L) for some ϕ ∈ SS
A.

Definition 3.4 Let L = (Li)∞i=0 ⊆ B be a sequence of languages of a (k, l)-babel (B, A).

Let R be a set of k symbols disjoint to A and let χ ∈ SS
A be fixed such that it maps any

S(u)\A, u ∈ Li, i ≥ 0, injectively to R. We introduce the following sequence of Q-systems

P (L) = (Gi, `i)∞i=0.

I(Gi) = Li, E(Gi) = {S(u)\A | u ∈ Li}, (Q,≤Q) = ((R ∪A)∗,⊂),

`i(eu) = χ(u) = χ(a0a1 . . . am) = χ(a0)χ(a1) . . . χ(am).

Observation 3.5 To prove Theorem 1.2. it suffices to prove that ((B, A),�A) is a wqo for

any (k, l)-babel (B, A).

Proof. If L = (Li)∞i=0 is a sequence of languages and |S(u)|, u ∈ Li, i ≥ 0, is not universally

bounded then |S(u0)|, for some u0 in some Li, is at least as big as the sum of lengths of the

strings in L0. Then it is easy to embed the whole L0 in this single string u0 and L is good.

Otherwise |S(u)| ≤ c for all u ∈ Li and all i ≥ 0 and hence L is a (c, 0)-babel. 2

6



Lemma 3.6 ((B, A),�A) is a wqo for any (k, l)-babel (B, A).

Proof. We proceed by double induction on k and l and start with k = 0. Then ((B, A),�A)

is a wqo because even (SET (A∗),≤S) is a wqo by Lemma 2.3. and Corollary 2.4.

Suppose now that (B, A) is a (k, l)-babel, k > 0, and L = (Li)∞i=0 ⊆ B is a sequence of

languages. We prove that L is good. We may suppose, renaming appropriately symbols, that

S(Li) are mutually disjoint up to A and that S\
⋃

i≥0 S(Li) is infinite. Let P (L) = (Gi, `i)∞i=0

be the sequence defined in Definition 3.4. The labels form a wqo by Corollary 2.4. Thus there

is, by Lemma 3.1, a good friend (Hi, `i,H
′
i)
∞
i=0 of P (L).

Let Fi be a maximum disjoint subsystem of H ′
i and let Ui =

⋃
E(Fi). Clearly |Ui| ≤ ck

for some constant c (the bound on matching numbers) for any i ≥ 0. We introduce a set

T, |T | = ck, of completely new symbols which is disjoint to A and to all
⋃

E(Hi). Let ρ ∈ SS
A

be such that ρ is an identity on S\
⋃

i≥0 Ui and maps any Ui injectively to T .

Consider now the babel C = (ρ(Ki))∞i=0 where (Ki)∞i=0 is defined by Ki = I(H ′
i). We see

that, crucially, (C, T ∪ A) is a (k − 1, ck + l)-babel because any edge of H ′
i must intersect Ui.

We may suppose, according to the induction hypothesis, that ρ(K0) �A∪T ρ(K1) �A∪T . . .

We compare the first term to the others: there are mappings ϕi ∈ SS
A∪T and fi : K0 →

Ki, i ≥ 1, such that ρ(u) ⊂ ϕi(ρ(fi(u))) for any u ∈ K0. Let j be such a large number that

there are |E(H0)\E(H ′
0)| mutually disjoint edges

F = {he | e ∈ E(H0)\E(H ′
0)} ⊆ E(Hj)\E(H ′

j)

satisfying `j(he) ⊃ `0(e) for any e ∈ E(H0)\E(H ′
0) and moreover any edge of F is disjoint to

S(fj(K0)).

We take a mapping ϕ ∈ SS
A as follows.

• If x ∈ S(fj(K0)) ∩ Uj then ρ(y) = ρ(x) for at most one y ∈ U0. If it exists we put

ϕ(x) = y.

• If x ∈ S(fj(K0))\Uj then we put ϕ(x) = ϕj(x).

• If x ∈ he for e ∈ E(H0)\E(H ′
0) then χ(y) = χ(x) for at most one y ∈ e. If it exists we

put ϕ(x) = y.
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Otherwise ϕ is defined arbitrarily. Clearly I(H0) ≤ ϕ(I(Hj)) and we conclude that the se-

quence L is good. 2

Lemma 3.6 and Observation 3.5 prove Theorem 1.2.

4 Proof of Theorem 1.3

An easy check shows that only in Observation 3.5. we used the fact that the mapping f of

the definition of � had not to be injective. In Lemma 3.6. it has been proven actually that

((B, A),�∗A) is a wqo for any (k, l)-babel (B, A). Now we make the whole proof injective by

replacing Observation 3.5. by a finer consideration.

Suppose L = (Li)∞i=0 ⊆ S∗∗ is a sequence of languages. We say that X = (Ki,K′i)∞i=0 is a

friend of L if (Ki)∞i=0 is a subsequence of L, K′i ⊆ Ki, (|K′i|)∞i=0 is constant, and min{|S(u)| | u ∈

K′i} → ∞ for i →∞. If moreover (max{|S(u)| | u ∈ Ki\K′i})∞i=0 is bounded then X is said to

be a good friend of L.

Consider the following property.

(*) For any c there are in some language Li c strings u such that for each of them |S(u)| ≥ c.

Lemma 4.1 Suppose L = (Li)∞i=0 is a sequence of languages not having property (*). Then

L has a good friend.

Proof. We define then by induction a sequence X0, X1, . . . of friends of L starting with

X0 = (Li, ∅)∞i=0. If Xk = (Ki,K′i)∞i=0 fails to be a good friend of L then |S(uij )| → ∞ for

j →∞ for some strings uij ∈ Kij\K′ij and some indices 0 ≤ i0 < i1 < . . . Then

Xk+1 = (Kij ,K′ij ∪ {uij})∞j=0

is a new friend of L. As (*) is violated the growth of |K′i| can’t proceed arbitrarily long and

after finitely many steps a good friend of L is obtained. 2

Proof of Theorem 1.3. Suppose L = (Li)∞i=0 ⊆ S∗∗ is a sequence of languages. If L

has property (*) then L0 embeds injectively in some Lj . If not then consider a good friend
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X = (Ki,K′i))∞i=0 of L. The sequence (Ki\K′i)∞i=0 is a (c, 0)-babel for some c and by Lemma

3.6 we may suppose it forms a perfect sequence (K0\K′0) �∗ (K1\K′1) �∗ . . .

So there are mappings ϕi : S → S and injective mappings fi : (K0\K′0) → (Ki\K′i), i ≥ 1,

such that u ⊂ ϕi(fi(u)) for any u ∈ K0\K′0. Now we take such a large j that

min
u∈K′

j

|S(u)| ≥
∑

v∈K0\K′
0

|S(fj(v))|+
∑

v∈K′
0

length(v).

It is easy to extend the injective covering K0\K′0 �∗ Kj\K′j to the injective covering K0 �∗ Kj .

We conclude that L is good. 2

5 Concluding remarks

Now we show that the fact we did not require an injective ϕ was crucial to obtain wqo. Let

K �∗ L, for two languages L and K, iff there is an injective ϕ : S → S such that K ≤ ϕ(L).

Consider this example.

Example 5.1 The infinite babels

B0 = {{132132}, {14213243}, {1521324354}, {162132435465}, . . .}

and

B1 = {{ab, bc, ca}, {ab, bc, cd, da}, {ab, bc, cd, de, ea}, . . .}

are antichains to �∗. Thus �∗ is not a wqo.

Note that both babels are antichains also in the ordering obtained by replacing in Definition

1.1. K ≤ ϕ(L) by ϕ(K) ≤ L.

Problem 5.2 Suppose now that a language L = u0u1 . . . uk is a finite sequence of strings

rather than just a set and put L = u0u1 . . . uk � K = v0v1 . . . vl iff there is a mapping ϕ : S → S

and an increasing injection f : {0, 1, . . . , k} → {0, 1, . . . , l} such that ui ⊂ ϕ(vf(i)) for all

i = 0, 1, . . . , k. Is this � stil a wqo ?
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