On well quasiordering of finite languages

Martin Klazar
Department of Applied Mathematics of Charles University
Malostranské náměstí 25
11800 Praha 1
Czech Republic
klazar@kam.ms.mff.cuni.cz

Abstract

We investigate here the quasiordering \preceq of finite sets of finite strings over an infinite set of symbols S. We set $\mathcal{K} \preceq \mathcal{L}$ iff it is possible to rename symbols occurring in the strings of \mathcal{L} so that any string of \mathcal{K} is a subsequence of a string of the renamed \mathcal{L}. We prove that \preceq is a wqo which answers the question raised by J. Gustedt in [3]. We prove also a stronger version with injective correspondence between strings.

1 Introduction

Strings are finite sequences over S where S is an infinite countable set of symbols. Languages are finite sets of strings, babels are sets of languages. If $A \subseteq S$ then A^{*} stands for the set of all strings over A. By $S^{* *}$ we denote the babel consisting of all languages. We define, for a string $u=a_{0} a_{1} \ldots a_{m}, S(u)=\bigcup_{i=0}^{m}\left\{a_{i}\right\}$. Similarly $S(\mathcal{L})=\bigcup_{u \in \mathcal{L}} S(u)$ for any language \mathcal{L}.

The notation $u \subset v$ means, for any two sequences $u=a_{0} a_{1} \ldots a_{m}$ and $v=b_{0} b_{1} \ldots b_{n}$, that u is a subsequence of $v: a_{0}=b_{j_{0}}, a_{1}=b_{j_{1}}, \ldots, a_{m}=b_{j_{m}}$ for some m indices $0 \leq j_{0}<j_{1}<$ $\ldots<j_{m} \leq n$. We define, for two languages \mathcal{L} and \mathcal{K}, that $\mathcal{L} \leq \mathcal{K}$ (via f) iff $u \subset f(u)$ for
any $u \in \mathcal{L}$ for some mapping $f: \mathcal{L} \rightarrow \mathcal{K}$. A mapping $\varphi: S \rightarrow S$ transforms a language \mathcal{L} to the language $\varphi(\mathcal{L})=\{\varphi(u) \mid u \in \mathcal{L}\}$ where $\varphi(u)=\varphi\left(a_{0} a_{1} \ldots a_{m}\right)=\varphi\left(a_{0}\right) \varphi\left(a_{1}\right) \ldots \varphi\left(a_{m}\right)$. We shall investigate the following quasiordering.

Definition $1.1 \mathcal{L} \preceq \mathcal{K}, \mathcal{L}$ and \mathcal{K} are languages, iff $\mathcal{L} \leq \varphi(\mathcal{K})$ for some $\varphi: S \rightarrow S$.

The above quasiordering was introduced in [7] to generalize chain minor ordering of finite posets. We say, in accordance with [7] and with [3], that P is a chain minor of $Q(P$ and Q are finite posets) iff there is a mapping $\rho: Q \rightarrow P$ such that any chain in P is isomorphic via ρ to a chain in Q (thus ρ must be onto). Chain minor ordering was introduced in connection with scheduling stochastic project networks [7]. Clearly P is a chain minor of Q iff $\mathcal{L}(P) \preceq \mathcal{L}(Q)$ where $\mathcal{L}(P)$ and $\mathcal{L}(Q)$ are languages consisting of chains in corresponding posets.

By means of that equivalence it has been proven in [3], see also [4], that chain minor is a wqo of finite posets. The proof uses substantially the fact that any "poset language" $\mathcal{L}(P)$ consists of strings without repetitions. The problem whether \preceq is a wqo for languages in general was posed [3]. Generalizing the approach in [3] we answer this question affirmatively.

Theorem $1.2\left(S^{* *}, \preceq\right)$ is a wqo.

One can define a stronger quasiordering \preceq^{*} if the mapping f in the definition of \preceq is injective in addition. We prove that \preceq^{*} is a wqo as well.

Theorem $1.3\left(S^{* *}, \preceq^{*}\right)$ is a wqo.

In Section 2 we give some preliminaries and demonstrate in a simple case our method. Theorems 1.2 and 1.3 are proven in Sections 3 and 4, respectively. In Section 5 we give counterexamples showing that requiring an injective φ in Definition 1.1 destroyss the wqo property.

2 Absolute minimum about wqo

Any transitive and reflexive binary relation is called a quasiordering or, shortly, qo. If $\left(Q, \leq_{Q}\right)$ is a qo then $x<_{Q} y$ means that $x \leq_{Q} y$ and $y \not \leq_{Q} x$. A cone determined by the element $x \in Q$
is the set $K_{x}=\left\{y \in Q \mid y \geq_{Q} x\right\}$. A qo $\left(Q, \leq_{Q}\right)$ is a well quasiordering or, shortly, wqo if it possesses the property characterized by the following lemma. For the proof and for more background we refer to [6].

Lemma 2.1 Suppose $\left(Q, \leq_{Q}\right)$ is a qo. The following conditions are equivalent.

1. For any infinite sequence $\left(q_{i}\right)_{i=0}^{\infty} \subseteq Q$ there are indices $i<j$ such that $q_{i} \leq_{Q} q_{j}$.
2. For any infinite sequence $\left(q_{i}\right)_{i=0}^{\infty} \subseteq Q$ there are indices $0 \leq i_{0}<i_{1}<\ldots$ such that

$$
q_{i_{0}} \leq_{Q} q_{i_{1}} \leq_{Q} \ldots
$$

3. No infinitely many elements x_{0}, x_{1}, \ldots of Q create an antichain or a strictly descending chain

$$
x_{0}>_{Q} x_{1}>_{Q} \ldots
$$

Sequences satisfying 1. are called good, other sequences are called bad. The infinite monotonic subsequence in 2 . is called perfect. We recall two folcloric but useful statements.

Cone deleting argument. Suppose $\left(Q, \leq_{Q}\right)$ is a wqo and Q_{0}, Q_{1}, \ldots are defined by $Q_{0}=Q, Q_{i+1}=Q_{i} \backslash K_{q_{i}}, q_{i} \in Q_{i}$. Then this sequence is finite, $Q_{j}=\emptyset$ for some j (otherwise $\left(q_{i}\right)_{i=0}^{\infty} \subseteq Q$ would be a bad sequence).

Product argument. Suppose $\left(Q_{i}, \leq_{Q_{i}}\right)_{i=0}^{r}$ are wqo's, $Q=Q_{0} \times Q_{1} \times \ldots Q_{r}$ and $\left(Q, \leq_{p r}\right)$ is defined by $\left(x_{i}\right)_{i=0}^{r} \leq_{p r}\left(y_{i}\right)_{i=0}^{r}$ iff $x_{i} \leq_{Q_{i}} y_{i}$ for $i=0, \ldots, r$. Then $\left(Q, \leq_{p r}\right)$ is a wqo as well (apply Lemma $2.1 r+1$ times).

Let $\left(Q, \leq_{Q}\right)$ be a qo. The Higman ordering $\left(S E Q(Q), \leq_{H}\right)$ on the set

$$
S E Q(Q)=\{(I, \ell) \mid I \text { is a finite linear ordering and } \ell: I \rightarrow Q\}
$$

of all finite sequences over Q is defined by $\left(I_{0}, \ell_{0}\right) \leq_{H}\left(I_{1}, \ell_{1}\right)$ iff there is an increasing mapping $F: I_{0} \rightarrow I_{1}$ such that $\ell_{0}(x) \leq_{Q} \ell_{1}(F(x))$ for any $x \in I_{0}$. We will use the following classical result of the wqo theory [5].

Theorem 2.2 (Higman) $\left(S E Q(Q), \leq_{H}\right)$ is a wqo for any wqo $\left(Q, \leq_{Q}\right)$.

To demonstrate our method in a simple case we prove as an example a weaker version of Higman theorem which deals with the structure $\left(S E T(Q), \leq_{S}\right)$ consisting of finite subsets of Q with the qo $A \leq_{S} B$ iff there is an injective mapping $F: A \rightarrow B$ such that $x \leq_{Q} F(x)$ for any $x \in A$.

Lemma $2.3\left(S E T(Q), \leq_{S}\right)$ is a wqo for any wqo $\left(Q, \leq_{Q}\right)$.

Proof. We prove by a direct argument that any sequence $A=\left(A_{i}\right)_{i=0}^{\infty} \subseteq S E T(Q)$ is good to \leq_{S}. We say that $X=\left(B_{i}, C_{i}\right)_{i=0}^{\infty}$ is a friend of A if $\left(B_{i}\right)_{i=0}^{\infty}$ is a subsequence of $A, C_{i} \subseteq B_{i}$ for any i, and $\left(\left|C_{i}\right|\right)_{i=0}^{\infty}$ is bounded. Set $R(X)=\bigcup_{i=0}^{\infty}\left(B_{i} \backslash C_{i}\right)$ and $G(i, x)=\left|K_{x} \cap\left(B_{i} \backslash C_{i}\right)\right|$ where $x \in Q$. We say that X is a good friend of A if in addition $\lim _{i \rightarrow \infty} G(i, x)=\infty$ (i.e., for any m there is an n such that $i \geq n$ implies $G(i, x) \geq m)$ for any fixed $x \in R(X)$.

To prove that any A has a good friend we define a (finite) sequence X_{0}, X_{1}, \ldots of friends of A and iniciate it by $X_{0}=\left(A_{i}, \emptyset\right)_{i=0}^{\infty}$. Suppose that $X_{k}=\left(B_{i}, C_{i}\right)_{i=0}^{\infty}$ is a friend of A which fails to be a good friend: $G\left(i_{0}, x\right), G\left(i_{1}, x\right), \ldots \leq N<\infty$ for some indices $0 \leq i_{0}<i_{1}<\ldots$ and some $x \in R\left(X_{k}\right)$. Let $D_{i_{j}}=C_{i_{j}} \cup\left(K_{x} \cap\left(B_{i_{j}} \backslash C_{i_{j}}\right)\right)$. Then

$$
X_{k+1}=\left(B_{i_{j}}, D_{i_{j}}\right)_{j=0}^{\infty}
$$

is a friend of A and moreover $R\left(X_{k+1}\right) \subseteq R\left(X_{k}\right) \backslash K_{x}$. According to the cone deleting argument $\left(X_{0}, X_{1}, \ldots\right)$ terminates in a good friend of A. Notice that when $\left(\left|A_{i}\right|\right)_{i=0}^{\infty}$ is bounded then the good friend of A obtained is $\left(A_{i_{j}}, A_{i_{j}}\right)_{j=0}^{\infty}$.

So let $X=\left(B_{i}, C_{i}\right)_{i=0}^{\infty}$ be a good friend of A. We may assume that $\left(\left|C_{i}\right|\right)_{i=0}^{\infty}$ is constant and that $C_{0} \leq_{S} C_{1} \leq_{S} \ldots$ because by the product argument $\left(C_{i}\right)_{i=0}^{\infty}$ contains a perfect subsequence. Take j sufficiently large such that $G(j, x) \geq\left|B_{0} \backslash C_{0}\right|$ for any $x \in B_{0} \backslash C_{0}$. As $C_{0} \leq_{S} C_{j}$ and any $x \in B_{0} \backslash C_{0}$ is majorized (in \leq_{Q}) by sufficiently many elements in $B_{j} \backslash C_{j}$ we conclude that $B_{0} \leq_{S} B_{j}-A$ is good.

Recall that A^{*} is the set of all strings over A and that \subset here is the subsequence relation. The following result is an easy and well known consequence of Higman theorem.

Corollary 2.4 Let A be a finite alphabet. Then $\left(A^{*}, \subset\right)$ is a wqo.

3 Proof of Theorem 1.2

Any finite collection $G=(E, I)=(E(G), I(G))=\left(\left\{e_{i} \mid i \in I\right\}, I\right)$ of finite sets is called a set system, elements of E are called edges. We permit repetition of edges and for simplicity we omit the indices of edges when possible. If $H=(F, J)$ is another set system such that $F \subseteq E$ (and $J \subseteq I$) then H is said to be a subsystem of G. If E consists of mutually disjoint edges then G is said to be a disjoint system.

The matching number $M(G)$ of $G=(E, I)$ is defined as the maximum number of edges in a disjoint subsystem of G. A Q-system is a couple (G, ℓ) where $\ell: E(G) \rightarrow Q$ gives to the edges of G labels from the set Q.

Suppose $A=\left(G_{i}, \ell_{i}\right)_{i=0}^{\infty}$ is a sequence of Q-systems where (Q, \leq_{Q}) is a qo. We say that

$$
X=\left(H_{i}, \ell_{i}, H_{i}^{\prime}\right)_{i=0}^{\infty}
$$

is a friend of A if $\left(H_{i}, \ell_{i}\right)_{i=0}^{\infty}$ is a subsequence of A, H_{i}^{\prime} is a subsystem of H_{i}, and $\left(M\left(H_{i}^{\prime}\right)\right)_{i=0}^{\infty}$ is bounded.

We define further

$$
R(X)=\bigcup_{i=0}^{\infty} \ell_{i}\left(E\left(H_{i}\right) \backslash E\left(H_{i}^{\prime}\right)\right) \subseteq Q \text { and } G(i, x)=M\left(H_{i}^{\prime \prime}(x)\right)
$$

where $x \in Q$ and $H_{i}^{\prime \prime}(x)$ is a subsystem of H_{i} consisting of the edges

$$
\left\{e \in E\left(H_{i}\right) \backslash E\left(H_{i}^{\prime}\right) \mid \ell_{i}(e) \in K_{x}\right\} .
$$

We say that X is a good friend of A if in addition

$$
\lim _{i \rightarrow \infty} G(i, x)=\infty
$$

for any $x \in R(X)$.

Lemma 3.1 Any sequence $A=\left(G_{i}, \ell_{i}\right)_{i=0}^{\infty}$ of Q-systems labelled by a wqo $\left(Q, \leq_{Q}\right)$ has a good friend X.

Proof. We define again a sequence X_{0}, X_{1}, \ldots of friends of A starting with $X_{0}=\left(G_{i}, \ell_{i}, \emptyset\right)_{i=0}^{\infty}$ and show that it terminates in a good friend of A. Suppose $X_{k}=\left(H_{i}, \ell_{i}, H_{i}^{\prime}\right)_{i=0}^{\infty}$ fails to be a
good friend of A : $G\left(i_{0}, y\right), G\left(i_{1}, y\right), \ldots \leq N<\infty$ for some indices $0 \leq i_{0}<i_{1}<\ldots$ and some $y \in R\left(X_{k}\right)$. Then

$$
X_{k+1}=\left(H_{i_{j}}, \ell_{i_{j}}, H_{i_{j}}^{\prime} \cup H_{i_{j}}^{\prime \prime}(y)\right)_{j=0}^{\infty}
$$

is clearly a new friend of A and moreover $R\left(X_{k+1}\right) \subseteq R\left(X_{k}\right) \backslash K_{y}$. According to the cone deleting argument after finitely many steps a good friend of A arises.

Definition 3.2 $A(k, l)$-babel where k, l are positive integers is any pair (\mathcal{B}, A) satisfying:

1. \mathcal{B} is a babel,
2. $A \subseteq S,|A| \leq l$,
3. $|S(u) \backslash A| \leq k$ whenever $u \in \mathcal{L}, \mathcal{L} \in \mathcal{B}$.

Definition 3.3 We denote by $S_{A}^{S}, A \subseteq S$, the set of all mappings $\varphi: S \rightarrow S$ such that $\varphi \mid A=i d_{A}$ and $\varphi^{-1}(A)=A$. For two languages \mathcal{K} and \mathcal{L} the notation $\mathcal{K} \preceq_{A} \mathcal{L}$ means that $\mathcal{K} \leq \varphi(\mathcal{L})$ for some $\varphi \in S_{A}^{S}$.

Definition 3.4 Let $\mathcal{L}=\left(\mathcal{L}_{i}\right)_{i=0}^{\infty} \subseteq \mathcal{B}$ be a sequence of languages of a (k, l)-babel (\mathcal{B}, A). Let R be a set of k symbols disjoint to A and let $\chi \in S_{A}^{S}$ be fixed such that it maps any $S(u) \backslash A, u \in \mathcal{L}_{i}, i \geq 0$, injectively to R. We introduce the following sequence of Q-systems $P(\mathcal{L})=\left(G_{i}, \ell_{i}\right)_{i=0}^{\infty}$.

$$
\begin{gathered}
I\left(G_{i}\right)=\mathcal{L}_{i}, E\left(G_{i}\right)=\left\{S(u) \backslash A \mid u \in \mathcal{L}_{i}\right\},\left(Q, \leq_{Q}\right)=\left((R \cup A)^{*}, \subset\right), \\
\ell_{i}\left(e_{u}\right)=\chi(u)=\chi\left(a_{0} a_{1} \ldots a_{m}\right)=\chi\left(a_{0}\right) \chi\left(a_{1}\right) \ldots \chi\left(a_{m}\right) .
\end{gathered}
$$

Observation 3.5 To prove Theorem 1.2. it suffices to prove that $\left((\mathcal{B}, A), \preceq_{A}\right)$ is a wqo for any (k, l)-babel (\mathcal{B}, A).

Proof. If $\mathcal{L}=\left(\mathcal{L}_{i}\right)_{i=0}^{\infty}$ is a sequence of languages and $|S(u)|, u \in \mathcal{L}_{i}, i \geq 0$, is not universally bounded then $\left|S\left(u_{0}\right)\right|$, for some u_{0} in some \mathcal{L}_{i}, is at least as big as the sum of lengths of the strings in \mathcal{L}_{0}. Then it is easy to embed the whole \mathcal{L}_{0} in this single string u_{0} and \mathcal{L} is good. Otherwise $|S(u)| \leq c$ for all $u \in \mathcal{L}_{i}$ and all $i \geq 0$ and hence \mathcal{L} is a $(c, 0)$-babel.

Lemma $3.6\left((\mathcal{B}, A), \preceq_{A}\right)$ is a wqo for any (k, l)-babel (\mathcal{B}, A).

Proof. We proceed by double induction on k and l and start with $k=0$. Then $\left((\mathcal{B}, A), \preceq_{A}\right)$ is a wqo because even $\left(S E T\left(A^{*}\right), \leq_{S}\right)$ is a wqo by Lemma 2.3. and Corollary 2.4.

Suppose now that (\mathcal{B}, A) is a (k, l)-babel, $k>0$, and $\mathcal{L}=\left(\mathcal{L}_{i}\right)_{i=0}^{\infty} \subseteq \mathcal{B}$ is a sequence of languages. We prove that \mathcal{L} is good. We may suppose, renaming appropriately symbols, that $S\left(\mathcal{L}_{i}\right)$ are mutually disjoint up to A and that $S \backslash \bigcup_{i \geq 0} S\left(\mathcal{L}_{i}\right)$ is infinite. Let $P(\mathcal{L})=\left(G_{i}, \ell_{i}\right)_{i=0}^{\infty}$ be the sequence defined in Definition 3.4. The labels form a wqo by Corollary 2.4. Thus there is, by Lemma 3.1, a good friend $\left(H_{i}, \ell_{i}, H_{i}^{\prime}\right)_{i=0}^{\infty}$ of $P(\mathcal{L})$.

Let F_{i} be a maximum disjoint subsystem of H_{i}^{\prime} and let $U_{i}=\bigcup E\left(F_{i}\right)$. Clearly $\left|U_{i}\right| \leq c k$ for some constant c (the bound on matching numbers) for any $i \geq 0$. We introduce a set $T,|T|=c k$, of completely new symbols which is disjoint to A and to all $\bigcup E\left(H_{i}\right)$. Let $\rho \in S_{A}^{S}$ be such that ρ is an identity on $S \backslash \bigcup_{i \geq 0} U_{i}$ and maps any U_{i} injectively to T.

Consider now the babel $\mathcal{C}=\left(\rho\left(\mathcal{K}_{i}\right)\right)_{i=0}^{\infty}$ where $\left(\mathcal{K}_{i}\right)_{i=0}^{\infty}$ is defined by $\mathcal{K}_{i}=I\left(H_{i}^{\prime}\right)$. We see that, crucially, $(\mathcal{C}, T \cup A)$ is a $(k-1, c k+l)$-babel because any edge of H_{i}^{\prime} must intersect U_{i}. We may suppose, according to the induction hypothesis, that $\rho\left(\mathcal{K}_{0}\right) \preceq_{A \cup T} \rho\left(\mathcal{K}_{1}\right) \preceq_{A \cup T} \ldots$

We compare the first term to the others: there are mappings $\varphi_{i} \in S_{A \cup T}^{S}$ and $f_{i}: \mathcal{K}_{0} \rightarrow$ $\mathcal{K}_{i}, i \geq 1$, such that $\rho(u) \subset \varphi_{i}\left(\rho\left(f_{i}(u)\right)\right)$ for any $u \in \mathcal{K}_{0}$. Let j be such a large number that there are $\left|E\left(H_{0}\right) \backslash E\left(H_{0}^{\prime}\right)\right|$ mutually disjoint edges

$$
F=\left\{h_{e} \mid e \in E\left(H_{0}\right) \backslash E\left(H_{0}^{\prime}\right)\right\} \subseteq E\left(H_{j}\right) \backslash E\left(H_{j}^{\prime}\right)
$$

satisfying $\ell_{j}\left(h_{e}\right) \supset \ell_{0}(e)$ for any $e \in E\left(H_{0}\right) \backslash E\left(H_{0}^{\prime}\right)$ and moreover any edge of F is disjoint to $S\left(f_{j}\left(\mathcal{K}_{0}\right)\right)$.

We take a mapping $\varphi \in S_{A}^{S}$ as follows.

- If $x \in S\left(f_{j}\left(\mathcal{K}_{0}\right)\right) \cap U_{j}$ then $\rho(y)=\rho(x)$ for at most one $y \in U_{0}$. If it exists we put $\varphi(x)=y$.
- If $x \in S\left(f_{j}\left(\mathcal{K}_{0}\right)\right) \backslash U_{j}$ then we put $\varphi(x)=\varphi_{j}(x)$.
- If $x \in h_{e}$ for $e \in E\left(H_{0}\right) \backslash E\left(H_{0}^{\prime}\right)$ then $\chi(y)=\chi(x)$ for at most one $y \in e$. If it exists we put $\varphi(x)=y$.

Otherwise φ is defined arbitrarily. Clearly $I\left(H_{0}\right) \leq \varphi\left(I\left(H_{j}\right)\right)$ and we conclude that the sequence \mathcal{L} is good.

Lemma 3.6 and Observation 3.5 prove Theorem 1.2.

4 Proof of Theorem 1.3

An easy check shows that only in Observation 3.5. we used the fact that the mapping f of the definition of \preceq had not to be injective. In Lemma 3.6. it has been proven actually that $\left((\mathcal{B}, A), \preceq_{A}^{*}\right)$ is a wqo for any (k, l)-babel (\mathcal{B}, A). Now we make the whole proof injective by replacing Observation 3.5. by a finer consideration.

Suppose $\mathcal{L}=\left(\mathcal{L}_{i}\right)_{i=0}^{\infty} \subseteq S^{* *}$ is a sequence of languages. We say that $X=\left(\mathcal{K}_{i}, \mathcal{K}_{i}^{\prime}\right)_{i=0}^{\infty}$ is a friend of \mathcal{L} if $\left(\mathcal{K}_{i}\right)_{i=0}^{\infty}$ is a subsequence of $\mathcal{L}, \mathcal{K}_{i}^{\prime} \subseteq \mathcal{K}_{i},\left(\left|\mathcal{K}_{i}^{\prime}\right|\right)_{i=0}^{\infty}$ is constant, and $\min \{|S(u)| \mid u \in$ $\left.\mathcal{K}_{i}^{\prime}\right\} \rightarrow \infty$ for $i \rightarrow \infty$. If moreover $\left(\max \left\{|S(u)| \mid u \in \mathcal{K}_{i} \backslash \mathcal{K}_{i}^{\prime}\right\}\right)_{i=0}^{\infty}$ is bounded then X is said to be a good friend of \mathcal{L}.

Consider the following property.
(*) For any c there are in some language $\mathcal{L}_{i} c$ strings u such that for each of them $|S(u)| \geq c$.

Lemma 4.1 Suppose $\mathcal{L}=\left(\mathcal{L}_{i}\right)_{i=0}^{\infty}$ is a sequence of languages not having property (*). Then \mathcal{L} has a good friend.

Proof. We define then by induction a sequence X_{0}, X_{1}, \ldots of friends of \mathcal{L} starting with $X_{0}=\left(\mathcal{L}_{i}, \emptyset\right)_{i=0}^{\infty}$. If $X_{k}=\left(\mathcal{K}_{i}, \mathcal{K}_{i}^{\prime}\right)_{i=0}^{\infty}$ fails to be a good friend of \mathcal{L} then $\left|S\left(u_{i_{j}}\right)\right| \rightarrow \infty$ for $j \rightarrow \infty$ for some strings $u_{i_{j}} \in \mathcal{K}_{i_{j}} \backslash \mathcal{K}_{i_{j}}^{\prime}$ and some indices $0 \leq i_{0}<i_{1}<\ldots$ Then

$$
X_{k+1}=\left(\mathcal{K}_{i_{j}}, \mathcal{K}_{i_{j}}^{\prime} \cup\left\{u_{i_{j}}\right\}\right)_{j=0}^{\infty}
$$

is a new friend of \mathcal{L}. As $\left(^{*}\right)$ is violated the growth of $\left|\mathcal{K}_{i}^{\prime}\right|$ can't proceed arbitrarily long and after finitely many steps a good friend of \mathcal{L} is obtained.

Proof of Theorem 1.3. Suppose $\mathcal{L}=\left(\mathcal{L}_{i}\right)_{i=0}^{\infty} \subseteq S^{* *}$ is a sequence of languages. If \mathcal{L} has property $\left({ }^{*}\right)$ then \mathcal{L}_{0} embeds injectively in some \mathcal{L}. If not then consider a good friend
$\left.X=\left(\mathcal{K}_{i}, \mathcal{K}_{i}^{\prime}\right)\right)_{i=0}^{\infty}$ of \mathcal{L}. The sequence $\left(\mathcal{K}_{i} \backslash \mathcal{K}_{i}^{\prime}\right)_{i=0}^{\infty}$ is a $(c, 0)$-babel for some c and by Lemma 3.6 we may suppose it forms a perfect sequence $\left(\mathcal{K}_{0} \backslash \mathcal{K}_{0}^{\prime}\right) \preceq^{*}\left(\mathcal{K}_{1} \backslash \mathcal{K}_{1}^{\prime}\right) \preceq^{*} \ldots$

So there are mappings $\varphi_{i}: S \rightarrow S$ and injective mappings $f_{i}:\left(\mathcal{K}_{0} \backslash \mathcal{K}_{0}^{\prime}\right) \rightarrow\left(\mathcal{K}_{i} \backslash \mathcal{K}_{i}^{\prime}\right), i \geq 1$, such that $u \subset \varphi_{i}\left(f_{i}(u)\right)$ for any $u \in \mathcal{K}_{0} \backslash \mathcal{K}_{0}^{\prime}$. Now we take such a large j that

$$
\min _{u \in \mathcal{K}_{j}^{\prime}}|S(u)| \geq \sum_{v \in \mathcal{K}_{0} \backslash \mathcal{K}_{0}^{\prime}}\left|S\left(f_{j}(v)\right)\right|+\sum_{v \in \mathcal{K}_{0}^{\prime}} \operatorname{length}(v) .
$$

It is easy to extend the injective covering $\mathcal{K}_{0} \backslash \mathcal{K}_{0}^{\prime} \preceq^{*} \mathcal{K}_{j} \backslash \mathcal{K}_{j}^{\prime}$ to the injective covering $\mathcal{K}_{0} \preceq^{*} \mathcal{K}_{j}$. We conclude that \mathcal{L} is good.

5 Concluding remarks

Now we show that the fact we did not require an injective φ was crucial to obtain wqo. Let $\mathcal{K} \preceq_{*} \mathcal{L}$, for two languages \mathcal{L} and \mathcal{K}, iff there is an injective $\varphi: S \rightarrow S$ such that $\mathcal{K} \leq \varphi(\mathcal{L})$. Consider this example.

Example 5.1 The infinite babels

$$
\mathcal{B}_{0}=\{\{132132\},\{14213243\},\{1521324354\},\{162132435465\}, \ldots\}
$$

and

$$
\mathcal{B}_{1}=\{\{a b, b c, c a\},\{a b, b c, c d, d a\},\{a b, b c, c d, d e, e a\}, \ldots\}
$$

are antichains to \preceq_{*}. Thus \preceq_{*} is not a wqo.
Note that both babels are antichains also in the ordering obtained by replacing in Definition 1.1. $\mathcal{K} \leq \varphi(\mathcal{L})$ by $\varphi(\mathcal{K}) \leq \mathcal{L}$.

Problem 5.2 Suppose now that a language $\mathcal{L}=u_{0} u_{1} \ldots u_{k}$ is a finite sequence of strings rather than just a set and put $\mathcal{L}=u_{0} u_{1} \ldots u_{k} \preceq \mathcal{K}=v_{0} v_{1} \ldots v_{l}$ iff there is a mapping $\varphi: S \rightarrow S$ and an increasing injection $f:\{0,1, \ldots, k\} \rightarrow\{0,1, \ldots, l\}$ such that $u_{i} \subset \varphi\left(v_{f(i)}\right)$ for all $i=0,1, \ldots, k$. Is this \preceq stil a wqo ?

Acknowledgement. Author is grateful to Robin Thomas and especially to Jens Gustedt for introducing him to this problem. Comments of one anonymous referee helped to improve readability of the paper.

References

[1] Graph minors (N. Robertson and P. Seymour, editors), Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference, Seattle WA, June 1991.
[2] Graphs and Orders (I. Rival, ed.), D.Reidel Publishing Company, Dordrecht 1985.
[3] J. GUSTEDT, Algorithmic aspects of ordered structures, PhD thesis, Technische Universität Berlin 1992.
[4] J. GUSTEDT, Well-quasi-ordering finite posets, in [1].
[5] G. HIGMAN, Ordering by divisibility in abstract algebras, Proc. London Math. Society 2 (1952), 326-336.
[6] E. C. MILNER, Basic wqo and bqo theory, in [2].
[7] R. H. MÖHRING AND R. MÜLLER, A combinatorial approach to obtain bounds for stochastic project networks, Technical report, Tech. Un. Berlin 1991.

