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Abstract

In the first part of the paper we are concerned about finite se-
quences (over arbitrary symbols) u for which Ex(u, n) = O(n). The
function Ex(u, n) measures the maximum length of finite sequences
over n symbols which contain no subsequence of the type u. It follows
from the result of Hart and Sharir that the containment ababa ≺ u
is a (minimal) obstacle to Ex(u, n) = O(n). We show by means of a
construction due to Sharir and Wiernik that there is another obstacle
to the linear growth.

In the second part of the paper we investigate whether the above
containment of sequences is wqo. It is trivial that it is not but we show
that the smaller family of sequences whose alternace graphs contain
no k-path is well quasiordered by that containment.
Keywords: Davenport-Schinzel sequence, extremal problem, linear
growth, minimal obstacle to linearity, well quasiordering, alternace
graph
Classification: 05D99,06A07

1 Introduction

Throughout this paper S denotes the set of all finite sequences over a
fixed infinite universum of symbols S. For any sequence u of S we use
S(u) to denote the set of all symbols occuring in u. The quasiordering
(S,≺) which is the main subject of the paper is defined as follows. We
say that a sequence u = a1a2 . . . am is contained in another sequence
v = b1b2 . . . bn and write u ≺ v iff there is an increasing mapping f :
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{1, . . . ,m} → {1, . . . , n} and an injection g : S(u) → S(v) such that
g(ai) = bf(i) for all i = 1, . . . ,m. In other words: some subsequence
of v differs from u only in names of its symbols.
There are at least two reasons for investigating (S,≺): one is that
finite sequences (words) belong to the most basic mathematical con-
cepts and the second is that so called Davenport-Schinzel sequences
(from now DS sequences) which play an important role in computa-
tional geometry can be naturally defined in terms of ≺. Our results
on (S,≺) are:

1) Let Ex(u, n) be a general extremal function measuring the max-
imum length of sequences over n symbols not containing a fobid-
den sequence u and let Lin be the set of all sequences u for which
Ex(u, n) = O(n). The elements of Lin are called linear sequences,
the nonelements are called nonlinearsequences. Exact definitions are
given in the beginning of Section 2. It is easy to show that the set Lin
is a lower ideal in (S,≺). Hence Lin is completely determined by the
set B of all minimal (to ≺) nonlinear sequences. The result of Hart
and Sharir [6] yields ababa ∈ B. We show that the construction [15]
of Sharir and Wiernik implies

Theorem A
There are at least two elements in B: u1 = ababa and u2 ≺ abcbadadbcd.
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Problem
Is B finite?

2) If (Sk,≺) were well quasiordering then B as well as all antichains
in (Sk,≺) would be finite. But there are infinite antichains in (Sk,≺)
and hence the wqo method fails. Nevertheless we prove

Theorem B
The quasiordering (Sk,≺) is wqo for any k.

Here Sk consists of all sequences u ∈ S with the property that the
graph G(u) contains no path of the length k. The vertex set of G(u)
is S(u), {a, b} is an edge of G(u) iff abab or baba is a subsequence of
u.
Theorem B implies

Consequence
B ∩ Sk is finite for any k ≥ 1.

2 Minimum nonlinear sequences

For any sequence u = a1a2 . . . am of S the symbol ‖u‖ denotes the
cardinality of S(u) and |u| stands for the length of u. Clearly ‖u‖ ≤ |u|
for all u. The sequence u is called k-regular if ai = aj , i > j implies
i− j ≥ k. We define:

Ex(u, n) = max{|v| | u 6≺ v, ‖v‖ ≤ n, v is ‖u‖-regular}.

The function Ex(u, n) was introduced in [1] and investigated in [9].
The primar question of Davenport and Schinzel [3] was (though in
different notation) the growth rate of the functions Ex(ababa . . . , n)
where ababa . . . is a fixed alternating sequence over two symbols.
They proved Ex(abab, n) = 2n− 1 (this is not difficult and is recom-
mended to the reader as an exercise), Ex(ababa, n) = O(n log n/ log log n)
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and Ex(ababa . . . , n) = O(n.exp(
√

n)) for any fixed alternating se-
quence ([3] and [4]). This was later improved by Szemerédi [14]
to O(n log∗ n) but no result excluding Ex(ababa . . . , n) = O(n) was
known.
Hart and Sharir [6] proved that Ex(ababa, n) = Θ(n.α(n)) where α(n)
is the functional inverse to the Ackermann function and grows to in-
finity extremely slowly. Their method was later generalized and sharp
upper and lower bounds on the functions
Ex(ababa . . . , n) were found [2],[13]. In [8] their method was used
to obtain a strong upper bound of this kind for any function Ex(u, n).
We recall two lemmas of [9].

Lemma 2.1 Ex(u, n) is finite for any fixed sequence u and any inte-
ger n ≥ 1.

Lemma 2.2 The set Lin is a lower ideal in (S,≺): if v ∈ Lin and
u ≺ v then u ∈ Lin.

According to [6], ababa 6∈ Lin. On the other hand, it is easy to see
that baba, aaba, abba and abaa are linear. Thus ababa ∈ B. In the rest
of this section we show that there is another obstacle to linearity. The
powerful tool that will be used is a simple but ingenious construction
of [15]. We recall it briefly and then we prove Theorem A.

We shall define, by double induction on the integers i, j ≥ 1, 2-regular
sequences u(i, j) ∈ S. A sequence v ∈ S is called j-block if v =
x1x2 . . . xj for j distinct symbols xi. Sequences u = u(i, j) satisfy
u = b1c1b2c2 . . . bkck where any bris j-block, cr is an intermediate
(possibly empty) sequence and k = k(i, j) is an integer valued function
which will be defined later. Moreover, it is required

S(u) =
k⋃

r=1

S(br) and S(b1c1 . . . br−1cr−1) ∩ S(br) = ∅, r = 2 . . . k.

Observe that ‖u(i, j)‖ = j.k(i, j). Let br = br
0y

r where yr is the last
occurence in the block br. Let

d(u) = b1
0y

1y1c1b2
0y

2y2c2 . . . bk
0y

kykck

denote the sequence obtained from u by doubling last occurences in
all j-blocks. The construction proceeds as follows.
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1. If i = 1, j ≥ 1 then u(1, j) = b1 = x1x2 . . . xj and k(1, j) = 1.

2. If i > 1, j = 1 then u(i, 1) = u(i − 1, 2) and the only change
is that the 2-blocks in u(i − 1, 2) are viewed now as pairs of
neighbouring 1-blocks in u(i, 1). Hence k(i, 1) = 2.k(i− 1, 2).

3. If i > 1, j > 1 then put J = k(i, j − 1), K = k(i − 1, J), u =
u(i, j − 1) and v = u(i − 1, J) = B1C1 . . . BKCK where Br =
xr

1 . . . xr
J is the r-th J-block of v.

The sequences u∗1, u
∗
2, . . . , u

∗
K are K disjoint copies of the se-

quence d(u), all are disjoint of v. Let u∗r = b1
0y

1y1c1 . . . bJ
0 yJyJcJ

where bs
0y

s is the copy of the s-th (j−1)-block of u. Then define

ur = b1
0y

1xr
1y

1c1 . . . bJ
0 yJxr

JyJcJ .

The J old (j − 1)-blocks in u∗r and xr
1, x

r
2, . . . , x

r
J yield J new

j-blocks in ur.
Finally

u(i, j) = u1x
1
JC1u2x

2
JC2 . . . uKxK

J CK

and the j-blocks in u(i, j) are the JK new blocks in u1, . . . , uK .
Hence

k(i, j) = J.K = k(i, j − 1).k(i− 1, k(i, j − 1)).

Briefly spoken, sufficiently many copies of d(u) and a copy of
d(v) are merged together so that the order is preserved and so
that the resulting sequence is again 2-regular.

For the proof of the following lemma we refer to [15].

Lemma 2.3 |u(i, j)|/‖u(i, j)‖ > i − 2/j for all i, j ≥ 1. Moreover:
there is an increasing sequence {ji}∞i=1 of integers such that |u(i, ji)| ≥
c.‖u(i, ji)‖.α(‖u(i, ji)‖) for i = 1, 2 . . . and an absolute constant c > 0.

Suppose u ∈ S is a sequence. We define the digraph D(u) = (V,E)
by V = S(u) and (a, b) ∈ E iff there is a b-occurence in u which is not
the first b-occurence in u and which lies between two a-occurences.
Briefly: either baba or abba is a subsequence of u. Now we generalize
the argument of Sharir and Wiernik (they considered only the case
w = ababa).

Theorem 2.4 Suppose w ∈ S is 2-regular and such that the di-
graph D(w) is strongly connected. Then w is nonlinear and moreover
Ex(w, n) = Ω(n.α(n)).
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Proof: We prove by double induction that w 6≺ u(i, j) for all i, j ≥ 1.
Cases i = 1 or j = 1 are obvious. Now consider the sequence u(i, j) =
u1x

1
JC1u2x

2
JC2 . . . uKxK

J CK where i and j are greater than 1. We use
the above notation. Suppose on the contrary that w ≺ u(i, j) and that
w∗ is the subsequence of u(i, j) which differs from w only in names
of symbols. For any x ∈ S(w∗) the symbol x is an element either of
some S(u∗r) or of S(d(v)). In the former case x is called local and in
the latter case global.
It is an easy observation that if (a, b) is an edge in D(w∗) = D(w)
and a is local then b is local too and all b-occurences appear in the
same u∗r as those of a. Because of the strong connectivity of D(w)
either all symbols in S(w∗) are local or all of them are global. In
the former case w∗ is a subsequence of some u∗r , thus w ≺ d(u) and
w ≺ u = u(i, j−1) which is a contradiction. In the latter case w ≺ d(v)
and w ≺ v = u(i− 1, J) which is a contradiction again.
We are not done yet because u(i, j) are 2-regular and we need them to
be ‖w‖-regular. Let k = ‖w‖. The sequence ababa clearly satisfies the
hypothesis of the theorem and thus ababa 6≺ u(i, j) for all i and j. Let
Ex(ababa, k−1) = h (Lemma 2.1.). We apply on u(i, j) = a0a1 . . . am

the following greedy procedure.
First we put v(i, j) = a0 and we try to add elements ai to v(i, j). If
the sequence v(i, j)ai is k-regular then we put v(i, j) := v(i, j)ai and
we try to add ai+1. If not then ai is omitted and we continue also with
ai+1. We obtain a k-regular subsequence v(i, j) of u(i, j) satisfying

|v(i, j)| ≥ |u(i, j)|
h + 1

because any interval in u(i, j) consisting of omitted elements has length
at most h. The previous lemma implies Ex(w, n) = Ω(n.α(n)) for in-
finitely many values n. It is not too difficult to prove that Ex(w, n) =
Ω(n.α(n)) for all n, one has to use the superaditivity of Ex(w, n) and
the definition of the numbers {ji}∞i=1 of the previous lemma. See [2]
for similar calculation. 2

Theorem A
There are at least two elements in B: u1 = ababa and u2 ≺ abcbadadbcd.

Proof: We know already that ababa ∈ B. Now consider the sequence
v1 = abcbadadbcd. Again Ex(v1, n) = Ω(n.α(n)) according to Theo-
rem 2.4 because there is a Hamiltonian cycle abdc in D(v1). But an



7

easy check shows that ababa 6≺ v1. Hence there must be a sequence
u2 ≺ v1, u2 6= ababa, u2 ∈ B. 2

3 (S,≺) and wqo

First we demonstrate an infinite antichain in (S,≺). Let u ∈ S be
a sequence. The graph G = (V,E) is defined by V = S(u) and by
{a, b} ∈ E iff abab or baba is a subsequence of u. It is well-known that
there are infinite antichains in the set of all finite graphs (G,⊂) ordered
by the relation ”be a subgaph”: for instance all i-cycles Ci, i ≥ 3. It is
an immediate observation that u ≺ v implies G(u) ⊂ G(v). The fact
that (G,⊂) is not wqo reflects back to (S,≺):

u3 = abacbcac, u4 = abacbcdcdad, u5 = abacbcdcdedeae, . . .

is an infinite antichain in (S,≺) because G(ui) = Ci. However, it is
not difficult to prove [12] that the smaller family (Gk,⊂), where Gk

consists of all k-path free graphs (no path of k edges), is wqo. It is
interesting that this property reflects back to (S,≺) as well.
We now recall some things about wqo and after that Theorem B will
be proved. For the proofs and for more basics we refer to [10].

Any binary relation (Q,≤Q) which is transitive and reflexive is called
a quasiorderingor, shortly, qo. Notation x <Q y means that x ≤Q

y&y 6≤Q x. A qo (Q,≤Q) is a well quasiorderingor, shortly, wqoif it
has the property characterized by the following lemma.

Lemma 3.1 Suppose (Q,≤Q) is a qo. Then the following conditions
are equivalent.

1. For any infinite sequence (q0, q1, . . .) ⊆ Q there are indices i < j
such that
qi ≤Q qj.

2. For any infinite sequence (q0, q1, . . .) ⊆ Q there are indices 0 ≤
i0 < i1 < . . . such that qi0 ≤Q qi1 ≤Q . . ..

3. There is no strictly descending infinite chain x0 >Q x1 >Q . . .
in Q and no infinite antichain.
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Sequences satisfying 1. are called good, other sequences are called bad.
Thus the definition of wqo can be stated in this form: a qo (Q,≤Q) is
wqo iff there is no bad (infinite) sequence in Q.
A strict partial ordering (Q,<∗) is called well founded iff there are no
infinite descending chains in (Q,<∗). We say that (Q,<∗) is stronger
than a qo (Q,≤Q) if x ≤Q y whenever x <∗ y. We prove Theorem B
by means of the following fundamental lemma.

Lemma 3.2 (Nash-Williams [11]) Suppose a well founded strict
partial ordering (Q,<∗ ) is stronger than a qo (Q,≤Q) which is not
wqo. Then there is an infinite sequence A = (q0, q1, . . .) ⊆ Q such that

1. A is bad in (Q,≤Q).

2. (WA,≤Q) is wqo where WA = {x ∈ Q | x <∗ qi for some i}.
Sequence A is called a minimum bad sequence.

For finite structures, <Q is ussualy well founded and one can put
<∗=<Q. This is the case here and in sequel we take tacitly <∗=<Q.
Now we give an overview of basic constructions for creating new wqo’s.
Suppose (Q0,≤Q0) and (Q1,≤Q1) are qo. The product qo (Q0 ×
Q1,≤pr) is defined by

(a0, a1) ≤pr (b0, b1) iff ai ≤Qi bi for i = 0, 1.

The sum qo (Q0 + Q1,≤+) is defined by

Q0 + Q1 = (Q0 × {0}) ∪ (Q1 × {1}), (a, i) ≤+ (b, j) iff i = j and a ≤Qi b.

An easy consequence of Lemma 3.1 is that if (Qi,≤Qi), i = 0, 1 are
wqo then both the product qo and the sum qo are wqo as well.
We shall use in sequel the wqo N = (N,≤) consisting of positive inte-
gers with the standard order and the trivial discrete wqo Tn consisting
of n elements which are mutually incomparable.
Suppose (Q,≤Q) is a qo. The elements of the structure (SEQ(Q),≤H)
are all finite sequences over Q. More specificaly, elements of SEQ(Q)
are of the form (I, p) where I is a finite linear ordering and p : I → Q
is a mapping.
We put (I, p) ≤H (J, r) (Higman ordering) iff there is an increasing
injection f : I → J such that p(x) ≤Q r(f(x)) for any x ∈ I. We shall
need the following classical result which easily follows from Lemma
3.2.
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Theorem 3.3 (Higman [7]) If (Q,≤Q) is wqo then (SEQ(Q),≤H)
is wqo as well.

To prove Theorem B it is convenient to work with a generalization of
(S,≺). Let (Q,≤Q) be a qo. Recall that S is a fixed infinite universum
of symbols.

Definition 3.4 We define R(Q) as consisting of the triples u = (I, p, q)
where I is a finite linear ordering and p : Dom(p) → S and q :
Dom(q) → Q are two labelings whose domains partition I. The qo in
(R(Q),≤R) is defined by

(I, p, q) ≤R (J, r, s) iff (Dom(p), p) ≺ (Dom(r), r) via fdDom(p) and

(Dom(q), q) ≤H (Dom(s), s) via fdDom(q)

for some increasing injection f : I → J .

We use S(u) to denote Rng(p). The graph G(u) = (V,E) is defined,
for an element u = (I, p, q) of R(Q), by V = S(u) = Rng(p) and
{a, b} ∈ E iff p(x) = p(z) = a, p(y) = p(t) = b or p(x) = p(z) =
b, p(y) = p(t) = a for some four elements x < y < z < t of I. The
set R(Q, k) consists of all triples u of R(Q) for which G(u) ∈ Gk. To
prove Theorem B we shall need two easy graph lemmas.

Lemma 3.5 If G = (V,E) is a connected graph whose longest path
P has length k then the graph H = Gd(V (G)\V (P )) belongs to Gk.

Proof: Suppose Q is a k-path in H and T is a P -Q path joining P
and Q in G. These three paths contain obviously a (2.dk

2e + 1)-path
which is a contradiction. 2

Suppose u = (I, p, q) ∈ R(Q) is a sequence such that min I ∈ Dom(p),
let p(min I) = v. Let H be the component in G(u) containing v. We
define the graph decomposition of I as I = J0 ∪K0 ∪ J1 ∪K1 ∪ . . . ∪
Jr ∪Kr where J0 < K0 < J1 < K1 < . . . and any J j is a maximum
nonempty interval in I such that J j ⊂ Dom(p) and p(x) ∈ V (H) for
any x ∈ J j . Let uj ( resp.vj) be u restricted on Ij (resp. Kj).

Lemma 3.6 Let u and the graph decomposition be as above. Then
S(vj) are mutually disjoint for j = 0, 1, . . . , r.
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Proof: Let w ∈ S(vi) ∩ S(vj) for some 0 ≤ i < j ≤ r. Consider the
subsets of V (H)

X =
⋃a=i

a=0 S(ua) ∪
⋃a=r

a=j+1 S(ua) and Y =
⋃a=j

a=i+1 S(ua).

There exists a t ∈ X ∩ Y otherwise there would be no edge in G(u)
between X and Y . Thus {t, w} is an edge and w ∈ V (H) which is a
contradiction. 2

We prove Theorem B in the following general form.

Theorem 3.7 (R(Q, k),≤R) is wqo for any wqo (Q,≤Q) and any
positive integer k.

Proof: We shall proceed by double induction on k and (Q,≤Q). Let
k = 1 and let (Q,≤Q) be an arbitrary wqo. Suppose (R(Q, 1),≤R) is
not wqo. Consider the minimum bad sequence

A = (u0, u1, . . .) ⊂ R(Q, 1), ui = (Ii, pi, qi)

which is ensured by Lemma 3.2.
Denote xi = min Ii. One can suppose that either xi ∈ Dom(qi) for
all i or xi ∈ Dom(pi) for all i. In the former case consider triples
vi = (Ji, p

∗
i , q

∗
i ) where Ji = Ii\{xi}, p∗i = pidJi and q∗i = qidJi. The

sequence
( (q0(x0), v0), (q1(x1), v1), . . .) ⊂ Q×WA

is a good sequence because Q×WA is wqo and thus A is good as well
which is a contradiction.
In the latter case consider the corresponding graph decomposition
Ii = J0

i ∪K0
i ∪J1

i ∪K1
i ∪ . . .∪Jri

i ∪Kri
i . The component H is now just

a single point. Let vj
i be the restriction of ui to Kj

i . According to the
previous lemma vj

i , j = 0, 1, . . . , ri can be treated independently. We
define si = ({0, 1, . . . , ri}, ni) ∈ SEQ(N × WA) by ni(j) = (|J j

i |, v
j
i ).

The sequence
(s0, s1, . . .) ⊂ SEQ(N ×WA)

is, according to Higman theorem, a good sequence. It is not difficult
to see that this implies that A is a good sequence as well. This is a
contradiction again. We conclude that (R(Q, 1),≤R) is wqo.
Now suppose that k > 1, that (R(Q, k − 1),≤R) is wqo for any wqo
(Q,≤Q) and that (R(Q, k),≤R) is not wqo for some wqo (Q,≤Q). Let

A = (u0, u1, . . .) ⊂ R(Q, k), ui = (Ii, pi, qi)
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be a minimum bad sequence. One can suppose that min Ii = xi ∈
Dom(pi) for all i, the other possibility is treated as for k = 1.
Let Hi ⊂ S(ui) be the component in G(ui) which contains pi(xi). Let
Wi ⊂ V (Hi) be the vertex set of the longest path in Hi. Consider the
graph decomposition Ii = J0

i ∪K0
i ∪ J1

i ∪K1
i ∪ . . .∪ Jri

i ∪Kri
i . Let vj

i

be the restriction of ui to Kj
i .

Again vj
i , j = 0, 1, . . . , ri are independ each to the other. The sequence

ui is transformed into the sequence u∗i in the following manner. Any
Kj

i is contracted into one point kj
i which is labeled by vj

i . The wqo Q∗

is defined by Q∗ = Tk + WA. The elements of the trivial wqo Tk are
the vertices of Wi. Now they are viewed as labels for the q-labeling.
Formally:

u∗i = (I∗i , p∗i , q
∗
i ) where I∗i = J0

i ∪ {k0
i } ∪ J1

i ∪ {k1
i } ∪ . . . ∪ Jri

i ∪ {kri
i } and

J0
i < {k0

i } < J1
i < {k1

i } < . . ..

Further
Dom(p∗i ) = p−1

i (V (Hi)\Wi) and

Dom(q∗i ) = I∗i \Dom(p∗i ) = p−1
i (Wi) ∪ {k0

i } ∪ . . . ∪ {kri
i }.

Finally

p∗i (x) = pi(x), q∗i (x) = pi(x) if x ∈ p−1
i (Wi) and q∗i (x) = vj

i if x = kj
i .

Clearly, according to the Lemma 3.5, u∗i = (I∗i , p∗i , q
∗
i ) ∈ R(Q∗, k− 1).

The sequence
(u∗0, u

∗
1, . . .) ⊂ R(Q∗, k − 1)

is good according to the induction hypothesis. This implies that A is
good as well contradicting our assumption. 2
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